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We propose a vector generalized additive modelling frame-
work for taking into account the effect of covariates on an-
gular density functions in a multivariate extreme value con-
text. The proposed methods are tailored for settings where
the dependence between extreme values may change ac-
cording to covariates. We devise a maximum penalized log-
likelihood estimator, discuss details of the estimation proce-
dure, and derive its consistency and asymptotic normality.
The simulation study suggests that the proposed methods
perform well in a wealth of simulation scenarios by accu-
rately recovering the true covariate-adjusted angular den-
sity. Our empirical analysis reveals relevant dynamics of
the dependence between extreme air temperatures in two
alpine resorts during the winter season.
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1 | INTRODUCTION

In this paper, we address an extension of the standard approach for modelling non-stationary univariate extremes to
the multivariate setting. In the univariate context, the limiting distribution for the maximum of a sequence of inde-
pendent and identically distributed random variables, derived by Fisher and Tippett [1928], is given by a generalized
extreme value distribution characterized by three parameters: µ (location), σ (scale), and ξ (shape). To take into ac-
count the effect of a vector of covariates x, one can let these parameters depend on x, and the resulting generalized
extreme value distribution takes the form

G(µx,σx,ξx)(z ) = exp
[
−

{
1 + ξx

( z − µx
σx

)}−1/ξx
+

]
, (1)

where (a)+ = max{0, a }; see Coles [2001, ch. 6], Pauli and Coles [2001], Chavez-Demoulin and Davison [2005], Yee
and Stephenson [2007], Wang and Tsai [2009], Eastoe and Tawn [2009], and Chavez-Demoulin and Davison [2005]
for related approaches.
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2 1. INTRODUCTION

In the multivariate context, consider Yi =
(
Y i1 , . . . ,Y

i
d

)T
independent and identically distributed random vectors with

joint distribution F , and unit Fréchet marginal distribution functions Fj (y ) = exp(−1/y ), for y > 0. Pickands’ repre-
sentation theorem [Coles, 2001, Theorem 8.1] states that the law of the standardized componentwise maxima,Mn =

n−1max{Y1, . . . ,Yn }, converges in distribution to a multivariate extreme value distribution, GH (z) = exp {−VH (z)} ,
with

VH (z) =
∫
Sd

max
(w1
z1
, . . . ,

wd
zd

)
dH (w), z ∈ (0,∞)d . (2)

Here H is the so-called angular measure, that is, a positive finite measure on the unit simplex
Sd =

{
(w1, . . . ,wd ) ∈ [0, 1]

d : w1 + · · · +wd = 1
}
that needs to obey∫

Sd

wj dH (w) = 1, j = 1, . . . , d . (3)

The functionV (z) ≡ VH (z), is the so-called exponent measure and is continuous, convex, and homogeneous of order
−1, i.e.,V (tz) = t−1V (z) for all t > 0.

The class of limiting distributions of multivariate extreme values yields an infinite number of possible parametric repre-
sentations [Coles, 2001, ch. 8], as the validity of a multivariate extreme value distribution is conditional on its angular
measure H satisfying the moment constraint (3). Therefore, most literature has focused on the estimation of the ex-
tremal dependence structures described by spectral measures or equivalently angular densities [Boldi and Davison,
2007, Einmahl et al., 2009, de Carvalho et al., 2013, Sabourin and Naveau, 2014, Hanson et al., 2017]. Related quan-
tities, such as the Pickands dependence function [Pickands, 1981] and the stable tail dependence function [Huang,
1992, Drees and Kaufmann, 1998], were investigated by many authors [Einmahl et al., 2006, Gudendorf and Segers,
2012, Wadsworth and Tawn, 2013, Marcon et al., 2016]. A wide variety of parametric models for the spectral density
that allow flexible dependence structures were proposed [Kotz and Nadarajah, 2000, sec. 3.4].

However, few papers were able to satisfactorily address the challenging but incredibly relevant setting of modelling
nonstationarity at joint extreme levels. Some exceptions include de Carvalho and Davison [2014], who proposed a
nonparametric approach, where a family of spectral densities is constructed using exponential tilting. Castro and de
Carvalho [2017] developed an extension of this approach based on covariate-varying spectral densities. However,
these approaches are limited to replicated one-way ANOVA types of settings. de Carvalho [2016] advocated the
use of covariate-adjusted angular densities, and Escobar-Bach et al. [2016] discussed estimation—in the bivariate and
covariate-dependent framework—of the Pickands dependence function based on local estimation with a minimum
density power divergence criterion. Recently, Mhalla et al. [2017] constructed in a nonparametric framework smooth
models for predictor-dependent Pickands dependence functions based on generalized additive models, whereas Cas-
tro et al. [2018] proposed nonparametric regression methods for predictor-dependent angular measures; a key ad-
vantage of our method is that it can be used for modelling a high number (with limitation given by the sample size) of
covariates of any type (from categorical to continuous), and it combines the flexibility of GAM along with a parametric
specification to effectively learn about the dynamics governing the extremal dependence structure.

Our approach is based on a non-linear model for covariate-varying extremal dependences. Specifically, we develop
a vector generalized additive model that flexibly allows the extremal dependence to change with a set of covariates,
but—keeping in mind that extreme values are scarce—it borrows strength from a parametric assumption. In other
words, the goal is to develop a regression model for the extremal dependence through the parametric specification of
an extremal dependence structure and then to model the parameters of that structure through a vector generalized
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additivemodel (VGAM) [Yee andWild, 1996, Yee, 2015]. Onemajor advantage over existingmethods is that ourmodel
may be used for handling an arbitrary number of dimensions and covariates of different types, and it is straightforward
to implement, as illustrated in the R code [R Development Core Team, 2016] that can be downloaded from https:

//github.com/lindamhalla/Regression_type_models_for_extremal_dependence.

The remainder of this paper is organized as follows. In Section 2 we introduce the proposed model for covariate-
adjusted extremal dependences. In Section 3 we develop our penalized likelihood approach and give details on the
asymptotic properties of our estimator. In Section 4 we assess the performance of the proposed methods. An ap-
plication to extreme temperatures in the Swiss Alps is given in Section 5. We close the paper in Section 6 with a
discussion.

2 | FLEXIBLE COVARIATE-ADJUSTED ANGULAR DENSITIES

Section 2.1 offers preparations and background, Section 2.2 introduces the proposed vector generalized additive
model; parametric examples and further comments are included in Section 2.3.

2.1 Statistics of multivariate extremes: preparations and background

The functionsH andV in (2) can be used to describe the structure of dependence between the extremes, as in the case
of independence between the extremes, where V (z) = ∑d

j=1 1/z j , and in the case of perfect extremal dependence,
whereV (z) = max{1/z1, . . . , 1/zd }. As a consequence, if H is differentiable with angular density denoted h, the more
mass around the barycenter of Sd , (d−1, . . . , d−1), the higher the level of extremal dependence. Further insight into
these measures may be obtained by considering the point process Pn = {n−1Yi : i = 1, . . . , n }. Following de Haan
and Resnick [1977] and Resnick [1987, Section 5.3], as n → ∞, Pn converges to a non-homogeneous Poisson point
process P defined on [0,∞) \ {0} with a mean measure µ that verifies

µ(Ay) =V (y),

where Ay = Òd \ ([−∞, y1] × · · · × [−∞, yd ]).

There are two representations of the intensity measure of the limiting Poisson point process P that will be handy for
our purposes. First, it holds that

µ(dy) = −V1:d (y) dy, (4)

with V1:d being the derivative of V with respect to all its arguments [Resnick, 1987, Section 5.4]. Second, another
useful factorization of the intensity measure µ(dy), called the spectral decomposition, can be obtained using the
following decomposition of the random vector Y = (Y1, . . . ,Yd )T into radial and angular coordinates,

(R ,W) =
(
‖Y‖, Y

‖Y‖

)
, (5)

where ‖ · ‖ denotes the L1-norm. It can be shown that [Beirlant et al., 2004, Section 8.2.3] the limiting intensity
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measure factorizes across radial and angular components as follows:

µ(dy) = µ(dr × dw) = dr
r 2

dH (w).

Here r measures the distance from the origin and each component ofwmeasures angles on a [0, 1] scale. The spectral
decomposition (5) allows the separation of the marginal and the dependence parts in the multivariate extreme value
distribution GH , with the margins being unit Fréchet and the dependence structure being described by the angular
measure H .

The inference approach that we build on in this work was developed by Coles and Tawn [1991] and is based on
threshold excesses; seeHuser et al. [2016] for a detailed review of likelihood estimators formultivariate extremes. The
set of extreme events is defined as the set of observations with radial components exceeding a high fixed threshold,
that is, the observations belonging to the extreme set,

Er =
{
(y1, . . . , yd ) ∈ (0,∞)

d :
d∑
j=1

yj

rj
> 1

}
,

with r = (r1, . . . , rd ) being a large threshold vector. Since the points n−1Yi are mapped to the origin for non-extreme
observations, the threshold r needs to be sufficiently large for the Poisson approximation to hold. Note that, Yi ∈ Er,
if and only if,

R i = ‖Yi ‖ >
©­«
d∑
j=1

ωi ,j

rj

ª®¬
−1

, where ωi ,j =
Y i
j

R i
.

Hence, the expected number of points of the Poisson process P located in the extreme region Er is

µ(Er) =

∫
Sd

∫ ∞(∑d
j=1

wj
rj

)−1 dr
r 2

dH (w)

=

∫
Sd

©­«
d∑
j=1

wj

rj

ª®¬ dH (w)

=
d∑
j=1

1

rj

∫
Sd

wj dH (w) =
d∑
j=1

1

rj
. (6)

Now, we can explicitly formulate the Poisson log-likelihood over the set Er ,

`Er (θ) = −µ(Er) +
nr∑
i=1

log {µ(dR i × dwi )} , (7)

where wi = (ωi ,1, . . . ,ωi ,d ), θ represents the p-vector of parameters of the measure µ and nr represents the number
of reindexed observations in the extreme set Er. Using (6), the first term in (7) can be omitted when maximizing the
Poisson log-likelihood, which, using (4), boils down to

`Er (θ) ≡

nr∑
i=1

log
{
−V1:d (Yi ;θ)

}
. (8)
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Thanks to the differentiability of the exponentmeasureV and the support of the angular measureH in the unit simplex
Sd , we can use the result of Coles and Tawn [1991, Theorem 1] that relates the angular density to the exponent
measure via

V1:d (y;θ) = −‖y‖−(d+1)h
(
y1
‖y‖ , . . . ,

yd
‖y‖ ;θ

)
and reformulate the log-likelihood (8) as follows

`Er (θ) ≡ −(d + 1)
nr∑
i=1

log ‖Yi ‖ +
nr∑
i=1

log
{
h

(
Y i1
‖Yi ‖

, . . . ,
Y i
d

‖Yi ‖
;θ

)}
. (9)

2.2 Vector generalized additive models for covariate-adjusted angular den-
sities

Our starting point for modelling is an extension of (1) to the multivariate setting. Whereas the model in (1) is based on
indexing the parameters of the univariate extreme value distribution with a regressor, here we index the parameter
(H ) of a multivariate extreme value distribution (GH ) with a regressor x = (x1, . . . , xq )T ∈ X ⊂ Òq . Our target object
of interest is thus given by a family of covariate-adjusted angular measures Hx obeying∫

Sd

wj dHx(w) = 1, j = 1, . . . , d .

Of particular interest is the setting where Hx is differentiable, in which case the covariate-adjusted angular density can
be defined as hx(w) = dHx/dw. This yields a corresponding family of covariate-indexed multivariate extreme value
distributions

Gx(z) = exp
{
−

∫
Sd

max
(w1
z1
, . . . ,

wd
zd

)
dHx(w)

}
.

Other natural objects depending onGx can be readily defined, such as the covariate-adjusted extremal coefficient, ϑx,
which solves

Gx(z1d ) = exp(−ϑx/z ), z > 0, (10)

where 1d is a d -vector of ones. Here, ϑx ranges from 1 to d , and the closer ϑx is to one, the closer we get to the case
of complete dependence at that value of the covariate.
The question of interest is thus: How can we learn about hx from the data? Suppose we observe the regression data
{(xi ,Yi )}n

i=1, with (x
i ,Yi ) ∈ X × Òd , and where we assume that Yi =

(
Y i1 , . . . ,Y

i
d

)>
are conditionally independent

random vectors with unit Fréchet marginal distributions and a joint distribution in the maximum domain of attraction
of a multivariate extreme value distribution with angular density hxi . Using a similar approach as in Section 2.1, we
convert the raw sample into a pseudo-sample of cardinality nr,

{(xi ,Yi ) : Yi ∈ Er },

and use the latter reindexed data to learn about hx through the set of angular observations {wi }nri=1, where wi =



6 2. FLEXIBLE COVARIATE-ADJUSTED ANGULAR DENSITIES

Yi /‖Yi ‖ for Yi ∈ Er.
Without loss of generality, we restrain ourselves to the bivariate extreme value framework (d = 2), so that

hx

(
Y i1

‖Yi ‖
,
Y i2

‖Yi ‖

)
= hx (wi , 1 −wi ) ≡ hx(wi ), for wi ∈ [0, 1], i = 1, . . . , nr,

that is, the dimension of the angular observations wi is M = d − 1 = 1. We model hx(·) using h(·;θx), where the
parameter underlying the dependence structure

θx = (θ1x1 , . . . , θ1xnr , . . . , θpx1 , . . . θpxnr )
T ∈ Òpnr ,

x = (x1, . . . , xnr )T ∈ Xnr =
(
X1 × · · · × Xq

)nr ⊆ Òqnr ,
is specified through a vector generalized additive model (VGAM) [Yee and Wild, 1996]. Specifically, we model hx(w )
using a fixed family of parametric extremal dependence structures h(w ;θx) with a covariate-dependent set of param-
eters θx. To learn about θx from the pseudo-sample, we use a vector generalized additive model, which takes the
form

η(x) ≡ η = H0β[0] +

q∑
k=1

Hk fk (xk ). (11)

Here,

• η = g (θx) =
(
g1(θ1x1 ), . . . , g1(θ1xnr ), . . . , gp (θpx1 ), . . . , gp (θpxnr )

)>
is the vector of predictors and gl is a link function

that ensures that θl · is well defined, for l = 1, . . . , p ,
• β[0] is a pnr-vector of intercepts, with p distinct values each repeated nr times,
• xk =

(
x1
k
, . . . , xnr

k

)>
∈ X

nr
k
, for k = 1, . . . , q ,

• fk = (fk ,1, . . . , fk ,p )>, where fk ,l = (fk ,l (x1k ), . . . , fk ,l (x
nr
k
))>, and fk ,l : Xk → Ò are smooth functions supported on

Xk , for k = 1, . . . , q and l = 1, . . . , p , and
• Hk are pnr × pnr constraint matrices, for k = 0, . . . , q .

Some comments on the advantages of the VGAM specification are in order. As can be seen from (11) this specification
allows us to handle asmany covariates aswe are required to, whereas this is not as straightforward in other approaches
(e.g., kernel regression). The VGAM specification is also compelling in terms of interpretability as it allows us to
untangle how each dependence parameter changes with covariates. Yet another benefit of this paradigm, is that
the specification (11) is tailored for handling an arbitrary number of covariate-dependent parameters as well as an
arbitrary number of covariates of different types. Finally, the VGAM offers a large flexibility of covariate dependence
functional form taking advantage of a rich variety of smoothing models that use different basis smoothers such as the
cubic or the cyclic cubic splines and the thin plate splines (see Wood [2017], Chapter 5).
By allowing the parameters of the extremal dependence structure to depend on a set of covariates, the proposed
specification (11) flexibly allows the dependence between the extreme values to change as a function of covariates.
The constraint matrices Hk are important quantities in the VGAM (11) that allow the tuning of the effects of the
covariates on each of the pnr components of η. For example, in Example 2.4 (see Section 2.3), one might want to
impose the same smooth effect of a covariate on each of the

(3
2

)
pairwise dependence parameters and at the same time

restrict the effect of this covariate to be zero on the global dependence parameter. To avoid clutter in the notation,
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we assume from now on that Hk = Ipnr×pnr , for k = 0, . . . , q .
The smooth functions fk ,l are written as linear combinations of B-spline basis functions

fk ,l (x
i
k ) =

dk∑
s=1

β[k l ]s Bs,q̃ (x
i
k ), k = 1, . . . , q , l = 1, . . . , p, i = 1, . . . , nr,

where Bs,q̃ is the sth B-spline of order q̃ and dk = q̃ + mk , with mk the number of internal equidistant knots for xk
[Yee, 2015, Section 2.4.5]. To ease the notational burden, we suppose without loss of generality that dk ≡ d̃ , for
k = 1, . . . , q , and define

β[k ] =
(
β[k 1]1 , . . . , β[k 1]d̃

, . . . , β[k p]1 , . . . , β[k p]d̃

)>
∈ Òd̃ p .

Therefore, the VGAM (11), with identity constraint matrices Hk , can be written as

η = β[0] +

q∑
k=1

X[k ]β[k ] = XVAMβ, (12)

where


β =

(
β[0] β[1] · · · β[q ]

)>
∈ B ⊂ Òp(1+qd̃ ),

XVAM =
(
1pnr×p X[1] · · · X[q ]

)
∈ Òpnr×{p(1+qd̃ )},

for some pnr × d̃ p submatrices X[k ], k = 1, . . . , q . The vector of parameters to be estimated in the VGAM (12) is β.
The specification in (12) makes it possible to simultaneously fit ordinary generalized additive models [Wood, 2017] in
each component of the vector of parameters θx, hence avoiding any non orthogonality-related issues that could arise
if the p components were to be treated separately [Chavez-Demoulin and Davison, 2005]. Finally, if the dimension
M of the response vector of angular observations wi is greater than one (d > 2), then the vector of predictors η will
instead be a Mpnr-vector and the dimensions of the related quantities in (12) will change accordingly.

2.3 Examples
Some parametric models [Hüsler and Reiss, 1989, Tawn, 1990, Coles and Tawn, 1991, Cooley et al., 2010] are used
below to illustrate the concept of covariate-adjusted angular densities and of covariate-adjusted extremal coefficients,
and we focus on the bivariate and trivariate settings for the sake of illustrating ideas. To develop insight and intuition
on these models, see Figures 1 and 2.

Example 2.1 (Logistic angular surface) Let

hx(w ) = (1/αx − 1) {w (1 −w )}−1−1/αx {w−1/αx + (1 −w )−1/αx }αx−2, w ∈ (0, 1),

with α : X ⊂ Òq → (0, 1]. In Figure 1 (left) we represent the case αx = exp{η(x )}/[1 + exp{η(x )}], with η(x ) =
x2 − 0.5x − 1 and x ∈ X = [0.1, 2]. This setup corresponds to be transitioning between a case of relatively high
extremal dependence (lower values of x ) to a case where we approach asymptotic independence (higher values of x ).
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Example 2.2 (Dirichlet angular surface) Let

hx(w ) =
αxβxΓ(αx + βx + 1)(αxw )αx−1 {βx(1 −w )}βx−1

Γ(αx)Γ(βx){αxw + βx(1 −w )}αx+βx+1
, w ∈ (0, 1),

with α : X ⊂ Òq → (0,∞) and β : X ⊂ Òq → (0,∞). In Figure 1 (middle) we consider the case αx = exp(x ) and βx = x2,
with x ∈ [0.9, 3]. Note the different schemes of extremal dependence induced by the different values of the covariate
x as well as the asymmetry of the angular surface underlying this model.

Example 2.3 (Hüsler–Reiss angular surface) Let

hx(w ) =
λx

w (1 −w )2(2π)1/2
exp

(
−

[
2 + λ2x log {w/(1 −w )}

]2
8λ2x

)
w ∈ (0, 1),

where λ : X ⊂ Òq → (0,∞). In Figure 1 (right) we consider the case λx = exp(x ), with x ∈ [0.1, 2]. Under this specifi-
cation, lower values of x correspond to lower levels of extremal dependence, whereas higher values of x correspond
to higher levels of extremal dependence.
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F IGURE 1 Covariate-adjusted angular densities and extremal coefficients of logistic (left panels), Dirichlet
(middle panels), and Hüsler–Reiss (right panels) models, corresponding, respectively, to the specifications in
Examples 2.1, 2.2, and 2.3.
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Example 2.4 (Pairwise beta angular surface) Let

hx(w) =
Γ(3αx + 1)

Γ(2αx + 1)Γ(αx)

∑
1≤i<j≤3

hi ,jx (w),

hi ,jx (w) = (wi +wj )2αx−1
{
1 − (wi +wj )

}αx−1
×
Γ(2βi ,jx )

Γ2(βi ,jx )

(
wi

wi +wj

)βi ,jx−1 (
wj

wi +wj

)βi ,jx−1
,

where w = (w1,w2,w3) ∈ S3 and α , βi ,j : X ⊂ Òq → (0,∞) for 1 ≤ i < j ≤ 3. In Figure 2, we consider the case
αx = exp{exp(x )}, β1,2x = exp(x ), β1,3x = x + 1, and β2,3x = x + 2, with x ∈ [0.8, 3.3]. For the different considered
values of x , different strengths of global and pairwise dependences can be observed. The mass is concentrated mostly
at the center of the simplex due to a large global dependence parameter αx, compared to the pairwise dependence
parameters.
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F IGURE 2 Trivariate covariate-adjusted angular density of the pairwise beta model corresponding to the
specifications in Example 2.4 with x = 1.5 (left), x = 2.46 (middle), and x = 3.22 (right).

To give the unfamiliar reader insight on some of the quantities introduced in Section 2.2 and more specifically in the
VGAM (11), we identify these quantities in the examples mentioned above:

• In Examples 2.1 and 2.3, d = 2, M = 1, p = 1, q = 1, and X = [0.1, 2]. The difference between the VGAMs
modeled in these two examples resides in the form of dependence of η on x and the link function g . In Example 2.1,
the parameter θx ∈ (0, 1], η = x2 − 0.5x − 1, and the link function g is the logit function, whereas in Example 2.3 the
parameter θx ∈ (0,∞), η = x , and the link function g is the logarithm function.
• In Example 2.2, d = 2, M = 1, p = 2, q = 1, X = [0.9, 3], and η = (x , x )>. The vector of parameters for the bivariate
Dirichlet angular density θx ∈ (0,∞)2 and the link functions g1 and g2 are the logarithm and the square root functions,
respectively.
• In Example 2.4, d = 3, M = 2, p = 4, q = 1, X = [0.8, 3.3], and η = (exp(x ), x , log(x + 1), log(x + 2))>. The vector of
parameters for the pairwise beta angular density θx ∈ (0,∞)

4 and the link function gl is the logarithm function, for
l = 1, . . . , 4.
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3 | INFERENCE AND ASYMPTOTIC PROPERTIES

The log-likelihood (9) with a covariate-dependent vector of parameters θx is now written as

`(β) :=
nr∑
i=1

ci + log {h (wi ;β)} ,

=
nr∑
i=1

ci + log
(
h

[
wi ; g−1 {η(xi )}

] )
, (13)

where ci is a constant independent of β and g−1 is the componentwise inverse of g.
Incorporating a covariate-dependence in the extremal dependence model through a non-linear smooth model adds
considerable flexibility in themodelling of the dependence parameter θx. The price to pay for this flexibility is reflected
in the estimation procedure. The estimation of θx, hence ofβ, is performed bymaximizing the penalized log-likelihood

`(β, γ) = `(β) −
1

2
J(γ), (14)

where the penalty term can be written as

J(γ) =
q∑
k=1

β>
[k ]

{
Pk ⊗ diag(γ(1)k , . . . , γ(p)k )

}
β[k ] = β>P(γ)β,

with P(γ) a p(1 + qd̃ ) × p(1 + qd̃ ) block matrix with a first p × p block filled with zeros and q blocks, each formed by a
pd̃ × pd̃ matrix Pk that depends only on the knots of the B-spline functions for the covariate xk . The matrix P(γ) can
be written as P(γ) = X̃>X̃ for some p(1 + qd̃ ) × p(1 + qd̃ ) real matrix X̃. The vectors β[k ] are defined in (12), and γ(l )k
are termed the smoothing parameters.
The penalty term in (14) controls the wiggliness and the fidelity to the data of the component functions in (11) through
the vector γ of the smoothing parameters γ(l )k for l = 1, . . . , p and k = 1, . . . , q . Larger values of γ(l )k lead to smoother
effects of the covariate xk on the l th component of η.
The maximization of the penalized log-likelihood (14) is based on a Newton–Raphson (N–R) algorithm. At each step
of the N–R algorithm, a set of smoothing parameters is proposed by outer iteration [Wood, 2017], and a penalized it-
erative reweighted least squares (PIRLS) algorithm is performed, in an inner iteration, to update the model coefficients
estimates. We detail the inner fitting procedure in the following section and the outer iteration in Section 3.2.

3.1 Fitting algorithm
We suppose that the penalized log-likelihood (14) depends only on the p(1 + qd̃ )-vector β and that the vector of
smoothing parameters γ is proposed (at each iteration of the N–R algorithm) by outer iteration and is therefore fixed
in what follows.
The penalized maximum log-likelihood estimator (PMLE) β̂ satisfies the following score equation

∂`(β̂, γ)

∂β
= X>VAMu(β̂) − P(γ)β̂ = 0,

where u(β) = ∂`(β)/∂η ∈ Òpnr and XVAM is as defined in (12). To obtain β̂, we update β(a−1), the (a − 1)th estimate
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of the true β0, by Newton–Raphson:

β(a) = β(a−1) + I
(
β(a−1)

)−1 {
X>VAMu(β

(a−1)) − P(γ)β(a−1)
}
, (15)

where


I
(
β(a−1)

)
= −

∂2`(β, γ)

∂β∂β>
= X>VAMW(β

(a−1))XVAM + P(γ),

W(β(a−1)) = − ∂
2`(β)

∂η∂η>
∈ Òpnr×pnr .

The matrix W(β(a−1)) is termed the working weight matrix. If the expectation E{∂2`(β)/∂η∂η> } is obtainable, a
Fisher scoring algorithm is then preferred, as it ensures the positive definiteness of W(β) over a larger region of the
parameter space B than in the N–R algorithm. When the working weight matrix is not positive definite, which might
happen when the parameter β(a−1) is far from the true β0, a Greenstadt [Greenstadt, 1967] modification is applied,
and the negative eigenvalues ofW(β(a−1)) are replaced by their absolute values. With the different families of angular
densities considered in Examples 2.1, 2.2, and 2.4, the expected information matrix is not obtainable and is hence
replaced by the observed information matrix on which a Greenstadt modification is applied whenever needed. See
Yee [2015, Section 9.2] for other remedies and techniques for deriving well-defined working weight matrices.

Let z(a−1) := XVAMβ(a−1) +W(β(a−1))−1u(β(a−1)) be the pnr-vector of working responses. Then, (15) can be rewritten
in a PIRLS form as

β(a) =
{
X>VAMW(β

(a−1))XVAM + P(γ)
}−1

XT
VAMW(β

(a−1))z(a−1)

=
{
X>PVAMW̃

(a−1)XPVAM
}−1

X>PVAMW̃
(a−1)y(a−1),

where XPVAM, y(a−1), and W̃(a−1) are augmented versions of XVAM, z(a−1) andW(β(a−1)), respectively, and are defined
as


XPVAM =

(
X>VAM X̃

)>
∈ Òp(1+nr+qd̃ )×p(1+qd̃ ),

y(a−1) =
(
z(a−1) 0p(1+qd̃ )

)>
∈ Òp(1+nr+qd̃ ),

W̃(a−1) = diag
(
W(β(a−1)), Ip(1+qd̃ )×p(1+qd̃ )

)
∈ Òp(1+nr+qd̃ )×p(1+nr+qd̃ ) .

The algorithm stops when the change in the coefficients β between two successive iterations is sufficiently small.
Convergence of the N–R algorithm is not guaranteed and might not occur if the quadratic approximation of `(β, γ)
around β̂ is poor. See Yee [2015, 2016] for more details.

The plug-in penalized maximum log-likelihood estimator of the covariate-dependent angular density is defined as

ĥx(w) ≡ h {w; g−1(XVAMβ̂)}. (16)

In the following section, we give details about the selection of the smoothing parameters γ, which is outer to the
PIRLS algorithm.
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3.2 Selection of the smoothing parameters
To implement the PIRLS algorithm performed at each iteration of the N–R algorithm, a smoothing parameter selection
procedure is conducted byminimizing a prediction error estimate given by the generalized cross validation (GCV) score.
Let A(a−1)(γ) be the influence matrix of the fitting problem at the ath iteration, defined as

A(a−1)(γ) = XPVAM
{
X>PVAMW̃

(a−1)XPVAM
}−1

X>PVAMW̃
(a−1) .

Then, by minimizing the GCV score

GCV(a−1) =
nr

{
y(a−1) − A(a−1)(γ)y(a−1)

}> W̃(a−1) {y(a−1) − A(a−1)(γ)y(a−1)}[
nr − trace

{
A(a−1)(γ)

}]2 ,

we aim at balancing between goodness of fit and complexity of the model, which is measured by the trace of the
influence matrix and termed the effective degrees of freedom (EDF). The EDF of the fitted VGAM (12) are defined as
the EDF obtained at convergence, that is, trace

{
A(c−1)(γ)

}
, where c is the iteration at which convergence occurs.

Both the fitting algorithm of Section 3.1 and the smoothing parameter selection are implemented in the R package
VGAM [Yee, 2017], with the latter being required from the R package mgcv [Wood, 2017].
Model selection between different, not necessarily nested, fitted VGAMs is performed based on the Akaike informa-
tion criterion (AIC), where the number of parameters of the model is replaced by its EDF to account for penalization.
More details on the (conditional) AIC for models with smoothers along with a corrected version of this criterion, which
takes into account the smoothing parameter uncertainty, can be found in Wood [2017, Section 6.11].

3.3 Large sample properties
We now derive the consistency and asymptotic normality of the PMLE β̂ defined in Section 3.1. Throughout this
section, we assume that the set of angular observations {wi }nri=1 defined in the log-likelihood (13), stems from a para-
metric family of angular densities of multivariate extreme value distributions {h(·,β),β ∈ B}, with B a compact subset
of Òp(1+qd̃ ). The following large sample properties are derived for an increasing size nr and under the assumption that
the angular density h(·;β) has all its density in the interior of the unit simplex Sd . Additionally, we assume that the
dependence parameter of the angular density is a linear combination of known spline functions where the number
and the location of the internal knots are fixed, that is, the dimension of the parameter β is fixed. The bias resulting
from this assumption is negligible compared to the bias due to the smoothing parameter uncertainty [Ruppert, 2002].
Based on the penalized log-likelihood (14), β̂ satisfies the following score equation

m(β) − P(γ)β = 0p(1+qd̃ ), (17)

where m(β) = ∂`(β)/∂β.
Let B0 be an open neighbourhood around the true parameter β0. Moreover, we definem(w,β) = ∂ log{h(w;β)}/∂β.
Our asymptotic results hold under the following customary assumptions on the smoothing parameters γ and the
angular density h(·;β):

(A1) γ =
(
γ(1)1 · · · γ(p)1 · · · γ(1)q · · · γ(p)q

)>
= o(n1/2r )1pq .

(A2) Regularity conditions:
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• The angular density support {w ∈ Sd : h(w;β) > 0} does not depend on β ∈ B0.
• If β , β0, then h(w;β) , h(w;β0), with β ∈ B0. Moreover, E[sup

β∈B
| log {h(w;β)} |] < ∞.

• For w ∈ Sd , h(w;β) ∈ C 3(B) and h(w;β) > 0 on B0.
•

∫
sup
β∈B
‖m(w,β) ‖ dw < ∞ and

∫
sup
β∈B
‖∂m(w,β)/∂β> ‖dw < ∞.

• For β ∈ B0, i(β) := cov{m(W,β)} = X>VAMW(β)XVAM exists and is positive-definite.
• For each triplet 1 ≤ q , r , s ≤ p(1 + qd̃ ), there exists a function Mqr s : Sd → Ò such that, for w ∈ Sd and β ∈ B0,
|∂3 log{h(w;β)}/∂βqr s | ≤ Mqr s (w), and E

{
Mqr s (W)

}
< ∞.

Assumption (A1) is needed to control the influence of the smoothing parameters as nr →∞ such that the asymptotic
unbiasedness of β̂ can be established. This assumption is ratherweak as it allows the smoothing parameters to grow as
the size of the threshold exceedances grows, at a rate smaller than n1/2r , implying therefore that heavy oversmoothing
is avoided. As discussed by Marra and Wood [2012], heavy oversmoothing is likely to happen under two situations.
The first one corresponds to situations where two covariates are highly correlated but the effect of one is very smooth
and the effect of the other is very wiggly, leading therefore to a possible inversion of the degrees of smoothness and
to one of the covariates being highly oversmoothed. The second situation corresponds to the setting where the true
effect of one of the covariates is close to a function in the null space of the penalty associated to this covariate, i.e., a
straight line, andmight therefore be estimated exactly as this function. Assumption (A2) consists of standard regularity
assumptions under which the classical asymptotic properties ofMLEs hold. These assumptions are expressed in terms
of the angular density as the first term in the log-likelihood (9) does not influence the maximization. Although difficult
to verify, these assumptions are similar to the ones considered in Bienvenüe and Robert [2017] and Padoan et al.
[2010] where in the latter, the assumptions are imposed on the components of the composite likelihood along with
additional assumptions on the composite score equation.
The next theorem characterizes the large sample behaviour of our estimator β̂.

Theorem 1 Let {h(·,β),β ∈ B} be a parametric family of angular densities of multivariate extreme value distributions,
where B is a compact subset of Òp(1+qd̃ ). Let β0 be an interior point of B and B0 an open neighbourhood around β0. Under
(A1) and (A2), and for independent observations w1, . . . ,wnr with distribution h(·,β0), it follows that, as nr → ∞, the
estimator β̂ maximizing the penalized log-likelihood (14) verifies:

1. ‖β̂ − β0 ‖ = Op (n−1/2r ).
2. n1/2r (β̂ − β0)

d
→ N (0, i(β0)−1).

These results are derived from a second-order Taylor expansion of the score equation (17) around the true parameter
β0 along the same lines as in Vatter and Chavez-Demoulin [2015] and Davison [2003, p. 147]. The proof of Theorem 1
is deferred to the SupplementaryMaterials. Similar results on the large sample behaviour of the corresponding plug-in
estimator (16) can be derived using the multivariate delta method. These results are useful to derive and construct
approximate confidence intervals for conditional angular densities and to compare nested models based on likelihood
ratio tests. Our proviso is similar to that of de Carvalho and Davison [2014] in the sense that asymptotic properties
of the estimator β̂ are derived under the assumption of known margins and we sample from the limiting object hx,
whereas in practice only a sample of (estimated) pseudo-angles, {ŵi }nri=1, would be available and the uncertainty arising
from the marginal fitting would not be accounted for. Asymptotic properties under misspecification of the parametric
model set for hx could in principle be derived under additional assumptions on β and m, along the same lines as in
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standard likelihood theory [Knight, 2000]. The resulting theory is outside the scope of this work and is deliberately
not studied here.

4 | SIMULATION STUDY

4.1 Data generating processes and preliminary experiments

We assess the performance of our methods using the bivariate extremal dependence structures presented in Sec-
tion 2.2—and displayed in Figure 1—as well as the trivariate pairwise beta dependence model from Example 2.4—
depicted in Figure 2. Monte Carlo evidence will be reported in Section 4.2. For now, we concentrate on illustrating
the methods over a single-run experiment on these scenarios. For each dependence model from Examples 2.1–2.3,
we draw a sample {(wi ,1,wi ,2)}nri=1 from the corresponding angular density hx with sample size nr = 300 and where
each angular observation (wi ,1,wi ,2) is drawn from the chosen dependence model conditional on a fixed value x i of
the covariate x . To gain insight into the bias and variance of our covariate-adjusted spectral density estimator, we
compute its 95% asymptotic confidence bands based on Theorem 1 and at different values of w in (0, 1). The only
source of bias in our estimation procedure is due to the penalization of the model likelihood causing a smoothing bias
[Wood, 2017] if the smoothing parameters do not vanish at a certain rate (see Section 3.3). The uncertainty due to
the choice of the parametric model is deliberately not taken into account, that is, the simulations are performed in a
well-specified framework.

Figure 3 displays the estimates of the covariate-adjusted spectral densities from Examples 2.1, 2.2, and 2.3 for vari-
ous fixed values of the covariate x that induce different extremal dependence strengths. All panels show that for the
different extremal dependence schemes (strength and asymmetry), the covariate-adjusted spectral densities are ac-
curately estimated and the true curves fall well within the 95% confidence bands. The estimates in the Dirichlet case
seem to be a bit more biased, and this might be explained by the fact that both of the two non-orthogonal parameters
of the model depend smoothly on the covariate x .

We now consider the case of the trivariate pairwise beta dependence model from Example 2.4. We draw a sample{(
wi ,1,wi ,2,wi ,3

)}nr
i=1 with sample size nr = 300where each observation

(
wi ,1,wi ,2,wi ,3

)
is drawn from the pairwise beta

model conditional on a fixed value xi of the covariate x , as illustrated in Figure 2. Figure 4 displays the contour plots
of the estimates of the covariate-adjusted spectral density from Example 2.4 at three fixed values of x . All panels in
Figure 4 show that, for the different extremal dependence schemes, i.e., for the different considered values of x , the
contour plots of the estimates are remarkably close to the actual contour plots. The estimates are slightly more biased
near the edges of the simplex than in the center, reflecting a better estimation of the global dependence parameter
compared to the pairwise dependence parameters.

4.2 Monte Carlo evidence

A Monte Carlo study was conducted by simulating 500 independent samples of sizes nr = 300 and nr = 500 angular
observations, respectively. In what follows we focus on documenting how the level of accuracy increases when the
number of observations increases by assessing the mean integrated absolute error (MIAE)—which for the bivariate
case can be written as

MIAE = E
{∫

X

∫ 1

0
|ĥx (w ) − hx (w ) | dw dx

}
.
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F IGURE 3 Estimates of the covariate-adjusted spectral densities in Examples 2.1, 2.2, and 2.3 conditional on
different values of the covariate x (dashed lines) along with their 95% (pointwise) asymptotic confidence bands (grey
area). The true spectral densities are displayed in solid lines.

The results are reported in Table 1.

As expected, an increase in the number of angular observations leads to a reduction of MIAE. To give a more granular
level of detail than that of Table 1 on the behaviour of the estimator over specific values of the covariate and of the
unit simplex, Figure 5 displays the Monte Carlo confidence intervals of the covariate-adjusted spectral densities from
Examples 2.1–2.3 for various fixed values of the covariate x , along with the Monte Carlo means and Figure 6 displays
the contour plots of the Monte Carlo mean of the covariate-adjusted spectral density from Example 2.4 at three fixed
values of x .
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F IGURE 4 Contour plots of the covariate-adjusted pairwise beta spectral density estimate (dashed lines) at
x = 1.5 (left), x = 2.46 (middle), and x = 3.22 (right). The contour plots of the true spectral density are displayed in
solid lines.

TABLE 1 Mean integrated absolute error (MIAE) estimates computed from 500 samples for the
covariate-adjusted spectral densities in Examples 2.1–2.3; nr denotes the number of angular observations

nr Covariate-adjusted angular density MIAE

Logistic 0.2185

300 Dirichlet 0.3372

Hüsler–Reiss 0.2205

Logistic 0.1781

500 Dirichlet 0.2459

Hüsler–Reiss 0.1648

As can be seen from Figures 5 and 6, our method successfully recovers the corresponding target covariate-adjusted
angular densities with a high level of precision over the simulation study. Additionally, the variability in the Monte
Carlo study in Figure 5 is comparable to the asymptotic variability displayed in Figure 3. Finally, an assessment of
the sensitivity of our method to the choice of the radial threshold is conducted in the two-parameter Dirichlet exam-
ple 2.2 where a sample {(Y i1 ,Y

i
2 )}

n
i=1 is drawn from the corresponding bivariate extreme value distribution Gx . Each

observation (Y i1 ,Y
i
2 ) has unit Fréchet margins and is drawn from the chosen dependence model conditional on a fixed

value x i of the covariate x . For estimating hx , we fix the sample size at n = 6000 and consider the observations with
a radial component exceeding its quantile at the level 93%, 95%, and 97%, ending up with nr = 420, 300, 180 extreme
(angular) observations, respectively. Figure 7 displays, for the different considered radial thresholds, the Monte Carlo
confidence intervals of the limiting covariate-adjusted spectral density from Example 2.2 for various fixed values of
the covariate x , along with the Monte Carlo means.

Although the angular observations resulting from thresholding the radial component do not come from the true angu-
lar density that we model, our method recovers relatively accurately the true limiting angular density. Comparing the
results of Figure 7 with the middle panels of Figure 5 where simulation is performed from the true angular density, we
observe as expected a slight bias due to the sub-asymptotic modelling of angular observations, but which decreases
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F IGURE 5 The Monte Carlo 95% confidence intervals of the spectral densities in Examples 2.1, 2.2, and 2.3
conditional on different values of the covariate x (grey area) along with their Monte Carlo means (dashed lines). The
true spectral densities are displayed in solid lines.

as the radial threshold increases. The bias is more pronounced for a value of the covariate x inducing weak asymptotic
dependence due to the residual dependence that vanishes asymptotically but is observed at finite thresholds.
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F IGURE 6 Contour plots of the Monte Carlo mean estimate of the covariate-adjusted pairwise beta spectral
density (dashed lines) at x = 1.5 (left), x = 2.46 (middle), and x = 3.22 (right). The contour plots of the true spectral
density are displayed in solid lines.

5 | EXTREME TEMPERATURE ANALYSIS

5.1 Data description, motivation for the analysis, and preprocessing
In this section, we describe an application to modelling the dependence between extreme air winter (December–
January–February) temperatures at two sites in the Swiss Alps: Montana—at an elevation of 1427m—and Zermatt—at
an elevation of 1638m. The sites are approximatively 37km apart.
In the Alpine regions of Switzerland, there is an obvious motivation to focus on extreme climatic events, as their
impact on the local population and infrastructure can be very costly. As stated by Beniston [2007], warm winter
spells, that is, periods with strong positive temperature exceedances in winter, can exert significant impacts on the
natural ecosystems, agriculture, and water supply:

“Temperatures persistently above 0◦C will result in early snow-melt and a shorter seasonal snow cover,
early water runoff into river basins, an early start of the vegetation cycle, reduced income for alpine ski re-
sorts and changes in hydro-power supply because of seasonal shifts in the filling of dams [Beniston, 2004].”

In this analysis, we are interested in the dynamics of the dependence between extreme air temperatures in Montana
and Zermatt during the winter season. The dynamics of both extreme high and extreme low winter temperatures in
these two sites will be assessed and linked to the following explanatory factors: time (in years) (t ), day within season
(ds ), and the NAO (North Atlantic Oscillation) index (z ); the latter is a normalized pressure difference between Iceland
and the Azores that is known to have a major direct influence on the alpine region temperatures, especially during
winter [Beniston, 2005]. The choice of the studied sites is of great importance in this analysis. Beniston and Rebetez
[1996] showed that both cold and warm winters exhibit temperature anomalies that are altitude-dependent, with
high-elevation resorts being more representative of free atmospheric conditions and less likely to be contaminated
by urban effects. Therefore, to study the “pure" effect of the above-mentioned explanatory covariates on the winter
temperature extremal dependence, we choose the two high elevation sites Montana and Zermatt.
The data consist of daily winter temperature minima and maxima measured at 2m above ground surface and were
obtained from the MeteoSwiss website

www.meteoswiss.admin.ch
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F IGURE 7 The Monte Carlo 95% confidence intervals of the limiting spectral density in Example 2.2 conditional
on different values of the covariate x (grey area) along with their Monte Carlo means (dashed lines). Radial
thresholds at the 93% quantile level (top panels), the 95% quantile level (middle panels), and the 97% quantile level
(bottom panels) are considered. The true limiting spectral density is displayed in solid lines.

The data were available from 1981 to 2016, giving a total of 3190 winter observations per site. Daily NAO index
measurements were obtained from the NOAA (National Centers for Environmental Information), at

www.ngdc.noaa.gov/ftp.html

We first transform the minimum temperature data by multiplication by −1 and then fit at each site—and to both daily
minimum and maximum temperatures—a generalized Pareto Distribution (GPD) [Coles, 2001, ch. 4]

Gσ,ξ (y ) = 1 −
(
1 + ξ

y

σ

)−1/ξ
+
, (18)
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to model events above the 95% quantile u95 for each of the four temperature time series. In (18), σ > 0 is the scale
parameter that depends on u95, and −∞ < ξ < ∞ is the shape parameter. As is common with temperature data
analysis, we test the effect of the considered covariates on the behaviour of the threshold exceedances by allowing
the scale parameter of the GPD (18) to smoothly vary with t , z , and ds [Chavez-Demoulin and Davison, 2005]. Model
selection is based on the double penalty method of Marra andWood [2011] allowing non-significant covariates to be
shrunk out of the model. Except for the day in season ds which was found to have a significant effect on the scale
parameter for the threshold exceedances of the Zermatt daily minimum temperatures, the considered covariates were
found to be non-significant with positive but very small effective degrees of freedom (EDF). Graphical goodness-of-fit
tests for the four resulting GPD models are conducted by comparing the distribution of a test statistic S with the unit
exponential distribution (if Y ∼ Gσ,ξ , then S = − ln{1 − Gσ,ξ (Y )} is unit exponentially distributed). Figure 8 displays
the resulting qq-plots and confirms the validity of these models. The fitted models are then used to transform the
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F IGURE 8 Diagnostic plots of the GPD modelling of the threshold exceedances of the daily maximum winter
temperatures (left) and the daily minimum winter temperatures (right) in Montana (top) and Zermatt (bottom).

data to a common unit Fréchet scale by probability integral transform and where the empirical distribution is used
below u95. This results in two datasets of bivariate observations (in Montana and Zermatt) with unit Fréchet margins:
one for the daily maximum temperatures and the other one for the daily minimum temperatures.

Following the theory developed in Section 2.1, we transform each of the two datasets into pseudo-datasets of radial
and angular components. By retaining the angular observations corresponding to a radial component exceeding its
95% quantile in each pseudo-dataset, we end up with two pseudo-samples of 160 extreme bivariate (angular) obser-
vations in each pseudo-dataset.
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5.2 Covariate-adjusted dependence of extreme temperatures
In the following analyses of the dynamics of the dependence between extreme temperatures inMontana andZermatt—
and in line with findings from previous analyses of extreme temperatures in Switzerland [Davison and Gholamrezaee,
2011, Davison et al., 2013, Dombry et al., 2013]—we assume asymptotic dependence in both extremely high and
extremely low winter temperatures.

5.2.1 Dependence of extreme high winter temperatures

The covariate-adjusted bivariate angular densities presented in Section 2.2 are now fitted to the pseudo-sample of
extreme high temperatures. The effects of the explanatory covariates t , z , and ds are tested in each of the three
angular densities: the logistic model (Example 2.1) with parameter α(t , z , ds ), the Dirichlet model (Example 2.2) with
parameters α(t , z , ds ) and β (t , z , ds ), and the Hüsler–Reiss model (Example 2.3) with parameter λ(t , z , ds ). Within each
family of covariate-adjusted angular densities, likelihood ratio tests (LRT) are performed to select the most adequate
VGAM for the dependence parameters. Table 2 shows the best models in each of the three families of angular den-
sities. All the considered covariates have a significant effect on the strength of dependence between extreme high
temperatures in Montana and Zermatt. For the covariate-dependent Dirichlet model, the covariates affect the depen-
dence parameters α and β differently. However, these parameters lack interpretability, and Coles and Tawn [1994]
mention the quantities (α + β )/2 and (α − β )/2 that can be interpreted as the strength and asymmetry of the extremal
dependence, respectively. In this case, the best Dirichlet dependence model found in Table 2 is such that both the
intensity and the asymmetry of the dependence are affected by time, NAO, and day in season.

TABLE 2 Selected models in each family of angular densities along with their AICs. The link functions g are the
logit function for the logistic model and the logarithm function for the Dirichlet and the Hüsler–Reiss models. The
functions f̂ with subscripts t , z , and ds are fitted smooth functions of time, NAO, and day in season, respectively

Covariate-adjusted angular density VGAM AIC

Logistic α̂(t , z , ds ) = g
−1 {α̂0 + f̂t (t ) + f̂z (z ) + f̂ds (ds )} −280.14

α̂(z ) = g−1 {α̂0 + f̂z (z )}
Dirichlet

β̂ (t , ds ) = g
−1 {β̂0 + f̂t (t ) + f̂ds (ds )}

−290.04

Hüsler–Reiss λ̂(t , z , ds ) = g
−1 {λ̂0 + f̂t (t ) + f̂z (z ) + f̂ds (ds )} −274.52

The best models in the studied angular density families are then compared by means of the AIC (see Section 3.2)
displayed in Table 2. The Dirichlet model with α(z ) and β (t , ds ) parameters has the lowest AIC and is hence selected.
This suggests the presence of asymmetry in the dependence of extreme high temperatures between Montana and
Zermatt. Figure 9 shows the fitted smooth effects of the covariates on the extremal coefficient—constructed via the
covariate-adjusted extremal coefficient as in (10)—that lies between 1 for perfect extremal dependence and 2 for
perfect extremal independence.

A decrease in the extremal coefficient, or equivalently an increase in the extremal dependence between high winter
temperatures in Montana and Zermatt, is observed from 1988 until 2006. This change might be explained first by a
warm phase of very pronounced and persistent warm anomalies during thewinter season, which occured countrywide
from 1988 to 1999 [Jungo and Beniston, 2001], and then by an exceptionally warm 2006/2007 winter that took place
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F IGURE 9 Fitted smooth effects for the extremal coefficient under the Dirichlet model of Table 2 along with
their associated 95% (pointwise) asymptotic confidence bands.

in Europe Luterbacher et al. [2007]. Regarding the NAO effect, as expected, we observe an increase in the extremal
dependence during the positive phase of NAO that has a geographically global influence on the Alps and results in
warmer andmilder winters, as depicted by Beniston [1997]. In terms of the very negative NAO values (less than −100),
there is an important uncertainty due to the corresponding small amount of joint extreme high temperatures (8%). The
right panel of Figure 9 suggests an increase in the extremal dependence around mid-December. This evidence also
seems compatible with the countrywide findings by Beniston [1997], who claims that

“The anomalously warm winters have resulted from the presence of very persistent high pressure episodes
which have occurred essentially during periods from late Fall to early Spring.”

Threshold selection entails a bias–variance tradeoff, and a standard practice in statistics of extremes is to assess the
stability of the inference over a range of neighbouring quantiles at which the threshold is set. Here, the sensitivity
of the dependence modelling to the choice of the radial threshold (95% quantile) is assessed by fitting the Dirichlet
model of Table 2 to the angular observations corresponding to a radial component exceeding its 90%, 93%, and 97%
quantile. The fitted smooth effects of the covariates on the extremal coefficient are reported in the Supplementary
Materials and are found to be essentially unaffected by the choice of the radial threshold.

5.2.2 Dependence of extreme low winter temperatures

The effects of the covariates time, NAO, and day in season on the dependence between extreme cold winters in
Montana and Zermatt are now tested by fitting the bivariate angular densities of Section 2.2. Within each of the
logistic, Dirichlet, and Hüsler–Reiss families, LRTs are performed, and the selected models are displayed in Table 3.
The explanatory covariates have different effects on the extremal dependence, depending on the family of angular
densities. The AICs for the fitted models are quite close, and the asymmetric Dirichlet model has the lowest AIC and is
hence the retained model. As opposed to the extremal dependence between warm winters in the two mountain sites,
the NAO has a non-significant effect on the extremal dependence between cold winters. This might be explained
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TABLE 3 Selected models in each family of angular densities along with their AICs. The link functions g are the
logit function for the logistic model and the logarithm function for the Dirichlet and the Hüsler–Reiss models. The
functions f̂ with subscripts t and ds are fitted smooth functions of time and day in season, respectively

Covariate-adjusted angular density VGAM AIC

Logistic α̂ ≡ g−1(α̂0) −358.49

α̂(t , ds ) = g
−1 {α̂0 + f̂t (t ) + f̂ds (ds )}Dirichlet

β̂ (ds ) = g
−1 {β̂0 + f̂ds (ds )}

−363.49

Hüsler–Reiss λ̂(t ) = g−1 {λ̂0 + f̂t (t )} −362.05

by the fact that high values of the NAO index will affect the frequency of extreme low winter temperatures (less
extremes) and hence the marginal behaviour of the extremes at both sites, but not necessarily the dependence of the
extremes between these sites [Beniston, 2004, sec. 7.3.2].

1980 1985 1990 1995 2000 2005 2010 2015

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Time

C
ov

ar
ia

te
-a

dj
us

te
d 

ex
tre

m
al

 c
oe

ffi
ci

en
t

20 40 60 80

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Days

F IGURE 10 Fitted smooth effects for the extremal coefficient under the Dirichlet model of Table 3 along with
their associated 95% (pointwise) asymptotic confidence bands.

Figure 10 shows the fitted smooth effects of time and day in season. A sensitivity analysis of these effects to the radial
threshold choice is conducted in Figure 1 of the SupplementaryMaterials and shows that the effects of the considered
covariates on the extremal dependence are unaltered by changing the radial threshold; thus we only present here the
results yield from setting the radial threshold at the 95% quantile. The extremal dependence between low winter
temperatures in Montana and Zermatt is high, regardless of the values taken by the covariates t and ds . The range of
values of the extremal coefficient observed in Figure 10 is in line with the findings of Davison et al. [2013], where the
value of the extremal coefficient for the dependence between extreme low winter temperatures (in Switzerland) is
around 1.3 for pairs of resorts separated by up to 100km. Overall, the extremal coefficient is lower in the extreme low
winter temperatures than in the extreme high winter temperatures. This could be explained by the fact that minimum
winter temperatures are usually observed overnight when the atmosphere is purer and not affected by local sunshine
effects and hence is more favourable to the propagation over space of cold winter spells.
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A decrease in the extremal dependence is observed from around 2007 and results in values of the extremal coefficient
that are comparable to those obtained under the warm winter spells scenario (see Figure 9). This can be explained
by a decrease in the intensity of the joint extreme low temperatures, that is, milder joint extreme low temperatures,
occurring during the last years of the analysis, as can be observed in Figure 11. The right panel of Figure 10 high-
lights a decrease in the extremal dependence when approaching spring. This effect can be explained by the fact that
mountains often produce their own local winds, as can be seen for instance from

www.morznet.com/morzine/climate/local-climate-in-the-alps

These warm dry winds are mostly noticeable in spring and are called Foehn in the Alps. Local effects obviously lead
to a decrease of extremal dependence between the two resorts.
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F IGURE 11 Scatterplot of (minus) extreme low winter temperatures (in ◦C) in Montana and Zermatt.

6 | FINAL REMARKS

In this paper, we have introduced a sturdy and general approach to model the influence of covariates on the extremal
dependence structure. Keeping in mind that extreme values are scarce, our methodology borrows strength from a
parametric assumption and benefits directly from the flexibility of VGAMs. Our non-linear approach for covariate-
varying extremal dependences can be regarded as a model for conditional extreme value copulas—or equivalently as
a model for nonstationary multivariate extremes. An important advantage over existing methods is that our model
profits from the VGAM framework, allowing the incorporation of a large number of covariates of different types
(continuous, factor, etc) as well as the possibility for the smooth functions to accommodate different shapes. The
fitting procedure is an iterative ridge regression, the implementation of which is based on an ordinary N–R type
algorithm that is available inmany statistical software. An illustration is provided in the R code that can be downloaded
from https://github.com/lindamhalla/Regression_type_models_for_extremal_dependence.
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The method paves the way for novel applications, as it is naturally tailored for assessing how covariates affect depen-
dence between extreme values—and thus it offers a natural approach for modelling conditional risk. Conceptually,
the proposed approach is valid in high dimensions. Yet, as for the classical setting without covariates, the number
of parameters would increase quickly with the dimension and additional complications would arise. Relying on com-
posite likelihoods [Padoan et al., 2010] instead of the full likelihood seems to represent a promising path for future
extensions of the proposed methodology in a high-dimensional context.

Theoretical developments on threshold selection for nonstationary multivariate extremes are a natural avenue for
future research. Threshold selection on the (stationary) multivariate setting is still an area of active research; recently,
[Wan and Davis, 2018, in press] proposed an approach for the multivariate setting by resorting to the well-known
fact that the radial and angular components are independent in the limit. Formal threshold selection for nonstationary
multivariate extremes entails the challenge that the dependence structure changes according to a set of covariates,
and thus requires the need for focusing on models based on angular surfaces rather than angular densities.
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