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METHODOLOGY Open Access

Machine learning algorithms for systematic
review: reducing workload in a preclinical
review of animal studies and reducing
human screening error
Alexandra Bannach-Brown1,5,6* , Piotr Przybyła2, James Thomas3 , Andrew S. C. Rice4 , Sophia Ananiadou2,
Jing Liao1 and Malcolm Robert Macleod1

Abstract

Background: Here, we outline a method of applying existing machine learning (ML) approaches to aid citation
screening in an on-going broad and shallow systematic review of preclinical animal studies. The aim is to achieve a
high-performing algorithm comparable to human screening that can reduce human resources required for carrying
out this step of a systematic review.

Methods: We applied ML approaches to a broad systematic review of animal models of depression at the citation
screening stage. We tested two independently developed ML approaches which used different classification
models and feature sets. We recorded the performance of the ML approaches on an unseen validation set of
papers using sensitivity, specificity and accuracy. We aimed to achieve 95% sensitivity and to maximise specificity.
The classification model providing the most accurate predictions was applied to the remaining unseen records in
the dataset and will be used in the next stage of the preclinical biomedical sciences systematic review. We used a
cross-validation technique to assign ML inclusion likelihood scores to the human screened records, to identify
potential errors made during the human screening process (error analysis).

Results: ML approaches reached 98.7% sensitivity based on learning from a training set of 5749 records, with an
inclusion prevalence of 13.2%. The highest level of specificity reached was 86%. Performance was assessed on an
independent validation dataset. Human errors in the training and validation sets were successfully identified using
the assigned inclusion likelihood from the ML model to highlight discrepancies. Training the ML algorithm on the
corrected dataset improved the specificity of the algorithm without compromising sensitivity. Error analysis
correction leads to a 3% improvement in sensitivity and specificity, which increases precision and accuracy of the
ML algorithm.

Conclusions: This work has confirmed the performance and application of ML algorithms for screening in
systematic reviews of preclinical animal studies. It has highlighted the novel use of ML algorithms to identify
human error. This needs to be confirmed in other reviews with different inclusion prevalence levels, but represents
a promising approach to integrating human decisions and automation in systematic review methodology.

Keywords: Machine learning, Systematic review, Analysis of human error, Citation screening, Automation tools
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Background
The rate of publication of primary research is increasing
exponentially within biomedicine [1]. Researchers find it
increasingly difficult to keep up with new findings and
discoveries even within a single biomedical domain, an
issue that has been emerging for a number of years [2].
Synthesising research—either informally or through sys-
tematic reviews—becomes increasingly resource inten-
sive, as searches retrieve larger and larger corpora of
potentially relevant papers for reviewers to screen for
relevance to the research question at hand.
This increase in rate of publication is seen in the ani-

mal literature. In an update to a systematic review of
animal models of neuropathic pain, 11,880 further unique
records were retrieved in 2015, to add to 33,184
unique records identified in a search conducted in
2012. In the field of animal models of depression, the
number of unique records retrieved from a systematic
search increased from 70,365 in May 2016 to 76,679
in August 2017.
The use of text-mining tools and machine learning

(ML) algorithms to aid systematic review is becoming
an increasingly popular approach to reduce human bur-
den and monetary resources required and to reduce the
time taken to complete such reviews [3–5]. ML algo-
rithms are primarily employed at the screening stage in
the systematic review process. This screening stage in-
volves categorising records identified from the search
into ‘relevant’ or ‘not-relevant’ to the research question,
typically performed by two independent human re-
viewers with discrepancies reconciled by a third. This
decision is typically made on the basis of the title and
abstract of an article in the first instance. In previous
experience at CAMARADES (Collaborative Approach
to Meta-Analysis and Review of Animal Data from Ex-
perimental Studies), screening a preclinical systematic
review with 33,184 unique search results took 9 months,
representing (because of dual screening) around 18
person-months in total. Based partly on this, we estimate
that a systematic review with roughly 10,000 publications
retrieved takes a minimum of 40 weeks. In clinical system-
atic reviews, Borah and colleagues [6] showed the average
clinical systematic review registered on PROSPERO
(International Prospective Register of Systematic Reviews)
takes an average 67.3 weeks to complete. ML algorithms
can be employed to learn this categorisation ability, based
on training instances that have been screened by human
reviewers [7].
Several applications of ML are possible. The least bur-

densome is when a review is being updated, where cate-
gorisations from the original review are used to train a
classifier, which is then applied to new documents iden-
tified in the updated search [7–9]. When a screening is
performed de novo, without such previous collection,

humans first categorise an initial set of search returns,
which are used to train an ML model. The performance
of the model is then tested (either in a validation set or
with k fold cross validation); if performance does not
meet a required threshold then more records are
screened, chosen either through random sampling or,
using active learning [10], on the basis either of those
with highest uncertainty of predictions [11, 12] or alter-
natively from those most likely to be included [13–15].
Here, we use a de novo search with subsequent training
sets identified by random sampling, and we introduce a
novel use of machine prediction in identifying human
error in screening decisions.
Machine learning approaches have been evaluated in

context of systematic reviews of several medical problems
including drug class efficacy assessment [7, 8, 12], genetic
associations [9], public health [13, 16], cost-effectiveness
analyses [9], toxicology [3], treatment effectiveness
[17, 18], and nutrition [17]. To the best of our know-
ledge, there have been only two attempts to apply such
techniques to reviews of preclinical animal studies [3, 19].
These can be broad and shallow reviews or focussed and
detailed reviews and can have varying prevalence of
inclusion.
Here, we outline the ML approach taken to assist in

screening a corpus for a broad and shallow systematic
review seeking to summarise studies using non-human
animal models of depression, based on a corpus of
70,365 records retrieved from two online biomedical da-
tabases. In this paper, our aim was to train an algorithm
to achieve the level of performance of two independent
human screeners, so that we might reduce the human
resource required.
Sena and colleagues developed guidelines for the ap-

praisal of systematic reviews of animal studies [20].
These guidelines consider dual extraction by two inde-
pendent human reviewers as a feature of a high-quality
review. From a large corpus of reviews conducted by
CAMARADES (Collaborative Approach to Meta-Analysis
and Review of Animal Data from Experimental Studies),
we estimate the inter-screener agreement to be between
95% and 99%. Errors may occur at random (due to fatigue
or distraction) or, more consequentially, systematic human
biases or errors, which, if included in a training set, might
be propagated into a ML algorithm. Certain types of re-
cords might be at greater risk of misclassification if sys-
tematic errors are present. To our knowledge, the nature
of this 5% residual human error in systematic review
methodology has not been formally investigated. The
training data used for ML categorisation is based on train-
ing instances that has been screened by two independent
human screeners. Each record is presented to any given
reviewer at random to reduce any effects of screening re-
cords in a specific order.
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We therefore aimed to explore the use of established
ML algorithms as part of the classification stage in a
preclinical, to investigate if the ML algorithms could
be used to improve the human gold standard by
identifying human screening errors and thus improve
the overall performance of ML.

Methods
We applied two independent machine learning ap-
proaches to screening a large number of identified cita-
tions (70,365 records) for a systematic review. We first
selected 2000 records at random to provide the first
training set. This number was chosen arbitrarily as we
could not predict how many training instances would be
required. Of these, only 1993 were suitable due to data
deposition errors. These were then screened by two hu-
man reviewers with previous experience with reviews of
animal studies, with a third expert reviewer reconciling
any differences. The resulting ML algorithms gave a
score between 0 and 1. To ensure that the true sensitiv-
ity was likely to be 95% or higher, we chose as our
cut-point the value for which the lower bound of the
95% confidence interval of the observed sensitivity
exceeded 95% when applied to the unseen validation
dataset. We then repeated this process adding a further
1000 randomly selected (996 useable) citations to the
training set; and then again adding a further 3000 ran-
domly selected (2760 useable) citations to the training
set. At each stage, we assessed performance of the ap-
proaches on a validation set of unseen documents, using
a number of different metrics. Next, the best performing
algorithm was used to identify human errors in the
training and validation sets by selecting those with the
largest discrepancy between the human decision (charac-
terised as 0 for exclude or 1 for include) and the machine
prediction (a continuous variable between 0 and 1). Per-
formance of the approaches trained on the full 5749 re-
cords is reported here, and each of the iterations is
available in Additional file 1. The error analysis was
assessed on the net reclassification index, and the perform-
ance of the ML approach is compared before and after cor-
recting the errors in human screening using AUC (Fig. 1).

Step 1: Application of ML tools to screening of a large
preclinical systematic review
Training sets
We identified 70,365 potentially relevant records from
PubMed and EMBASE. The search strings were composed
of the animal filters devised by the Systematic Review
Center for Laboratory animal Experimentation (SYRCLE)
[21, 22], NOT reviews, comments, or letters AND a depres-
sion disorder string (for full search strings see [23]). The
training and validation sets were chosen at random from

the 70,365 by assigning each record a random number
using the RAND function in excel and ranking them from
smallest to largest. The final training set consisted of 5749
records. The final validation set consisted of the next 1251
records. The training set and validation sets were screened
by two independent human screeners with any discrepan-
cies reconciled by a third independent human screener.
The human screening process used an online systematic re-
view tool called SyRF (app.syrf.org) which randomly pre-
sents a reviewer with a record, with the title and abstract
displayed. The reviewer makes a decision about the record,
to include (1) or to exclude (0). A second reviewer is also
presented with records but in a different random sequence.
If a given record receives two ‘include’ decisions or two ‘ex-
clude’ decisions, the screening for this record is considered
complete. If reviewer 1 and reviewer 2 disagree, the record
is listed for review by third reviewer who. The record then
has an average inclusion score of 0.666 or 0.333. Any rec-
ord that has an inclusion score above 0.6 is included, those
scoring less than 0.6 are excluded, and screening is consid-
ered complete. Reviewers are not aware of whether they are
the first, second or third reviewer or of the decisions of the
other reviewers. Datasets are available on Zenodo, as de-
scribed in the “Availability of data and materials” section.
The validation set had more than 150 ‘included’ records,
which should give a reasonably precise estimate of the sen-
sitivity and specificity which would be achieved in screening
other citations from the population from which the valid-
ation set was drawn.
Three feature sets (BoW, LDA and SVD (LSI)) were

tested on SVMs, logistic regression and random forests
[24]. The two algorithms described below performed
best for this dataset of 70,365 records, on the broad
topic of preclinical animal models of depression.

Approaches
Here, two approaches were developed independently,
using different classification models and feature represen-
tations, but sharing the linear classification principles.

Approach 1 Approach 1 used a tri-gram ‘bag-of-words’
model for feature selection and implemented a linear
support vector machine (SVM) with stochastic gradient
descent (SGD) as supported by the SciKit-Learn python li-
brary [25]. To account for the relative importance of words
within a given document, and difference in words used be-
tween documents we used ‘Term Frequency – Inverse
Document Frequency’ (TD-IDF). This is defined as

tfidf wi; d j
� � ¼ tf wi; d j

� � � Dj j
d : wi∈df gj j

The score for the ith word in context of the jth docu-
ment takes into account not only how many times the
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word occurred there (tf ), but also how many other docu-
ments (d) from the whole corpus (D) contain it as well.
This helps to reduce the score for words that are com-
mon for all documents and therefore have little predict-
ive power. This helps the classifier to focus on terms
which help to distinguish between documents, rather
than on terms which occur frequently [26]. We allowed
n-grams; did not use stemming; and used the MySQL
text indexing functionality ‘stopword’ list to remove fre-
quently occurring words which provide little relevant in-
formation for classification purposes [27].
The support vector machine classifier with stochastic

gradient descent (SGD) was chosen as it is efficient,
scales well to large numbers of records, and provides an
easily interpretable list of probability estimates when
predicting class membership (i.e. scores for each docu-
ment lying between 0 and 1). Efficiency and interpret-
ability are important, as this classifier is already
deployed in a large systematic review platform [28], and
any deployed algorithm therefore needs not to be too
computationally demanding, and its results understood
by users who are not machine learning specialists. The
tri-gram feature selection approach without any add-
itional feature engineering also reflects the generalist
need of deployment on a platform used in a wide range
of reviews: the algorithm needs to be generalisable
across disciplines and literatures, and not ‘over-fitted’ to

a specific area. For example, the tri-gram ‘randomised
controlled trial’ has quite different implications for clas-
sification compared with ‘randomised controlled trials’
(i.e. ‘trials’ in plural). The former might be a report of a
randomised controlled trial; while the latter is often
found in reports of systematic reviews of randomised tri-
als. Stemming would remove the ‘s’ on trials and thus
lose this important information. This approach aims to
give the best compromise between reliable performance
across a wide range of domains and that achievable from
a workflow that has been highly tuned to a specific
context.

Approach 2 Approach 2 used a regularised logistic re-
gression model built on latent Dirichlet allocation (LDA)
and singular value decomposition (SVD) features.
Namely, the document text (consisting of title and ab-
stract) was first lemmatised with the tool GENIA tagger
[29] and then converted into bag-of-words representa-
tion of unigrams, which was then used to create two
types of features. First, the word frequencies were con-
verted into a matrix TF/IDF scores, which was then
decomposed via a general matrix factorisation technique
(SVD) implemented in scikit-learn library and truncated
to the first 300 dimensions. Second, an LDA model was
built using MALLET library [30], setting 300 as a num-
ber of topics. As a result, each document was

Fig. 1 Diagram of the layout of the study
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represented by 600 features, and an L1-regularised logis-
tic regression model was built using glmnet package [31]
in R statistical framework [32].
In this procedure, every document is represented with

a constant, manageable number of features, irrespective
of corpus or vocabulary size. As a result, we can use a
relatively simple classification algorithm and expect good
performance with short processing time even for very large
collections. This feature is particularly useful when running
the procedure numerous times in cross-validation mode for
error analysis (see below).
For further details of feature generation methods and

classifiers see Additional file 1. For a given unseen test
instance, the logistic regression returns a score corre-
sponding to the probability of it being relevant according
to the current model. An optimal cut-off score that gives
the best performance is calculated as described above.

Assessing machine learning performance
The facets of a machine learning algorithm performance
that would be most beneficial to this field of research
are high sensitivity (see Table 1), at a level comparable to
the 95% we estimate is achieved by two independent hu-
man screeners. To be confident that the sensitivity
which would be achieved in the screening of other publi-
cations from which the validation set was drawn would
be 95% or higher, we selected the threshold for inclusion
such that the lower bound of the 95% confidence inter-
val of the observed sensitivity in the validation set ex-
cluded 95% sensitivity. This has practical implications
that, the larger the validation set, the more precisely that
sensitivity will be estimated. Once the level of sensitivity
has been reached, the next priority is to maximise speci-
ficity, to reduce the number of irrelevant records in-
cluded by an algorithm. Although specificity at 95%
sensitivity is our goal, we also provide additional mea-
sures of performance.

Performance metrics Performance was assessed using
sensitivity (or recall), specificity, precision, accuracy,
work saved over sampling (WSS), and the positive likeli-
hood ration (LR+) (see Table 1), carried out in R (R

version 3.4.2; [32]) using the ‘caret’ package [24]. 95%
confidence intervals were calculated using the efficient-
score method [33]. Cut-offs were determined manually
for each approach by taking the score that gave confi-
dence that true sensitivity was at least 95% (as described
above), and the specificity at this score was calculated.

Step 2: Application of ML tools to training datasets to
identify human error
Error analysis methods
The approach to error analysis was outlined in an a
priori protocol, published on the CAMARADES (Collab-
orative Approach to Meta-Analysis and Review of Ani-
mal Data from Experimental Studies) website on 18
December 2016 [34]. We used non-exhaustive fivefold
cross-validation to generate the machine learning scores
for the set of records that were originally used to train
the machine (5749 records). This involves randomly par-
titioning records into five equal sized subsamples. Over
five iterations, one subsample is set aside, and the
remaining four subsamples are used to train the algo-
rithm [35]. Thus, every record serves as an ‘unknown’ in
one of these iterations, and has a score computed by a
machine learning model where it was not included in
the training portion. These scores were used to highlight
discrepancies or disagreements between machine deci-
sion and human decision. The documents were ranked
by the machine assigned prediction of relevance from
most likely to least likely. The original human assigned
scores (either 0 or 1) were compared with this ranking,
to highlight potential errors in the human decision. A
single human reviewer (experienced in animal systematic
reviews) manually reassessed the records starting with
the most discrepant. To avoid reassessing the full 5749
record dataset, a pragmatic stopping rule was established
such that if the initial human decision was correct for
five consecutive records, further records were not reas-
sessed (Fig. 2).
After the errors in the training set were investigated

and corrected as described above, a second model was
built on the updated training data. The outcome of error
analysis is presented as reclassification tables, the area
under the curve (AUC) being used to compare the per-
formance of the ML algorithm trained on the uncor-
rected training set, and the net reclassification index
(NRI) [36] used to compare the performance of the clas-
sifier built on the updated training data with the per-
formance of the classifier built on the original training
data. The following equation was used [37]:

NRIbinary outcomes ¼ Sensitivity þ Specificityð Þsecond test

− Sensitivity þ Specificityð Þfirst test

Table 1 Equations used to assess performance of machine
learning algorithms

Sensitivity or recall TP/(TP + FN)

Specificity TN/(TN + FP)

Precision TP/(TP + FP)

Accuracy (TP + TN)/(TP + FP + FN + TN)

WSS@95% ((TN + FN)/N) – (1.0 – 0.95)

Positive likelihood ratio (LR+) (Sensitivity)/(1-specificity)

Sensitivity, specificity, precision, accuracy and WSS@95% equations from [5].
Positive likelihood ratio equation from [45]
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The AUC was calculated using the DeLong method in
the ‘pROC’ package in R [38].
Further, we applied the same technique as above to

identify human screening errors in the validation dataset.
Due to the small number of records in the validation set
(1251 records), it was assumed that every error would be
likely to impact measured performance, and so the man-
ual screening of the validation set involved revisiting
every record where the human and machine decision
were incongruent. The number of reclassified records
was noted. The inter-rater reliability of all screening de-
cisions on training set and validation set between re-
viewer 1 and reviewer 2 were analysed using the
‘Kappa.test’ function in the ‘fmsb’ package in R [39].

Results
We first describe the performance from the ML algo-
rithms, then show the results from the analysis of hu-
man error, and finally describe the performance of the
ML algorithm after human errors in the training and
validation set have been corrected.

Performance of machine learning algorithms
Table 2 shows the performance of the two machine
learning approaches from the SLIM (Systematic Living
Information Machine) collaboration. The desired sensi-
tivity of 95% (including lower bound 95% CI) has been
reached by both approaches. Both approaches reached
98.7% sensitivity based on learning from a training set of
5749 records, with an inclusion prevalence of 13.2% (see
below). Approach 1 reached a higher specificity level of
86%. This is visualised on an AUC curve (Figs. 1 and 3).

Error analysis and reclassification
Interrater agreement (Cohen’s κ) between the screening
decisions of reviewer 1 and reviewer 2 was 0.791 (95%
CI, 0.769 to 0.811, p < 0.0001), with 281 records requir-
ing a third reviewer decision. To assess whether machine
learning algorithms can identify human error and there-
fore improve the training data, we conducted an error
analysis. We reassessed papers where the ML predictive
scores were highly divergent from human assigned labels to
identify potential human errors. After the 75 most diver-
gent papers had been rescreened, the machine corrected
the human decision 47 times and the initial human deci-
sion was correct 28 times. We also rescreened the valid-
ation set. Ten papers out of the 1251 records were highly
divergent and identified as potential human errors. Of
these, the machine corrected eight human decisions where
the record had been wrongly excluded; the initial human

Fig. 2 Error analysis. The methodology for using cross-validation to assign ML-predicted probability scores. The ML-predicted probability scores
for the records were checked against the original human inclusion decision

Table 2 Performance of machine learning approaches on
depression training dataset

Approach 1 Approach 2

Training set size 5749 5749

Optimal cut-off score 0.1 0.07

Sensitivity 98.7% 98.7%

Upper 95% CI 0.997 0.997

Lower 95% CI 0.949 0.949

Specificity 86.0% 84.7%

Precision 50% 47.66%

Accuracy 1096/1251 = 87.6% 1081/1251 = 86.4%

WSS@95% 0.705 0.693

LR+ 7.421 9.451
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decision was correct twice (see the “Error analysis methods”
section for details on error determination process).
The identified human error in the training set was

47of 5749 records, or 0.8%, and this is therefore the low-
est possible error of the reconciled human decisions; the
true error is likely to be higher. Of the 47, 11 records
had been wrongly included and 36 records had been
wrongly excluded. We consider wrongful exclusion of
relevant records as more troublesome than wrongful in-
clusion (hence our emphasis on sensitivity over specifi-
city), and the application of the error correction approach
increased the number of correctly included studies from
759 in the reconciled human screen (760 less the 11
wrongly included studies) to 795, an increase of 4.7%.
Similarly, the human error rate in the validation set

(1251 records) was 0.6%. Considering the prevalence of
inclusion in this dataset (155/1251, 12.4%) rising to 163/
1251, 13.0%), the 8 reclassified records represent a 4.9%
increase in the number of correctly included studies.

Test 1: 98.7% + 86% = 184.7%
Test 2: 98.2% + 89.3% = 187.5%
NRI = 3.2%

We consider the updated validation set as the revised
gold standard. The confusion matrix for the perform-
ance of the machine learning algorithm after the error

analysis update on the training records is shown in
Table 3.
Analysing the human errors identified by the machine

learning algorithm and correcting for these errors and
re-teaching the algorithm leads to improved performance
of the algorithm, particularly its sensitivity. Analysing hu-
man errors can save considerable human time in the
screening stage of a systematic review. Consider the re-
maining approximately 64,000 papers, if the ML algorithm
results are 3% more accurate, that is approximately 2000
papers that are correctly ‘excluded’ that would not be
forwarded for data extraction.

After error analysis: improving machine learning
Using the error analysis technique above, of the 47 er-
rors identified in the full training dataset of 5749 re-
cords, 0.8% were corrected. We retrained approach 1 on
the corrected training set and measured performance on
the corrected validation set of 1251 records, the revised
gold standard. The performance of the original approach
1 and updated approach 1 was assessed on the corrected
validation set of 1251 records. The performance of this
retrained algorithm in comparison to the performance
of the original classifier 5 on the updated validation set
is shown in Table 4 (Fig. 4).
We compared the area under the ROC curve for the

original and the updated approach. The AUC increased

Fig. 3 Performance of machine learning approaches. For the interactive version of this plot with cut-off values, see code and data
at https://github.com/abannachbrown/The-use-of-text-mining-and-machine-learning-algorithms-in-systematic-reviews/blob/master/ML-fig3.html
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from 0.927 (95% CI (DeLong); 0.914–0.9404) for the ori-
ginal to 0.935 (95% CI 0.9227–0.9483) for the updated
approach (DeLong’s test of difference in AUC Z = −
2.3685, p = 0.018).

Discussion
Document classification
We have shown machine learning algorithms to have
high levels of performance for ascertainment of relevant
publications describing animal experiments modelling
depression, with 98.7% sensitivity and 88.3% specificity.
This is comparable to the performance of dual human
screening with reconciliation. The objectives for select-
ing ML approaches in this project was to be confident
that the sensitivity achieved in citations drawn from the
same population as the validation set would be at least
95%. Thereafter, algorithms were then chosen based on
their specificity; our workflow would have all papers in-
cluded at the stage progress to full-text retrieval, annota-
tion and data extraction, and we wish to minimise
unnecessary labour at this stage. We recognise that the
estimated precision (55.9%) is low. However, reviews of
the animal literature often seek to summarise all infor-
mation relevant to the modelling of a particular disease

or to a category of intervention, and in this context the
absolute benefits can be transformative, allowing reviews
to be conducted which would not otherwise be feasible.
In this example, the number of documents needing to
be screened by humans is reduced from over 70,000 to
only 18,500 documents; even if half of those are falsely
included to the full-text annotation stage, there is still a
saving in screening of 50,000 documents, at least
100,000 screening events, representing several months of
investigator effort.
The precision estimate achieved by this classifier will

result in different performance in datasets with different
inclusion prevalence. To guide potential users, we have
simulated the likely achieved precision when applying
the best performing machine learning here to projects
with different inclusion prevalence (Additional file 2:
Figure S1, Additional file 3: Data S1).
The two machine learning approaches have similar

performance, and the slight differences observed may re-
flect the method of feature generation. These algorithms
both have high performance on this specific topic of ani-
mal models of depression. As demonstrated previously,
the performance of various classifiers can alter depending
on the topic and specificity of the research question [3].
In this study, the cut-off points were selected using

the decisions on the validation set to achieve the desired
performance. Although this allows the measurement of
the maximum possible gain using a given approach in
an evaluation setting, in practice (e.g. when updating a
review), the true scores would not be available. The
problem of choosing a cut-off threshold, equivalent to
deciding when to stop when using a model for prioritis-
ing relevant documents, remains an open research ques-
tion in information retrieval. Various approaches have
been tested [40], but they do not guarantee achieving a
desired sensitivity level. Our preferred approach is to use
the threshold identified in a validation set and to apply it
to the remaining ‘unknown’ records. ML-based ap-
proaches can also be used without a cut-off where all
documents are screened manually, but those most likely
to be included are screened first to optimise workflows
thus reducing the workload [5]. In a similar broad pre-
clinical research project in neuropathic pain, it took 18
person-months to screen 33,814 unique records. From
that, we estimate it would take 40 person-months to
screen all the records identified in this search, and that
this would be reduced by around 29 months by the ap-
proach described here.
We have applied the algorithm to the full dataset

(remaining 63,365 records) and are in the process of
full-text screening. Following this process, further re-
cords will be excluded, which will allow for further train-
ing of the algorithm, to be used in future living
systematic review on this topic [41].

Table 3 Reclassification of records in validation after error
analysis

Test 1—original machine learning
algorithms results

In Out Total

Test 2—post-error analysis
ML results

In 153 153 306

160 116 276

Out 2 943 945

3 972 975

Total 155 1096 1251

163 1088

Table 4 Performance of machine learning approach after error
analysis

Updated approach 1 Original approach 1

Cut-off 0.09 0.10

Sensitivity 98.7% 98.7%

Upper 95% CI of
sensitivity

0.997 0.997

Lower 95% CI of
sensitivity

0.949 0.949

Specificity 88.3% 86.7%

Precision 55.9% 52.61%

Accuracy 89.7% 88.2%

WSS@95% 961/1251 – (0.05) = 0.718 945/1251 – (0.05) = 0.705

LR+ 8.436 7.421
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Error analysis
By using the ML algorithm to classify the likelihood of
inclusion for each record in the training set, we
highlighted discrepancies between the human and the
machine decision. Using this technique, we identified
human errors, which were then corrected to update the
training set.
Human screening of the training set was conducted

using the ‘majority vote’ system; it is interesting to con-
sider the potential reasons for errors or ‘misclassifica-
tions’ arising in this process. Reviewers’ interpretation of
the ‘breadth’ of this wide review might be one contribut-
ing factor to discrepancies; because there is not a single
clearly articulated scientific question. Reviewers may be
less sure which articles should be included. In smaller
reviews with few contributors, it may be possible to
identify some of these issues in discussion, but for larger
projects using a crowd-sourcing approach with many in-
dividuals contributing decisions, this may not be a prac-
tical solution.
We have successfully identified screening errors in

1% of the training set which had been dual screened
by two independent human reviewers and where dis-
agreements had been reconciled by a third reviewer.
The prevalence of inclusion in the uncorrected train-
ing set was 13.2% (760 out of the 5749), so an error

of 0.8% is likely to be important. The improvement
following error correction shows the impact of such
errors on the learning of the ML algorithm. The error
analysis results in improvement in sensitivity and spe-
cificity, with increased precision, accuracy, work saved
over sampling, and positive likelihood ratio. We ob-
served an increase in specificity of 1.6% without com-
promise to sensitivity. In a systematic review with
this number of records, this saves considerable human
resources, as the number of records required to
screen reduces by over 1000.
This error analysis was an initial pilot with pragmatic

stopping criteria. It is likely that there are further errors
in the human screened training set. A more in-depth
analysis of the training dataset, investigating every in-
stance where the human and machine decision were in-
congruent, might identify more errors and further
increase the precision and accuracy of machine learning
approaches, further reducing human resources required
for this stage of systematic review. We have shown here
that even with minimal intervention (only assessing in-
congruent records until the original human decision was
correct five consecutive times), the performance of ML
approaches can be substantially improved; further im-
provements are likely to be less dramatic, but this is an
interesting topic for future research.

Fig. 4 Performance of approach 1 after error analysis. The updated approach is retrained on the corrected training set after error analysis correction.
Performance on both the original and the updated approach is measured on the corrected validation set (with error analysis correction). For the interactive
version of this plot with the ability to read off performance at all cut-off values, see code and data at https://github.com/abannachbrown/The-use-of-text-
mining-and-machine-learning-algorithms-in-systematic-reviews/blob/master/error-analysis-plot.html
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Limitations and future directions
Here, we show the best performing algorithms for this
dataset with a broad research question. Other dissimilar
research questions or topics may require different levels
of training data to achieve the same levels of perform-
ance or may require different topic modelling ap-
proaches or classifiers. We are using the best performing
algorithm described here in an ongoing research project;
therefore, the ‘true’ inclusion and exclusion results for
the remaining 63,365 records is not yet known.
The low precision estimate achieved by this classifier

may mean it is less useful in projects where the inclu-
sion prevalence is smaller. Where the inclusion preva-
lence is 5%, we calculated the precision to be 30%
(Additional file 2: Figure S1, Additional file 3: Data S1).
Therefore, the machine learning algorithms tested here
may not be useful where the research question is a lot
more specific or where systematic searches that are not
very specific. One approach in cases where prevalence is
low may be to adjust for a class imbalance in the training
sets [42]. By manually constructing datasets and training
algorithms on training sets with different ‘prevalence’ or
different class imbalance, the variance in the predictions
the model makes can potentially be reduced (see [43]). A
complementary approach may be a refinement of the
search strategy to increase the prevalence of inclusion.
These machine learning algorithms are deployed in an

existing systematic review online platform, EPPI-Reviewer
[28], and this functionality is in the process of being inte-
grated into the Systematic Review Facility (SyRF) tool
(app.syrf.org.uk) via an Application Programming Inter-
face. In addition, some of these unsupervised methods
have been deployed in the web-based platform RobotAna-
lyst [44] which combines text mining and machine learn-
ing algorithms for organising references by their context
and actively prioritising them based on relevancy feedback.
These functionalities will be linked to SyRF via an API.
Establishing technical standards to ensure the inter-op-

erability of task specific automation tools with ‘whole
process’ online platforms such as SyRF would allow better
exploitation of new and existing tools by the wider sys-
tematic review community. Such platforms could allow in-
dividuals to select which automation tools they wished to
use and to select classifiers and levels of performance ap-
propriate to their specific research project may help inte-
grate features.

Conclusions
We have demonstrated that machine learning tech-
niques can be successfully applied to an ongoing, broad
pre-clinical systematic review; that they can be used to
identify human errors in the training and validation
datasets; and that updating the learning of the algorithm
after error analysis improves performance. This error

analysis technique requires further detailed elucidation
and validation. These machine learning techniques are
in the process of being integrated into existing system-
atic review applications to enable more wide-spread use.
In the future, machine learning and error analysis tech-
niques that are optimised for different types of review
topics and research questions can be applied seamlessly
within the existing methodological framework.

Additional files

Additional file 1: Table S1. Performance of machine learning
approaches on depression training dataset (1993 records). Table S2.
Performance of machine learning approaches on depression training
dataset (2989 records). (DOCX 15 kb)

Additional file 2: Figure S1. With the likelihood ratio of the applied
algorithm after error analysis being 8.436 we can calculate the precision
at different levels of prevalence of inclusion. The application of the
machine learning algorithm to this systematic review which has a 14%
inclusion prevalence, we can calculate the precision to be 55.9%. If the
inclusion prevalence of a hypothetical review would be 5%, the precision
would be approximately 30% which is poor. Therefore, the utility of
applying this machine learning approach to systematic reviews with
different inclusion prevalences needs to be considered. (DOCX 17 kb)

Additional file 3: Data S1. Data file to display levels of precision with
different levels of prevelance of inclusion. (XLSX 17 kb)
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