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Reweighting a parton shower using a neural
network: the final-state case

Enrico Bothmann∗ and Luigi Del Debbio

University of Edinburgh

The use of QCD calculations that include the resummation of soft-collinear
logarithms via parton-shower algorithms is currently not possible in PDF
fits due to the high computational cost of evaluating observables for each
variation of the PDFs. Unfortunately the interpolation methods that are
otherwise applied to overcome this issue are not readily generalised to all-order
parton-shower contributions. Instead, we propose an approximation based on
training a neural network to predict the effect of varying the input parameters
of a parton shower on the cross section in a given observable bin, interpolating
between the variations of a training data set. This first publication focuses
on providing a proof-of-principle for the method, by varying the shower
dependence on αS for both a simplified shower model and a complete shower
implementation for three different observables, the leading emission scale,
the number of emissions and the Thrust event shape. The extension to the
PDF dependence of the initial-state shower evolution that is needed for the
application to PDF fits is left to a forthcoming publication.
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1 Introduction

With the Large Hadron Collider (LHC) successfully undergoing its second run and the
possible upgrade to the so-called High-Luminosity LHC, the produced collision datasets
reach new levels of precision. This requires an ongoing effort to provide more precise
theory predictions. A sizeable part of the overall theory uncertainty is often given by
the degree to which we know the parton content of the incoming protons, parametrised
by the parton density functions (PDF) [1–4], see also Ref. [5] and references therein for
a recent review. In order to increase the precision of PDF determinations, it is clearly
desirable to be able to include as many observables as possible in the fits. However the
χ2 minimization in these fits needs multiple re-evaluations of the underlying observables
in order to converge. As a result there are strict constraints on the CPU time each
re-evaluation costs: observables can be included in fits only if there is an efficient way to
compute them as PDFs are varied. For instance, in nnpdf fits, all observables are written
as convolutions of FK tables and PDFs at the initial scale as discussed in detail in Ref. [6].
Similarly, some results provided by Monte-Carlo event generators, e.g. NLOJet++ [7],
MadGraph5_aMC@NLO [8], mcfm [9] or sherpa [10], can be projected onto an
interpolation grid, which allows fast a-posteriori variations of the input parameters,
because the sum over simulated events is replaced by a sum over a much smaller number
of observable-dependent weights [11–16]. Unfortunately, as explained later in this work,
this approach cannot be easily extended to capture the input-parameter dependences
of the all-order predictions obtained by the parton-shower algorithms in Monte-Carlo
generators.

Instead we present here an approximate approach to parametrise the parton-shower
dependences in a way that allows for a fast, a-posteriori reweighting of the observable.
Because we are dealing with binned observables, the output of the parton shower is the
number of events in a given bin. In this context ’reweighting the observable’ means
finding the relative weight of each bin as the input parameters change, i.e. recomputing
the value of the observable in each bin. Once the relative weight is known, the number
of events in a bin can be easily recomputed by multiplying its original value by the new
weight. A quick summary of the method is as follows. First, the calculation is repeated
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for a given set of input parameters. The variation of the result (in a given observable
bin) across this set is then used to train a neural network (NN), effectively fitting the
unknown functional form that encodes the dependences of the parton shower on the
input parameters. This NN can then be used to obtain efficiently an interpolation of the
observable for arbitrary values of the input parameters, so that it is suitable to use this
methodology in studies that require fast a-posteriori variations.

NN techniques have been successfully applied or used exploratively in a number of topics
in collider phenomenology, often with much more complex NN architectures than what we
employ in this work. The topics include jet tagging/particle identification [17–25], event
classification [26–28], phase-space integration [29], pile-up mitigation [30], simulating
electromagnetic showers in a calorimeter [31], parameter space scans for New Physics
searches [32], and of course PDF fitting [1]. Moreover, a deep NN has been proposed to
mimic a parton shower algorithm [33]. However, this latter ansatz can not be applied to
our goal of using all-order results in PDF fits, as it is applied on an event-by-event basis
just as an ordinary parton-shower algorithm, whereas PDF fits require projections of the
cross section on observables in order to achieve the fast evaluation times needed for the fit.
The interplay of parton showers and NN has also been studied in [34], in which the authors
investigate the role of parton-shower uncertainties and approximations in NN-based jet
substructure analyses. In [35] an NN is used to determine the effective correction to a
Sudakov form factor in a minlo calculation of single-top plus jet production.

In this exploratory study, we restrict ourselves for simplicity to final-state parton showers.
While these are not dependent on PDFs, the problems that need to be addressed are
the same that would appear in a PDF fit. This simplified setting allows us to test our
ideas without getting bogged down in technicalities. The same approach can be readily
generalised to include PDF-dependent initial-state emissions. In the latter case, having
to deal with a much larger space of parameters entails a number of algorithmic issues
that will be addressed in future studies.

In Sec. 2, we summarise the main steps in the algorithm for reweighting a parton shower
on-the-fly, highlighting the fact that a straightforward generalisation of the interpolation
approach used e.g. in Ref. [14] does not seem feasible. Understanding the limitations of
that approach is particularly useful in order to motivate our choices on how to set up
and train neural networks to reproduce this reweighting. We formulate our NN-based
approach in Sec. 3 and describe the toy parton-shower implementation used for validating
the approach. The validation method and its results are presented in Sec. 4. The approach
is then further tested in Sec. 5 with a full shower implementation given by the default
sherpa parton shower for the prediction of the Thrust event shape at a lepton-lepton
collider. Finally, we give our conclusions in Sec. 6.

3



2 Reweighting the Sudakov Veto Algorithm

2.1 On-the-fly reweighting of parton-shower emissions

Parton-shower algorithms generate exclusive parton emissions starting from a simulated
event of a given high-energy process. They are based on a re-formulation of the dglap
evolution [36–38] using Sudakov form factors ∆ with an emission kernel K [39]. The
Sudakov form factor gives the probability that no (resolvable) emission occur between
two emission scales tlow < thigh:

∆(thigh, tlow) = exp
(
−
∫ thigh

tlow
dtK(t)

)
. (1)

We will further specify t and K when we describe our simplified shower model in Sec. 3.1.
For now, we only need to know how parton-shower algorithms numerically generate
emissions between t0, the starting scale of the shower usually given by a characteristic
scale of the high-energy event simulated in fixed-order perturbation theory, and tIR,
the infra-red cut-off scale of the parton shower, where the evolution would be typically
handed over to a fragmentation algorithm to hadronise the low-energy partons.

The first step is to find the splitting scale t for the next emission. To achieve this, a
random number could be used to sample the kernel K(t) of Eq. (1). However, doing
this in a direct way requires K to be integrable and invertible. This is not the case for
most parton-shower kernels. A way around this is the Sudakov Veto Algorithm [40–45].
Herein, one replaces K with a new kernel K̂, for which we know the integral K̂ and its
inverse, and which satisfies K̂(t) ≥ K(t) for all t. The algorithm then goes as follows:

1. Set t→ t0, stop if t0 < tIR.

2. Set t→ K̂−1(log(R1) + K̂(t)) with a random number R1, stop if t < tIR.

3. Set Pacc → K(t)/K̂(t). If Pacc > R2 for a new random number R2, the emission is
accepted.

4. Return to Step 2.

The hit-or-miss Step 3 counter-balances sampling the “wrong” kernel K̂ in Step 2. When
the algorithm stops, we have a list of scales tacc

i for the generated (i.e. accepted) emissions
and a list of scales trej

i for the rejected emissions. We can call this the parton-shower
history of the event in terms of t.1

1For simplicity we show here the sampling over t, but in actual parton-shower algorithms one also
samples over two additional kinematic variables and over the different possible splittings (e.g. if a
gluon splits emits another gluon, or if splits into a quark-antiquark pair). Only then one has an
exclusive shower history.
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Let us ask the following question now: if we have a given shower history generated
according to a kernel K, what are the relative probabilities

wk = P ({tacc
i }, {t

rej
i }|Kk)

P ({tacc
i }, {t

rej
i }|K)

to generate the same histories for a set of alternate kernels Kk? It turns out that these
probabilities are given by [45]

wk =
∏
i

qkacc(tacc
i ) ·

∏
j

qkrej(t
rej
j ) , (2)

where we have defined the reweighting factors

qkacc(t) = Kk(t)
K(t) ,

qkrej(t) = K̂(t)−Kk(t)
K̂(t)−K(t)

= 1 + (1− qkacc(t))
Pacc(t)

1− Pacc(t)
.

The acceptance probability Pacc in the second form given for qkrej is defined as in Step 3
in the Sudakov Veto Algorithm.

In an event generation, storing the relative probabilities wk then allows to reconstruct the
spread of an observable under the variations labelled by k in a more efficient way than if we
would do separate re-runs of the simulation for eachKk. This parton-shower reweighting is
implemented in the three most commonly used parton-shower implementations [46–48]. It
complements reweighting strategies for fixed-order calculations and allows a comprehensive
reweighting of the perturbative parts of an event generation when the interplay between
matrix elements and parton showering is properly accounted for in the reweighting [48].

2.2 The troubles with exact a-posteriori approaches

The applicability of the parton-shower reweighting described in the previous section is
restricted to cases, where the required variations are known beforehand. In principle one
could store all parton-shower history data needed to perform reweightings a-posteriori,
but as each history will typically have O(10) accepted and O(100) rejected emissions, this
is not practical, in particular because usually the reweighting will not only depend on
the scales t, but also on additional kinematic variables of exclusive emissions, along with
the emission channel (g → gg, g → qq̄, etc.), and possibly the Björken x for initial-state
emissions to be able to evaluate PDF ratios that occur [48].

This is a different situation from the one we face when reweighting e.g. NLO and even
NNLO calculations, where a much smaller number of values per event is required to
facilitate an exact a-posteriori reweighting [49–51]. But even for fixed-order calculations
there are applications for which an event-wise reweighting is not fast enough, as the
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number of events is large and possibly tens of thousands of variations are required.
This is the case for instance for PDF fits, where the observables need to be constantly
recomputed along the minimisation process.

This is overcome in the case of fixed-order calculations by averaging over classes of events
that fall into the same observable bin and reweight in the same way. By the projection
onto the observable the individual event kinematics information can be discarded. The
required information can be encoded using an interpolation grid in a reduced number of
kinematic variables (typically the Björken x1,2 and the factorisation scale µ2

F , such that
PDF variations can be done) [11–16].

Can we discard the individual parton-shower history information in a similar way? For
example, we may want to reweight the strong coupling αS, given that K(t) ∝ αS(t).
Unfortunately, in the Sudakov Veto Algorithm, we can not just factorise the ratios Kk/K
that occur in Eqs. (2) and even then the number of thus factorised ratios would strongly
vary. Compare this to fixed-order events, where the dependence on αpS factorises trivially,
and there is only a very limited set of powers p.

Can the combination of interpolation grids and the classification of parton-shower histories
by their similarity with respect to the reweighting provide a way to reduce the amount
of data needed? If we bin the tacc

i in bins βacc and the trej
i in bins βrej, we can write an

approximation for Eq. (2) (note that we drop the variation label k for now to improve
readability):

wapprox =
∏
{βacc}

q
wβaccacc (tβacc) ·

∏
{βrej}

q
wβrej
rej (tβrej) ,

where tβ is the value of t corresponding to the bin β, and wβ is the number of emissions
that fell into bin β. We could then jump to the conclusion that if we can find a way
to classify similar parton-shower histories into classes c that behave similarly under
variations, we could write

〈wapprox〉c =
∏
{βacc}

q
〈wβacc 〉cacc (tβacc) ·

∏
{βrej}

q
〈wβrej 〉c
rej (tβrej) . (3)

Suppose we calculate the 〈wβ〉c for every t-histogram bin β during a pre-production run,
and the relative proportions of events rc that feature a parton-shower history that is
classified into c. We could then calculate the effect of the parton shower variation by
replacing the nominal cross section σ with

σ → σ ·
∑
c

rc〈wapprox〉c .

However, this ansatz has a critical flaw, which is the nature of the average on the left-hand
side of Eq. (3). The arithmetic means on the right-hand side are in the exponent of the
reweighting functions, and thus the left-hand side mean is a geometric mean. It follows
that

〈wapprox〉c = 〈wapprox〉geometric
c ≤ 〈wapprox〉arithmetic

c .
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Unfortunately we need to know the right-hand side of this last equation, but for that we
need to retain the individual shower history information. And hence this classification
ansatz to discard that information fails.

Lacking a straightforward analytical way to solve the problem, we will therefore in the
following present a proof-of-principle for using a simple neural network to find the bin-wise
reweighting factors needed to vary the parton shower. The problem can be formulated
in the following way. Let us assume that we want to reweight the cross section of an
observable bin b as we vary a set of parameters that we will collectively denote θ. For
each event generated in the Monte Carlo sample, which we label with an index i, there is
a reweighting factor wb,i. As shown in Eq. (2), the event-wise reweighting factor wb,i is a
functional of qacc(t; δθ), where we have written explicitly the dependence of the latter on
the variation of the parameters, δθ. Different variations of the parameters yield different
functions qacc(t; δθ), and hence different reweightings.

The key assumption underlying this study is that we can ignore the details of the shower
history, and therefore the analytical expression for wb,i. Instead we model the dependence
of the average reweighting factor for a given bin, 〈wb〉, on the function qacc(t) using a
neural network. After training on a discrete set of variations {δθ(k)} labelled by k ∈ T ,
we expect the NN to be capable of interpolating to the correct value of the reweighting
factor for a generic variation. All dependencies should be sufficiently smooth that the
NN can produce a satisfactory interpolation. The output of the NN can be validated
against correct reweighting factors before using it in an application.

3 Neural-network approach to a-posteriori parton-shower
reweighting

3.1 Simplified shower model

To formulate and validate our approach it is sufficient to use a simplified parton-shower
model. First, let us further specify the kernel we use in the Sudakov form factor:

K(t) =
∫ 1−ε(t)

ε(t)
dz K(t, z) =

∫ 1−ε(t)

ε(t)
dz 1

t

αS(µ2(t))
2π

∑
a→bc

Pab(z) . (4)

The variable z gives the energy ratio between the mother parton a and its daughter b.
We define t to be such that z(z−1)t is proportional to the transverse momentum squared
of the emitted particle, p2

T,b (with respect to a). Beyond that, the precise definition of
t and the emission kinematics are not important for our purposes. However, together
with the requirement t > tIR this allows us to specify what a resolvable emission is, by
setting the integration limits for z using ε(t) = tIR/t. Thus, the kinematic limits on z
ensure that the transverse momenta of all generated emissions is larger than tIR. This
also takes care of the singularities that appear in some of the dglap splitting functions
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Pab = Pa→bc at z = 0 and z = 1. In our simple shower, we only use the following three
LO dglap splitting functions as they are listed in [52]:

Pq→qg(z) = CF
1 + z2

1− z ,

Pg→gg(z) = CA
z4 + 1 + (1− z)4

z(1− z) ,

Pq→qg(z) = TR nf
(
z2 + (1− z)2

)
,

where CF = 4/3, CA = 3, TR = 1/2 and nf = 5.

It remains to define the scale µ2(t) at which the strong coupling αS is evaluated. In the
most simple shower model, one could just set it to µ2(t) = t. However, we do not want to
move the needle too far in the direction of a simplified shower model. Instead, we keep
some of the complications of currently used shower algorithms. Therefore, we set the
scale to be µ2(t) = z(z − 1)t. This choice implicitly includes higher-order corrections in
Eq. (4) [53].

We intend to sample over the now explicit z dependence and over the splitting channel
a→ bc (and over the different a in the parton cascade). This introduces adjustments to
the Sudakov Veto Algorithm as it is described in 2.1, cf. [41]. For the reweighting, we
use the integrands where z is not integrated out:

wk =
∏
i

qkacc(tacc
i , zacc

i ) ·
∏
j

qkrej(t
rej
j , z

rej
j ) ,

qkacc(t, z) = Kk(t, z)
K(t, z) ,

qkrej(t, z) = 1 + (1− qkacc(t, z))
Pacc(t, z)

1− Pacc(t, z)
,

and therefore we need to know (t, z) for every accepted or rejected splitting for the
reweighting. In the following we will only consider reweighting as we vary the values of
the strong coupling αS. Since everything else in the ratio Kk/K cancels, the reweighting
functions simplify:

wk =
∏
i

qkacc(µ2
acc,i) ·

∏
j

qkrej(µ2
rej,j , Pacc,j) , (5a)

qkacc(µ2) = αS,k(µ2)
αS(µ2) , (5b)

qkrej(µ2, Pacc) = 1 + (1− qkacc(µ2)) Pacc
1− Pacc

, (5c)

and we only need to know µ2 for accepted emissions, and (µ2, Pacc) for rejected emis-
sions.
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To conclude the definition of our shower model, it remains to define the initial and cut-off
conditions for the shower evolution. The starting scale t0 would be usually determined by
the high-energy event. However, we do not simulate that and instead randomly sample
t0 for each shower history from a Gaussian distribution with a mean value and standard
deviation of 104 GeV2. The starting configuration is that of a single (final-state) quark
line. The infra-red cut-off is chosen to be tIR = 1 GeV2.

3.2 Input and output data

As discussed at the end of Sect. 2.2 our goal is to replace the reweighting of single parton-
shower histories as described in Eqs. (5) with an a-posteriori reweighting of individual
histogram bins after filling them with showered events. So, for a given variation of
the parameters, δθ(k), we need to predict the average over reweighting factors wk,i for
histories of events i that fell into a given observable bin b. Let us designate this quantity
as 〈wk〉b. Then, in the limit of infinite statistics, we know that if with the nominal
calculation we find that Nb events fell into the bin b, then for the variation k we will find
〈wk〉bNb events.

So if we use a neural net for this purpose, it is clear that 〈wk〉b should be the value of
our single output neuron, and we can train the neural net against this value (which can
be obtained from an on-the-fly reweighting for the variation k, or from a separate re-run
for this variation).

The input data is more ambiguous. It has to be a trade-off between precisely describing
the variation and using as few data points as possible. Our input is a real vector of size
Nin obtained by sampling the acceptance function qkacc(µ2) defined in Eq. (5b) at a set of
discrete points µ2

` , where ` = 1, . . . , Nin. We use a logarithmic distribution of µ2 points
for the sampling (i.e. with more points for lower scales), because the αS ratios we will be
using change more quickly for lower scales. Note that qkacc also appears in the reweighting
function for rejected events qkrej, cf. Eq. (5c), and therefore at least partly specifies how
to vary rejected emissions.

For illustration purposes, we show visualisations of these input/output choices in Fig. 1.
The panel on the left shows the function qacc, the red lines correspond to the values of
µ2 at which we sample the function for the input vector. The shift in the observable in
each bin is reported in the panel on the right, where the solid line shows the value of the
observable for the nominal value of the parameters θ, and the dotted line shows the shift
that is observed for a variation of such parameters. The NN output needs to reproduce
the shift in the ratio of the nominal value and the variation value.

3.3 Neural-network architecture and training

For our neural-network implementation and training we we use the PyTorch python
library [54].
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Figure 1: Visualisations of the neural network input/output data for a given observable
bin (here the second bin in the histogram for an observable O, depicted in the
right-hand panel). Given a number of values of qacc for a variation (left-hand
panel) as input, the NN is trained such that it outputs the corresponding value
〈w〉 for the given bin.

The input data is fed into a layer that consists of Nin = 60 neurons that are linear
modules, i.e. they compute their output using a linear function y = mx + c from the
input x, with the weight m and the bias c being trainable variables. As we have discussed
in the previous section, the input x is given by one of Nin function values of the qkacc
function.

The input layer is fully connected to the next layer, which consists of 15 neurons that
are rectifier linear units (ReLU). Given a value x from the input layer, they pass on
the value y = max(0, x) to the output layer. It is this hidden layer that introduces a
non-linearity to the network, which is surely required for the problem at hand, given
Eqs. (5).

The ReLU layer is then fully connected to the output layer which is just a single neuron.
It is a linear module like the ones in the input layer. Its output y gives the neural-network
prediction for 〈wk〉b, i.e. y = 〈wk〉NN

b .

The training is done by minimizing the squared Euclidean distance between 〈wk〉NN
b and

the training data 〈wk〉b for a range of different variations k ∈ T , where T specifies the
training data set. The loss function is defined as

L =
∑
k∈T

[
〈w(k)〉NN

b − 〈w(k)〉b
]2
. (6)

The optimisation step is performed using the Adam algorithm [55] as implemented in
PyTorch, with a learning rate of 10−4. The learning passes are performed until either a
preset optimisation target (Euclidean distance ≤ 10−5) or a maximum number of passes
(106) is reached. On a 2.8 GHz Core i7 processor this caps the CPU time for a training
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at approximately 30 s, although depending on the training data and on the random
initialization, it can also take only a few seconds. If necessary, the training time could be
further reduced by using the GPU acceleration supported by PyTorch.

Every 5000 optimisation steps it is checked if the loss function has reduced by at least
0.1 %. If this is not the case for five subsequent checks, the training is cancelled, assuming
that a stable minimum has been found. If this minimum is however associated with a
loss function value that is greater than 1 %, the whole training pass is discarded and
repeated with a newly randomised set of NN weights. Enforcing this threshold ensures
that we do not accept trainings that have become stuck in a non-global minimum.

4 Validation

4.1 Validation procedure and training data

In this section we compare neural-network predictions 〈wk〉NN
b with the true reweighting

factor 〈wk〉b for a range of different variations k ∈ T and observable bins b (which are
defined below). In doing that we will always exclude the data point that we want to
predict from the trainings.

First, we generate 106 parton-shower histories with the simplified model described in
Sec. 3.1 and bin them one-by-one into a bin b for each observable. For each observable
bin b and variation k, we calculate 〈wk〉b. These values will be the output data sample
for the training/comparison of our neural networks.

As the input data sample, we calculate Nin = 60 function values for qkacc(µ2) for each
variation k ∈ T , distributed logarithmically between the lowest scale min(µ2) = tIR/4
reachable by the shower and µt0 + 2σt0 , i.e. including large µ2 values up two standard
deviations σt0 from the mean of the starting scale distribution µt0 .

The general training procedure described in Sec. 3.3 is amended for the validation as
follows. For predicting 〈wk′〉b′ for a given variation k′ and histogram bin b′, we use all
the input and output data for b′ and all k ∈ T except for k = k′. Note that this means
that we repeat the training for each k ∈ T (because we do not want to include the data
for k′ in the validation). In an application on the other hand, only one neural network
for each observable bin b would need to be trained to interpolate between the k.

Lastly, we repeat this Ntrainings = 10 times, each with randomly initialised neural net
weights. Our neural net prediction for (k′, b′) is then given by the mean of the outputs of
these 10 neural nets given the values for qk′

acc as input. As an uncertainty, we give the
standard deviation for these 10 values.

Now let us define the training data set T . The variations used in the training should be
diverse enough to allow the neural net to predict other variations accurately. We include
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two classes of variations of αS:

αS(µ2)→ αS(s µ2) , s = 0.25 . . . 4.00 , (7)
αS(µ2)→ αS(µ2 |αS(m2

Z) = a) , a = 0.108 . . . 0.124 , (8)

where αS(µ2 |αS(m2
Z) = a) is defined to be the strong coupling value at µ2 given that

the value at the Z-boson mass, αS(m2
Z), is set to a. For convenience we retrieve all αS

values we use from nnpdf 3.1 sets [1] interfaced using lhapdf [56]. This also dictates
our choice of a = αS(mZ) variations, since we use the values available in that nnpdf
release. The individual values of s and a used in the validation and the corresponding
qacc functions are shown in Fig. 2.
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Figure 2: Display of the αS variations used for validating the neural network approach.
The upper row shows the scale variations, whereas the lower row shows variations
of the input value αS(m2

Z). The qacc function values as shown on the left are
the input for the neural nets, as explained in Sec. 3.2.

4.2 Results

We discuss the results for the validation strategy laid down in this section so far for
histogram bins of two observables: the scale tlead of the first emission in a parton-
shower history, and the number of accepted emissions Nem in a history. Note that these
observables are not physical (as we use no jet algorithm), but merely serve here to test
our approach.
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Leading emission scale

The first observable is the scale of the hardest emissions tlead, binned into a histogram of
8 logarithmically distributed bins between 1 and 3 · 104 GeV2. The tlead distribution for
the nominal αS values and a subset of variations is shown in Fig. 3. The ratios between
the NN result for the reweighting factor 〈wk〉NN

b and the true value 〈wk〉b are shown in
Fig. 4, for all variations k and observable bins b.

For the interpretation of this figure, note that we actually display ratios of ratios, i.e. the
deviation between reweighting factors, that are itself just ratios of the nominal and the
varied cross section. To calculate how far we are off relative to the absolute value of the
cross section, one would need to multiply the true reweighting factor with the ratio in
Fig. 4.

It is clear from the plots that the NN results are within 1 % of the true reweighting factor,
and the uncertainty of the prediction is ±3 % or less. Exceptions only appear for the
s = 0.25 variation at small values of tlead. Note that s = 0.25 is an extremal variation,
and hence in our validation procedure (where the to-be-predicted point is not included in
the training data set) the NN needs to extrapolate when predicting this reweighting factor.
The training data set should therefore go beyond the variations that are to be expected
in an application, such that all NN predictions are guaranteed to be interpolations.

We have also tested how the uncertainties of the prediction behave when we initialise the
NN weights with the same random numbers for each repetition of the training procedure.
In that case, the spread becomes negligible compared to the results in Fig. 4. This means
that the spread is not due to the numerical precision (floating point precision), but due
to the random initialisation. Hence, in order to get even more precise predictions, the
NN architecture and/or training procedure would have to be modified.

Number of emissions

We also test our approach with the number of emissions, in 8 bins between 0 and
7 emissions. As for the tlead, we show the Nem histogram with all variations in Fig. 5,
and the ratios for the reweighting factors given by the neural network and the training
data in Fig. 6.

As for the tlead case we find that the neural network predictions are within 1 % of the
true reweighting factor, with an uncertainty that only for some cases exceeds 3 %. The
exceptions occur in the region for variations that enhance emission probabilities (small s
and/or large a), in particular for bins with smaller Nem values.
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Figure 3: The effect of parton-shower αS variations on the distribution of the leading
emission scale tlead. The lower two panels show the ratios broken down into scale
variations and αS(m2

Z) variations, respectively. Some intermediate variations
that are used for the validation are left out here for clarity. The black line
(“nominal”) gives the distribution for the nominal αS choice, i.e. for s = 1 and
a = 0.118.
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Further tests

In Fig. 7a (7b) we present the absolute reweighting factors for a low- and a high-tlead

(Nem) bin. Here we also include simultaneous variations (i.e. both s 6= 1.0 and a 6= 0.118),
the training data set is defined by all pairs (a, s) ∈ A ⊗ S with the αS(m2

Z) values
A = {0.108, 0.110, 0.112, 0.116, 0.117, 0.118, 0.119, 0.120, 0.122, 0.124} and the scale factors
S = {0.25, 0.5, 1.0, 1.5, 2.0, 4.0}. The ratio of the NN result over the true reweighting
factor is shown as a projection below the absolute reweighting factors. To calculate this,
we use the same validation method as before, i.e. the predicted reweighting factor is left
out in the training of the NN that is used for this point. We find that the deviations are
within 2 % for simultaneous variations, except for the variation a = 0.124, s = 0.25, for
which emission probabilities are maximally enhanced and qacc is most non-linear. This
findings are also true for the bins that are not shown in the figure.

Finally, Fig. 8 shows the behaviour of the neural-network prediction when reducing the
number of neurons. For this study, we return to our original training data set T that
does not include simultaneous variations. We compare our previous choice of Nin = 60
with using Nin = 40 and Nin = 5. The hidden layer always has Nin/4 neurons (which
is rounded down to 1 for the Nin = 5 case). Again, we only show two representative
bins for both observables for the sake of brevity. Although Nin = 40 only shows a minor
degradation with respect to Nin = 60 it features a substantially increased uncertainty
for the low-Nem bin and low values of the scale factor s. For Nin = 5 we find significant
deviations from unity, although even in this case only the low-Nem bin features a deviation
that is larger than 5 % (other than the extremal variations). These findings suggest
that Nin = 60 can probably be reduced while preserving enough precision and accuracy.
However, we intend to use the validated architecture in an example more similar to
potential applications in the following section. For that, we use a full parton-shower
implementation, for which we foresee a stronger variation between the qacc(µ2) values.
Hence we keep Nin = 60 as our baseline architecture.

5 A real-world example: varying Sherpa shower predictions for
Thrust

We now study if the toy shower results from the previous sections can be transferred to
a setup with a complete parton shower implementation and a real observable, namely
the event shape observable Thrust for the process e+e− → 2 or more jets, simulated at a
centre-of-mass energy of 91.2 GeV.

We generate Monte-Carlo events for this process using the Sherpa event generator [10]
and its Catani-Seymour Shower implementation (css) [57]. Non-perturbative effects (such
as fragmentation and multiple interactions) and electroweak corrections are disabled.
The e+e− → qq̄ matrix element is evaluated at leading-order in the couplings. The
perturbative order of the running strong coupling is set to include up to two loops. The
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Table 1: List of variations used for training in the example application.

scale s 0.50 0.60 0.66 0.75 0.85
1.15 1.33 1.50 1.70 2.00

a = αS(m2
Z) 0.108 0.110 0.112 0.114 0.116

0.117 0.119 0.120 0.122 0.124

shower starting scale is set to the Z mass, i.e. µQ = m2
Z = (91.28 GeV)2. The events are

analysed using the Rivet analysis framework [58].

The set of variations used for the training is listed in Tab. 1. Instead of leaving out
single training values as we did for the validation, we use the full training data set T
and compare the predictions later with several variations that are not part of T . The
Nin = 60 function values for qacc used as the input data are written out from within
the css coupling implementation. The output data is given by generating the Thrust
distribution for each variation and then calculating the ratio to the central value (s = 1.0,
a = 0.118) for each bin. Some of the bins for lower Thrust values have a sizeable
Monte-Carlo error. To take this into account, we train 20 neural network replicas per bin,
and for each training we generate a new 〈wk〉b replica over k. For each replica we vary
the 〈wk〉b values according to their central value and uncertainty, assuming a Gaussian
distribution.

In Fig. 9, we show the LO+parton-shower prediction for Thrust and a selection of
variations for both the scale factor s and for a = αS(m2

Z), and compare it with data by
the aleph collaboration [59]. All reweighting factors for a representative selection of bins
are shown in Fig. 10, along with the prediction for the entire variation ranges by the NN.
This prediction reproduces the reweighting factors that were used to train the networks
(black) and also the factors that are shown as control points (red). The uncertainties of
the prediction follow the Monte-Carlo errors of the training reweighting factors. We also
train a second set of NN, where we omit for each training pass a random selection of
7 variations in the training (but keeping the most extremal variations). The resulting
band (green) also reproduces the data.

Note that each NN corresponds to one row in Fig. 10 (i.e. to one observable bin), and
therefore predicts the different functional forms for both the a and the s variations. The
facts that these functions are non-linear and that their forms depend on the variation
type and observable bin suggest that an ordinary fit with a fixed parametrisation is not
suitable for the task.

6 Conclusions

Parton-shower calculations are currently not included in PDF fits, because of the CPU
time needed to re-evaluate the parton shower event-by-event for new input parameters,
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Figure 9: The effect of the sherpa Catani-Seymour shower variations on the distribution
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and in particular as the PDFs are changing in the fitting process.

In this paper we suggested to use neural networks to encode the dependences of the cross
section in a given observable bin on the parton-shower input parameters. We showed
that the ansatz is working when applied to variations of the strong coupling (and its
input scale) used in the shower splittings, both for a simplified shower model and for
the full shower implementation in sherpa. The observables we tested are the leading
emission scale, the number of emissions and the Thrust event shape.

This successful proof of principle makes us confident that it is worth exploring the method
further, to study more observables and variation types but in particular to generalise
it to take into account the PDF dependence of initial-state shower splittings. This will
surely require a more advanced neural-net architecture or at least considerably more
neurons and training data points, because the dependence of the splitting kernels on the
PDFs is more complicated, and because varying PDF sets can not be done in just one
dimension. It is nonetheless worthwhile trying to implement a fast reweighting procedure
for these processes, in order to extend the range of data that can be used in PDF fits.
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