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Abstract: 

 

The immune system has a well-established contribution to tissue homeostasis and wound 

healing. However, in many cases immune responses themselves can cause severe tissue 

damage. Thus, the question arose to which extent cells of the immune system directly 

contribute to the process of wound healing and to which extent the resolution of excessive 

immune responses may indirectly contribute to wound healing. FoxP3 expressing CD4 T-

cells, so-called regulatory T-cells (Tregs), have an important contribution in the regulation of 

immune responses; and, in recent years, it has been suggested that Tregs next to an immune 

regulatory, “damage-limiting” function may also have an immune independent, “damage-

resolving” direct role in wound healing. In particular, the release of the EGF-like growth 

factor Amphiregulin by tissue-resident Tregs during wound repair suggested such a function. 

Our recent findings have now revealed that Amphiregulin induces the local release of bio-

active TGFβ, a cytokine involved both in immune regulation as well as in the process of 

wound repair. In light of these findings, we discuss whether, by locally activating TGFβ, Treg-

derived Amphiregulin may contribute to both wound repair and immune suppression. 

Furthermore, we propose that Treg-derived Amphiregulin in an autocrine way may enable an 

IL-33 mediated survival and expansion of tissue-resident Tregs upon injury. Furthermore, Treg-

derived Amphiregulin may contribute to a constitutive, low-level release of bio-active TGFβ 

within tissues, leading to continuous tissue regeneration and to an immune suppressive 

environment, which may keep inflammation prone tissues in an homeostatic state. 
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Regulatory T-cells have an established role in wound healing: 

Following a breach of tissue homeostasis (be it by infection or tissue injury) a highly 

complex, but also well-orchestrated process of local inflammation occurs which guides local 

wound healing 1, 2. This process can roughly be separated into three distinct, consecutive but 

overlapping phases. These phases are traditionally divided into a pro-inflammatory initiation 

phase, a tissue formation phase and a resolution and tissue re-organisation phase 1. During 

each of these phases different types of leukocytes infiltrate the site of tissue damage and 

play distinct, clearly defined roles 1. The injury itself induces a pro-inflammatory initiation 

phase, during which neutrophils and pro-inflammatory monocytes are recruited to the site of 

injury 2. These cells contribute to host defence and the removal of cell debris and of necrotic 

cells. The pro-inflammatory initiation phase then transitions into the so-called tissue 

formation phase, in which inflammation is already dampened and a differentiation of 

infiltrating monocytes into alternatively activated macrophages occurs. During this phase, 

angiogenesis and cell proliferation lead to a closure of the wound. In the following, the so-

called resolution or tissue-remodelling phase, the immune response is actively suppressed 

and excessive tissue and cellular matrix growth is reversed 2. This process of wound healing 

has to be well orchestrated and disruption of this process, for instance due to the infection of 

the healing wound, can lead to a failure of wound healing or excessive scar formation 3.  

The transition from the pro-inflammatory initiation phase into the tissue formation phase and 

the resolution phase is critically controlled by immune regulatory mechanisms. In particular 

FoxP3-expressing regulatory CD4 T-cells (Tregs) appear to play a critical role in this 

transition. Tregs rapidly migrate to and accumulate at sites of inflammation, such as at sites of 

injury 4-6. Depletion of Tregs during the different phases of wound healing, for instance by the 

application of Diphtheria Toxin (DT) to FoxP3:DTR transgenic mice or by the injection of 

CD25-depleting antibodies, consistently led to aggravated inflammation and deteriorated 

clinical outcomes in a number of different injury model systems in mice 4, 6-12.  

For instance, in mouse models of myocardic infarction, the depletion of Tregs resulted in 

aggravated cardiac inflammation and deteriorated clinical outcome 9, 10. In these 

experiments, Treg-cell depletion was associated with increased neutrophil and monocyte 

infiltration and diminished alternatively-activated macrophage polarization 9. In contrast, 

expansion of the Treg compartment, for instance, via activation using super-agonistic anti-

CD28 monoclonal antibody administration 9 or adoptive Treg transfer 10, reduced infarct size 

and improved tissue remodelling and functional performance of the heart. Similarly, in 

mouse models of ischaemic-reperfused kidneys in Rag1-/- mice, the transfer of Tregs reduced 

the influx of neutrophils and macrophages, and diminished innate cytokine transcription in 

the kidney, resulting in diminished renal injury 7. Also in mouse models of muscle injury, 

such as in the mdx mouse model of Duchenne muscular dystrophy 11 or acute muscle injury 
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4, DTR-mediated depletion of Tregs in FoxP3:DTR transgenic mice exacerbated muscle injury 

and the severity of muscle inflammation, which was associated with a prolonged infiltration 

of pro-inflammatory monocytes and a bias towards classically-activated macrophages. In 

contrast, expansion of Tregs via the application of IL-2/anti-IL-2 complexes in mdx mice led to 

decreased myofiber injury and suppressed inflammation in muscles associated with muscle 

fiber injury 11. 

Thus, taken together, these findings clearly support the conclusion that Tregs critically 

contribute to the process of wound healing 

 

Immune-mediated roles of regulatory T-cells during wound healing: 

One of the underlying mechanisms associated with Treg-mediated wound healing is assumed 

to be the suppression of pro-inflammatory stimuli. Such Treg-mediated immune suppression 

appears to be a critical factor allowing for the progression of the wound healing process 13. 

Tregs utilize a number of different mechanisms to locally mediate their immune suppressive 

function 14. These mechanisms include the local activation of bio-active TGFβ 15, 16, the 

secretion of the immune suppressive cytokine IL-10 17 or the conversion of local adenosine 

monophosphate into adenosine 18. Accordingly, in mdx mice treated with IL-2/anti-IL-2 

complexes more Tregs and increased IL-10 concentrations were found in injured muscles 11. 

Also, in an ischaemic-reperfused kidney model and an experimental brain ischemia model in 

Rag1-/- mice, the adoptive transfer of wild-type, but not of IL-10-deficient Tregs, was sufficient 

to ameliorate tissue injury 7, 8. Furthermore, in a model of LPS-induced acute lung injury 

(ALI), the transfer of wild-type, but not of CD73-deficient Tregs ameliorated lung injury in 

Rag-/- mice; strongly suggesting that the CD73-mediated adenosine generation and thus 

induced immune suppression by Tregs contributed to the restoration of tissue homeostasis 19. 

Thus, the resolution of local inflammation is clearly a key function of Tregs during wound 

healing (Figure 1). 

 

 

Non-immune mediated roles of regulatory T-cells during wound healing: 

In recent years, it has further been suggested that Tregs may also directly contribute to wound 

healing, independent of their immune regulatory function 4, 20. Such a notion was supported 

by the discovery that in several different tissues, such as the muscle 4, a specific subtype of 

Tregs, so called tissue-resident Tregs 21, 22, expresses the EGF-like growth factor Amphiregulin.  

Amphiregulin is an EGF-like growth factor associated with a number of different 

physiological processes, such as tissue homeostasis, inflammation and immunity 23, 24. With 

regard to tissue homeostasis, a direct role for Amphiregulin has for instance recently been 

demonstrated for the gingiva 25. The gingiva is a key oral barrier site and Amphiregulin gene-
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deficient mice showed at steady state a substantially elevated level of oral, periodontal 

pathology in comparison to wild-type mice 25. Furthermore, during wound healing, a direct 

role of Amphiregulin has been suggested. For instance during infections, the injection of 

recombinant Amphiregulin (rAREG) has in several different experimental settings 

demonstrated the amelioration of symptoms, such as during Influenza infection 26, 27 or 

following viral-bacterial co-infections 28. In line with these findings, also during wound healing 

following muscle injury, the injection of rAREG enhanced the restoration of injured muscles 

and the presence of rAREG enhanced the differentiation of muscle stem cells in vitro. These 

findings were further corroborated by findings from the Rudensky group, using a mouse 

strain with a Treg-specific deficiency of Amphiregulin (FoxP3:cre x Aregfl/fl) 20. These mice 

showed a substantially more severe form of symptoms following Influenza infection than 

wild-type mice 20, suggesting a direct role of Treg-derived Amphiregulin in wound repair. 

Other studies further supported the finding that during wound healing Tregs may have, 

independent of immune modulatory function, a complementary, regenerative role. For 

instance, in a model of lysolecithin-mediated demyelination in the spinal cord of mice, Tregs 

were found to directly promote oligodendrocyte differentiation and myelin production 29. 

Depletion of Tregs led to a substantially impaired remyelination and oligodendrocyte 

differentiation, which could be reversed by the adoptive transfer of Tregs. In vitro studies then 

suggested that Treg-derived matricellular protein CCN3 - a protein known to induce the 

expression of TGFβ-related BMP proteins 30 - directly promoted oligodendrocyte progenitor 

cell differentiation and myelination 29. These data suggest that also in vivo Treg-derived CCN3 

may play a similar, wound healing supportive role in injured spinal cord tissue.  

In addition, in a study using established models of tissue regeneration in zebrafish, the 

conditional ablation of FoxP3 expressing zebrafish Tregs hampered organ regeneration 31. 

Dependent on the injured organ, infiltrating Tregs stimulated the proliferation of tissue 

precursor cells through the secretion of organ-specific regenerative factors, such as Ntf3 for 

the spinal cord, Nrg1 for the heart and Igf1 for the retina. Moreover, when Foxp3-deficient 

zebrafish Tregs infiltrated the injured organs, they failed to express regenerative factors and 

thus could not contribute to wound healing 31.  

Combined, these findings strongly suggest that Tregs, in addition to an immune modulatory, 

“damage-limiting” function, may also have a direct wound repair, “damage-resolving” 

function (Figure 1). 

 

The role of Amphiregulin in immune regulation and wound healing: 

The concept of such a double function of Tregs for “damage-limiting” and “damage-resolving” 

during wound healing is rather appealing. Nevertheless, a number of different findings 

suggest that, on a molecular level, the two functions might not easily be separable.  
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In mammalians the concept of a distinction of these two functions is mainly based on the 

finding that several types of tissue-resident Tregs express Amphiregulin and that the injection 

of rAREG supported the process of wound healing in several different model systems. 

However, the exact mechanism by which Amphiregulin contributes to wound healing had 

remained unresolved, while at the same time Amphiregulin had been shown before to 

enhance the suppressive capacity of Tregs in vitro and in vivo 32-36.  

We recently found that one critical function of Amphiregulin is to locally activate latent TGFβ 
37. Thus, via this local release of TGFβ, Amphiregulin may contribute to both the local 

suppression of inflammation as well as to the local differentiation of tissue stem cells and in 

this way to the process of wound healing and restoration of tissue homeostasis. In the 

following, we will discuss, how this novel insight may influence our understanding of Treg-

derived Amphiregulin for tissue homeostasis, wound repair and immune suppression. 

It has been well established that the receptor of Amphiregulin, the Epidermal Growth Factor 

Receptor (EGFR), contributes to wound healing 38. So far, it has mainly been assumed that 

this receptor mediates its function by inducing the proliferation of epithelial cells within the 

wound 38; and, in line with such an assumption, it has recent indeed been published from the 

group of Belkaid that a specific function for CD8 T-cell derived Amphiregulin is the induction 

of keratinocyte expansion within a healing skin wound 39. However, for many other epithelial 

and mesenchymal cell types, the low-affinity ligand of the EGFR Amphiregulin is actually not 

a particular good mitogen. In contrast to the high-affinity ligands of EGFR, such as EGF, 

TGFα or HB-EGF, which activate the proliferation-stimulating MAPK signalling pathway 40, 41, 

Amphiregulin preferentially induces the phosphorylation of EGFR-Y992 and thus the 

activation of PLCγ signalling pathway 42, 43. Thus, it is highly unlikely that Amphiregulin 

substantially contributes to wound healing by inducing the proliferation of epithelial cells at 

the site of wounding; and, thus, the underlying mechanism by which Amphiregulin 

contributes to wound healing has largely remained unresolved. 

We recently discovered that Amphiregulin induced the local activation of TGFβ 37. In mouse 

models of CCl4-induced acute liver damage and of Nippostrongylus infection-induced lung 

damage, we demonstrated that during wound healing Amphiregulin induced the TGFβ-

mediated differentiation of tissue stem cells and in this way critically contributed to the 

restoration of tissue homeostasis (Figure 2). TGFβ is secreted in a latent form and only by 

releasing it from this latent complex becomes the bio-active form of TGFβ exposed 44. One 

way of releasing bio-active TGFβ, is the activation of integrin-αV containing complexes 45. 

We found that Amphiregulin induced the activation of integrin-αV containing complexes and 

thus the local activation of TGFβ. This local activation of TGFβ induced the differentiation of 

blood vessel-associated mesenchymal precursor cells, so called pericytes, into collagen-
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producing myo-fibroblasts; a process, which critically contributed to the restoration of injured 

blood vessels and thus wound healing (Figure 2).  

A number of growth factors and chemokine receptors as well as the TCR use such an 

“inside-out” activation of integrin complexes to establish immunological synapsis between T-

cells and antigen-presenting cells 46 or to allow leukocytes to attach themselves to blood 

vessels in order to cross into inflamed tissues 47. A critical step in this “inside-out” activation 

of integrin complexes is the sustained activation of the PLCγ signalling pathway 48. 

Amphiregulin preferentially induces the PLCγ signalling pathway 42, 43 and is thus well 

situated to induce the activation of integrin-αV containing complexes on target cells, which 

then results in the release of bio-active TGFβ from its latent form (Figure 3). Thus, taken 

together, our data show that one major function of Amphiregulin is the local induction of 

TGFβ. 

 

Similar to Amphiregulin, also TGFβ has a double function during wound healing. For one, 

TGFβ induces the differentiation of tissue resident precursor cells; and, for the other, TGFβ 

is a key mediator of Treg-mediated immune suppression 15. To achieve TGFβ-mediated 

immune suppression, integrin-αV containing complexes on Tregs have to be activated, which 

then release bio-active TGFβ 16. A number of different groups have shown in in vitro 

suppression assays that rAREG enhances the suppressive capacity of Tregs 32, 34-36. Also in in 

vivo settings Amphiregulin enhances the suppressive capacity of Tregs 32, 33. For instance, in a 

T-cell transfer based colitis model, the titrated transfer of wild-type Tregs into Rag1-/- mice that 

had received naïve CD4 T-cells could in a dose-dependent manner suppress the induction 

of colitis, if the recipient Rag1-/- mice were on a wild-type background but not if the recipient 

Rag1-/- mice had been backcrossed onto an Amphiregulin-deficient background  32. 

Furthermore, following the adoptive transfer of antigen-specific Tregs, these cells could 

suppress hapten-induced ear swelling in wild-type, but not in Amphiregulin gene-deficient 

mice. These findings clearly demonstrated that endogenous expression of Amphiregulin is 

essential to ensure efficient Treg function. In line with this immune-suppressive function of 

Amphiregulin, it has been reported that also following ischaemic stroke Treg-derived 

Amphiregulin contributes to neurological recovery by suppressing IL-6 expression within the 

brain and thus avoiding neurotoxic astrogliosis 6. 

Although we so far have not yet formally addressed whether Amphiregulin also activates 

integrin-αV containing complexes on Tregs, our pericyte-based finding of Amphiregulin-

mediated TGFβ activation suggests that such a mechanism might also be the underlying 

effect by which Amphiregulin enhances Treg function 32. Nevertheless, in consequence, this 

TGFβ activating role of Amphiregulin also means that in those experimental settings, in 

which rAREG has been injected into mice, the injected rAREG may have induced the 
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release of bio-active TGFβ. This release of bio-active TGFβ may have enhanced the 

differentiation of tissue precursor cells, such as pericytes 37 or muscle satellite cells 4, and 

thus may have directly contributed to wound healing; or, at the same time, may have 

enhanced the suppressive capacity of Tregs and thus may also indirectly have contributed to 

wound healing. Thus, in two ways may have contributed to tissue repair (Figure 1). 

 

The function of regulatory T-cell derived Amphiregulin: 

In a similar way, it is possible that Treg-derived Amphiregulin could induce the local release of 

bio-active TGFβ and in this way the differentiation of tissue precursor cells; thus, may 

directly be contributing to tissue repair. Nevertheless, while Tregs have to be considered the 

most prominent cell type mediating local immune regulation, Tregs are not the only 

Amphiregulin-producing cells within inflamed tissues; but, a wide range of other prominent 

Amphiregulin-producing cell types, such as eosinophils, have been shown before to also 

critically contributing to the process of wound healing 49.  

Such a redundancy of cell types, which all could be potentially physiological relevant 

sources of Amphiregulin within injured tissues, raises the question what specific function 

Treg-derived Amphiregulin might have. Amphiregulin expressing Tregs are typically restricted 

to tissue resident Treg populations and thus suggest an organ-specific role for Treg-expressed 

Amphiregulin 21. These tissue resident Treg populations also preferentially express the IL-33 

receptor, T1/ST2 6, 50, 51. The role of T1/ST2 expression on Tregs currently remains 

unresolved. However, IL-33 is an important alarmin, released by dying cells and recent data 

strongly suggest that IL-33 signalling in Tregs provides a critical signal for Treg accumulation 

and maintenance in inflamed tissues 6, 50, 52, 53. However, also how IL-33 may contribute to 

such an expansion of Treg populations at the site of inflammation remains largely unknown. 

We have shown before that the EGFR forms hetero-complexes with T1/ST2 on Th2 cells 43. 

These hetero-complexes allowed Th2 cells to efficiently activate the MAPK signalling 

pathway and thus to induce the expression of IL-13 upon exposure to IL-33 43 (Figure 4). In 

CD4 T-cells, it has been shown that EGFR is one of the most prominently up-regulated 

trans-membrane receptors upon STAT5 activation 54. We showed that both in Th2 cells as 

well as in Tregs the EGFR is strongly up-regulated upon activation 32, 43. Also kinome profiling 

in human Tregs revealed that the EGFR is one of the strongest up-regulated kinases upon 

Treg activation 55. In line with these findings, the group of Rosenblum found induced EGFR 

expression in Tregs in a model of skin wounding in mice 12 and lineage-specific deletion of 

EGFR in Tregs resulted in reduced Treg accumulation within the inflamed skin 12. Thus, in this 

respect the phenotype of EGFR- and T1/ST2-deficient Tregs resembles each other, with both 

depicting a deficiency to expand at the site of inflammation. 
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These findings provide a scenario in which similar to Th2 cells also on Tregs T1/ST2 and the 

EGFR could form hetero-complexes that may allow for IL-33 induced activation of the MAPK 

signalling pathway (Figure 4). The MAPK signalling pathway is a pivotal signalling pathway 

for the transduction of mitogenic stimuli 41, 56. Thus, such an IL-33 mediated activation of the 

MAPK signalling pathway might therefore be a possible mechanism that may explain for the 

observed expansion of tissue resident Treg populations upon injection of rIL-33 50, 52.  

Such hetero-complexes between the EGFR and T1/ST2 on tissue resident Tregs could further 

enable these cells to become activated in a TCR independent way, as we have 

demonstrated before for Th2 cells 43. Upon tissue damage, antigen-specific restimulation of 

tissue resident Treg populations via MHC-II antigen presentation and TCR-mediated 

activation might not always be possible. Thus, the recognition of released IL-33 from 

damaged tissues may constitute an alternative pathway of activation for tissue-resident Treg 

populations. Such an assumption is further supported by a study using a NOD based model 

of auto-immune diabetes. This study demonstrated that in specific Treg populations with a 

low-affinity TCR for their cognate antigen preferentially expressed Amphiregulin, 

preferentially localized to the site of inflammation and functioned there in an antigen-

independent way 57. Thus, taken together, the combined expression of T1/ST2 and EGFR 

may enable tissue-resident Treg populations to function in a MHC-II independent way. 

In Th2 cells, the induced expression of Amphiregulin, in an autocrine way, enabled the 

formation of such hetero-complexes between EGFR and T1/ST2, and only upon expression 

of Amphiregulin could activated Th2 cells function in a MHC-II independent way 43. 

Assuming a similar function for Amphiregulin in tissue resident Treg populations, then the 

constitutive expression of Amphiregulin may keep these Tregs in a “poised” state (Figure 4). 

In such a “poised” state tissue resident Treg populations would be able to rapidly respond to 

tissue damage and the exposure to IL-33.  

Such a poised state of tissue resident Treg populations could be critical during tissue injury, 

for instance due to the fact that IL-33 release from necrotic cells is a very early event during 

tissue injury in many tissues. Thus, this poised state may allow to already inducing the 

activation and expansion of Treg populations at the site of injury, while the infiltration of Treg 

populations derived from secondary lymphoid organs into injured tissues may so far not 

have been initiated yet 5, 6. Thus, the constitutive expression of Amphiregulin by tissue-

resident Tregs may constitute a first line of defence during wounding. However, also under 

steady state conditions, such a “poised” state of tissue resident Treg populations could be 

contributing to tissue homeostasis; for instance in fatty tissues, in which a constant, IL-33 

dependent but most likely antigen-independent activation of Treg populations contributes to 

the control of local and systemic inflammation and metabolism. 
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Summary and out-look: 

Taken together, a wide range of different publications in recent years strongly suggested 

that Tregs play an important role in wound healing, both by suppressing local inflammation 

and also by directly contributing to the wound healing process. The exact mechanism of how 

Tregs contribute to these processes has remained to be resolved and further research is 

necessary to fully resolve the specific function of Treg-derived Amphiregulin. At this stage, it 

remains speculative to which extent Treg-derived Amphiregulin main function might be to 

directly contribute to wound healing, and to which extent it contributes to the local release of 

bioactive TGFβ, which then has both a wound healing and immune suppressive function at 

the site of injury.  

However, alternatively, Treg-derived Amphiregulin may also contribute to the survival and 

expansion of tissue-resident Tregs upon injury. Since it was also further shown that T1/ST2 

expressing Treg populations preferentially express high levels of integrin-αV and low levels of 

IL-10 51, it is tempting to speculate that this constitutive expression of Amphiregulin by 

tissue-resident Tregs may also lead to a constitutive, low level release of bio-active TGFβ, 

which may contribute to on-going regeneration of tissues and to a low level immune 

suppressive environment in the surrounding of Amphiregulin-expressing tissue resident Treg 

populations, which might be an evolutionary advantage for instance in inflammation prone 

tissues, such as fatty tissues. 
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Figure 1: 
 

 
 
 
Figure 1: Dual function of regulatory T-cells during wound healing. 

The process of wound healing has to be well orchestrated and disruption of this process, for 

instance due to the infection of the healing wound, can lead to a failure of wound healing or 

excessive scar formation. Regulatory T-cells rapidly accumulate at sites of injury and keep 

local immune responses under control so that no excessive immune responses develop that 

could cause additional damage. This immune regulatory, “damage-limiting” function of 

regulatory T-cells is complemented by an immune independent, “damage-resolving” direct 

role in wound healing. In this process, regulatory T-cells at the site of injury release growth 

factors, such as the EGF-like growth factor Amphiregulin, that directly contribute to the 

proliferation and differentiation of cells within the injured tissues; in this way, contributing to 

wound healing and the restoration of tissue homeostasis.  
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Figure 2: 

 

 
 

 

Figure 2: Amphiregulin contributes to wound healing by releasing local, bioactive 

TGFβ 

Upon tissue damage, tissue-resident macrophages sense the breach of tissue homeostasis 

and release Amphiregulin, which activates the local release of bio-active TGFβ. This local 

release of bio-active TGFβ induces the differentiation of local pericyte populations into 

myofibroblasts, which produce extra-cellular matrix components essential for the restoration 

of blood barrier function and the restoration of tissue homeostasis.  
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Figure 3: 

 

 
 

 

 

Figure 3: Amphiregulin induces an “inside-out” activation of integrin complexes that 

then lead to the local release of bioactive TGFβ. 

Amphiregulin induces a sustained PLCγ-mediated signal via the Epidermal Growth Factor 

Receptor (EGFR). Such a sustained PLCγ-mediated signalling induces an intra-cellular 

rearrangement of local actin fibers and the physical separation of complexed, trans-

membrane integrin-α and integrin-β subunits and thus to their extra-cellular activation. Such 

an “inside-out” activation of integrin-αV containing complexes can induce the local release of 

bio-active TGFβ from its latent form, and thus to the local activation of the TGFβ signalling 

pathway. 
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Figure 4: 

 

 
 

 

Figure 4: An Amphiregulin-mediated autocrine activation of the EGFR facilitates T-

cells to form a hetero-complex with the IL-33R (T1/ST2), which enables IL-33 to 

activate the MAP-kinase signalling pathway. 

The low-affinity EGFR ligand Amphiregulin activates resting EGFR complexes. This places 

the receptor into a “poised state”, which allows it to enter “signalling competent” clusters on 

the cell surface and to interact with the IL-33R (T1/ST2). Such clusters of hetero-complexes 

between the EGFR and T1/ST2 then enables IL-33 to mediate a MAP-kinase mediated 

signal via the EGFR, and thus potentially the proliferation of tissue-resident regulatory T-cell 

populations. 

 

 

 

 

 


