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Abstract

Address translation is an established performance bottleneck [4] in workloads
operating on large datasets due to frequent TLB misses and subsequent page table
walks that often require multiple memory accesses to resolve. Inspired by recent
research at Google on Learned Index Structures [14], we propose to accelerate
address translation by introducing a new translation mechanism based on learned
models using neural networks. We argue that existing software-based learned
models are unable to outperform the traditional address translation mechanisms
due to their high inference time, pointing toward the need for hardware-accelerated
learned models. With a challenging goal to microarchitect a hardware-friendly
learned page table index, we discuss a number of machine learning and systems
trade-offs, and suggest future directions.

1 Introduction
Massive in-memory datasets are a staple feature of many server applications, including databases,
key-value stores, and data analytics frameworks. The large – and rapidly growing – data footprints,
coupled with irregular access patterns, in many of these workloads result in frequent TLB misses
that require a walk of the operating system’s radix tree-based page table. During the walk, the levels
of the radix page table (which are memory resident) must be traversed one by one (see Fig. 1a),
incurring high latency overhead. Modern processors include several hardware features to accelerate
page table walks, including hardware walkers, multi-level TLBs and translation caches. Despite these
features, recent studies show that up to 50% of performance in big-data server workloads can be
lost to address translation [4]. The performance cost of address translation is destined to increase in
the future, as larger memory capacities enabled by emerging memory technologies (e.g., Intel’s 3D
XPoint) will necessitate the addition of yet another (fifth) level in the radix page table that must be
visited on each page table walk. Indeed, the industry has already started preparing for the eventual
transition to five-level page tables [1].

Recent research proposals seeking to ameliorate the high cost of address translation tend to fall into
one of two categories: incremental improvements to existing designs and disruptive changes to the
virtual memory system. Incremental approaches include aggressive coalescing of Page Table Entries
(PTEs) within TLBs [17, 18] and support for variable page sizes [7, 15, 19]. These techniques are
fundamentally limited by coalescing opportunities exposed by the application and OS, as well as the
capacity of the physical TLB structures. The disruptive proposals include the use of segment-based
virtual memory [4, 11] and application-specific address translation [2]. While attractive from a
performance perspective, these proposals require a radical re-engineering of the virtual memory
subsystem at both OS and hardware levels, which presents a difficult path to adoption.

The challenge for future virtual memory systems is to enable high-performance address translation
for terabyte-scale datasets without disrupting existing system stacks. Toward that goal, we suggest a
new approach to accelerate radix page table walks through the use of learned models. Our approach
is inspired by recent work from Google on Learned Index Structures [14], which shows that a lean
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Figure 1: Page table walk mechanisms

learned model can effectively replace a B-Tree for indexing a sorted key range. Our insight is that a
radix page table is conceptually similar to a B-Tree index in that it consists of several indexing levels
which progressively narrow down the region in which the target key – in this case, a PTE – is located.
We hypothesize that a learned model can replace the page table walk, hence dramatically lowering
the page walk latency. Fig. 1b shows the proposed approach.

Our preliminary results demonstrate that even a straight-forward application of the published learned
indexes [14] can achieve excellent accuracy of PTE location prediction. However, the large inference
time of the software-based models diminishes the benefit of eliding the page table walk. Hence,
to enable fast and flexible learned page table indexes, we identify a key challenge to be that of
architecting a hardware-friendly learned indexing scheme, and anticipate the solution to necessitate
a number of machine learning and systems trade-offs and optimizations. In the following sections,
we present our proposed design in §2, quantify the opportunity on modern servers, and study the
inference time of the learned page table indexer for a number of implementations in §3, and discuss
future directions towards fast and scalable indexer design in §4.

2 Toward learned page table indexes
Today’s radix page tables use a 4-level organization, in which the last level has the PTEs containing
the actual translation (i.e., the physical address corresponding to the virtual address) and metadata
including the permission bits. While it seems tempting to learn the actual translations from virtual to
physical space, there are two critical problems to contend with. First, there is no clear relationship
between virtual and physical page addresses; while addresses of virtual pages obviously follow a
sorted order, the corresponding physical pages might be scattered over the memory space, hence
presenting a challenge for learning. While pages could be reordered in memory to facilitate learning
by imposing some sort of an ordering, such a reordering might interfere with memory management,
particularly in a virtualized environment. The second problem is more insidious and has to do with
the fact that an output of a learned translation is speculative. In case the predicted translation is
wrong, a process would effectively be allowed to access physical memory not allocated to it – a major
security headache. Even if the translation is subsequently validated via a full page table walk and
rolled back if found incorrect, the recently exposed Meltdown [16] and Spectre [13] vulnerabilities
clearly indicate how dangerous such aggressive speculation can be.

Due to the challenges associated with directly learning virtual to physical translations, we suggest a
more pragmatic strategy of using a learned model to predict the address of the PTE. The predicted
PTE, which contains the actual translation, will be loaded similarly to how it is done in today’s
systems and validated through a tag check. A failed tag check (i.e., incorrect prediction) will trigger a
conventional page table walk. As Fig. 1b shows, the proposed learned approach enables bypassing of
all but the last level in the radix page table; thus, as the depth of the radix page table expands to five
levels in the near future, the benefits of the learned approach will amplify.

The Learned Index framework [14] can be directly applied to the proposed idea, with the virtual
page address acting as the key, and the address of the PTE as the index produced by the model.
However, despite excellent accuracy of the Learned Index, its hierarchical structure and model’s
computational complexity largely negate the potential benefits due to the high inference time when
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compared to a radix tree traversal. In practice, a range of consecutive PTEs is clustered on an OS
page, so only the page address needs to be predicted, and the target PTE can be located within the
page using a simple offset calculation (see Fig. 1b). This simple insight enables a nearly two-order-
of-magnitude reduction in the number of addresses that need to be learned, thus enabling smaller,
less computationally intensive, models.

We observe that there exists an opportunity to further reduce model cost and lower the inference
time by lowering PTE location prediction accuracy. To compensate for the reduced accuracy, instead
of outputting a single PTE location, the model can produce a range of possible locations. The
corresponding PTE entries can all be fetched in parallel, so the latency need not suffer as compared to
a single-PTE-per-prediction design; however, fetching multiple PTEs does require additional memory
bandwidth. Fortunately, prior characterizations [9, 10] of datacenter services has shown that memory
bandwidth is generally underutilized, hence affording a slight increase in its usage.

In the rest of the section, we discuss various aspects of integration of learned page table indexes into
modern systems.

Model Training: Training can be a time-consuming task; however, several observations make it
tractable in our context. First, the structure of the neural network will be fixed at processor design
time, which means that only the weights need to be determined at application runtime. Secondly,
server applications typically stay up for a long time and their memory footprint is stable; thus, training
time can be easily amortized over the lifetime of the application. Moreover, training does not need to
happen immediately at application start-up; instead, it can occur as a background task or whenever
the load on the server is idle. Until a neural network is trained, conventional radix page table walk
can be used to resolve TLB misses. Finally, we note that big-memory server applications tend to
allocate memory at start-up and then manage it internally [4]; hence, the frequency of re-retraining
should be low.

System Software Support: The neural indexer learns to approximate a monotonic function, as
described by the prior work [14], which requires larger virtual addresses to correspond to PTEs
located at larger physical addresses. Similarly to the memory compaction daemon (i.e., Transparent
Hugepage Support [3]) already present in the Linux kernel, we propose an add-on daemon that will
reorder the memory pages containing the radix page table to guarantee monotonicity. Note that
application’s memory pages do not need to be reordered. Because the footprint of the page table is
small and the footprint of the application memory is expected to be stable, the page table ordering
cost is low and is incurred at application start-up and rarely thereafter.

Software Compatibility: A particular advantage of the neural indexer is that it preserves the existing
virtual memory abstraction and page table organization.

Scalability: Because the performance overheads of address translation are likely to increase in the
future with the emergence of 5-level page tables and terabyte-scale in-memory datasets, we anticipate
that the benefits of the proposed neural page table indexer will be even larger than in today’s systems.

3 Quantifying the opportunity

3.1 Radix tree

To define the performance requirements for the proposed neural page table indexer design, we study
the performance and locality characteristics of the conventional radix tree traversals. Contrary to the
B-tree structures discussed in [14], the radix tree data structure is optimized for low latency traversals
thanks to combining high fan-out intermediate nodes, up to 512 in x86 CPUs, with offset-based
indexing that minimizes the number of memory accesses per walk. To further decrease radix tree
traversal time, modern CPUs allow caching of the intermediate tree nodes in the on-chip cache
hierarchy. In practice, radix tree traversal time highly depends on the effectiveness of the capacity-
limited CPU caches that are severely pressured by the cloud applications’ growing datasets [4, 9]. For
modern cloud applications with large in-memory datasets, fast private L1 and L2 caches are too small
to contain Level 3 and 4 of the radix tree (Fig. 1a), whereas large LLC capacity is typically shared
among many workloads running simultaneously on a modern many-core server. Since many cloud
workloads are highly memory intensive and generate high pressure on the on-chip caches [9, 10],
the lower levels of the radix tree get thrashed out from the cache hierarchy to slow main memory,
resulting in long-latency page table walks.
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To quantify the performance headroom, we develop a synthetic benchmark that applies significant
TLB pressure on a modern Intel Xeon E5-2630 v4 server, featuring Ubuntu 14.04, and collect
the values of the corresponding performance counters. The benchmark serially accesses a large
linked list up to 100GB in size, and triggers a page walk on every pointer access. To mimic a real
world deployment of a latency-critical application [22], we study the benchmark in a multi-tenant
environment, i.e., colocated with a multi-threaded streaming workload, with Transparent Huge Pages
mechanisms disabled to avoid the associated memory management delays [8]. In various colocation
scenarios, we find that for each data access generated by the application, the page walk mechanism
causes 1-2 LLC accesses and 1-2 main memory accesses that together result in 211-397 CPU cycles
of latency per walk.

3.2 Software-based learned indexes
To quantify the potential of learning the page table index, we use a neural model similar to the
one proposed by Kraska et al. [14] for range indexing to perform address translation on a 20GB
Memcached deployment. Empirically, we find the following model architecture to work well: a
two-level hierarchy of models with a single model in the first level, and 32 models in the second level.
The models in both levels have the same organization featuring 27 input neurons, 32 neurons in a
single hidden layer, and a single output neuron. We train the overall model using a complete Linux
page table dump for the target application. To simplify the quantitative comparison of a number of
models and the radix tree baseline below, we focus on estimating the latency from the beginning of
the page walk till the point when the PTE location is determined, either by the radix tree lookup or by
inference in the learned model, and excluding the subsequent fetch of the PTE location from memory.
In the baseline radix page table walk, this latency (i.e., excluding the actual PTE fetch) is 22-208
CPU cycles.

In terms of accuracy, the results are encouraging: the model is able to exactly pinpoint the target
PTE page with ∼99.9% accuracy for all virtual addresses in the page dump. However, even with
an aggressive software implementation, the model’s large inference time fails to outperform the
radix tree baseline. We estimate the inference time of the model that runs on a CPU with a vector
unit, similar to Intel AVX-512 [5, 6], that allows execution of up to 16 floating point operations in
parallel, each floating point operation takes four cycles, and each floating point unit has a throughput
of one operation per cycle. We find that the model takes approximately 340 CPU cycles to calculate
the location of a PTE. Thus, although the neural model is able to accurately pinpoint the target
PTE location, naively applying the published learned index design is insufficient to outperform a
conventional page walk and motivates the need for a lower-latency learned index architecture.

One promising insight is that the number of unique PTE pages that must be indexed, even for a
100GB dataset, is a few orders of magnitude smaller than the size of the key space studied in [14].
The small key space implies that a smaller, single-level model might be sufficient for page table
indexing, which could help lower indexing latency. As discussed in §2, it may also be possible to
trade-off prediction accuracy for model complexity, thus predicting a range of PTE locations via
a simpler, lower-latency model. Our preliminary results show that using a single-level model that
predicts 16 candidate locations, instead of one location, reduces the model size by 75×. However,
even this simpler model still requires approximately 120 cycles to produce the target PTE location,
which significantly limits its benefit. Thus, we anticipate that further inference time reduction should
come from using a microarchitectural learned page table indexer.

4 Future directions
We believe that an efficient hardware implementation of a learned page table indexer is possible. We
envision a neural network-based indexer at each CPU core, optimized for three metrics of interest:
latency, silicon area (comprised of logic for the compute and storage for the weights), and accuracy.
Toward that goal, we consider the following techniques:

1. Reduced precision of weights and activations to reduce both compute and storage cost.
2. Quantization of neuron activations limits the number of possible outputs a neuron can produce.

With quantized activations, multiplication operations in the neural model can take on a very limited
number of input values, which makes it possible to replace the multiplication operation with
much faster table lookup operations [20]. Because the tables are likely to increase the storage
requirements of a neural model, there is a trade-off that needs to be studied between computational
cost and memory storage requirements when quantization of neuron activations is applied.
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3. Binarization of weights and activations of the predictors can help avoid complex multiplication
operations by replacing them with much simpler boolean operators like XNOR [12]. To the best
of our knowledge, the prior work in this space targets classification tasks, whereas our goal is
recall of precise values. Thus, low accuracy is a potential concern with this approach.

4. StrassenNets neural models [21] cast matrix multiplications as two-layer sum-of-products net-
works that allow imposing a budget on the number of multiplication operations, thus enabling a
potential hardware cost reduction without sacrificing accuracy.

In general, we note that low-latency hardware implementations of neural nets are an emerging area,
with little work done to-date. This is an exciting space to study in order to understand the efficacy of
existing neural network optimization techniques, which have been developed for and evaluated on
software models. Learned page table indexing is a promising way to accelerate address translation,
but it requires hardware support to be attractive performance-wise. This makes learned page table
indexing an excellent vehicle for bringing together machine learning research and hardware design.

5 Conclusion
To continue improving user experience, many of the modern datacenter services strive for larger
memory capacities that place significant pressure on the virtual memory subsystem. Established
many decades ago, current software and hardware virtual memory mechanisms are reaching their
limits, motivating us to look for their alternatives. With the advent of machine learning, we see a
clear opportunity for building a fast learned page walk accelerator whose performance could scale
well to accommodate growing application datasets. A key requirement for such an accelerator is
low inference time that cannot be attained through previously proposed software-based models. In
pursuit of a low-latency learned page table indexer, we argue for a hardware-based design and identify
several systems and machine learning trade-offs and optimizations that could help realize it.
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