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Abstract 
 
After induction of ischemia in mice, 14q32 microRNAs are regulated in three distinct 

temporal patterns. These expression patterns, as well as basal expression levels, are 

independent of the miR genes’ order in the 14q32 locus. This implies that posttranscriptional 

processing is a major determinant of 14q32 microRNA expression. Therefore, we 

hypothesized that RNA binding proteins (RBPs) regulate posttranscriptional processing of 

14q32 and we aimed to identify these RBPs. 

In order to identify proteins responsible for this posttranscriptional regulation we used RNA 

pull-down SILAC mass spectrometry (RP-SMS) on selected precursor microRNAs.  

We observed differential binding of Cold Inducible RNA Binding Protein (CIRBP) and 

Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta 

(HADHB) to the precursors of late upregulated miR-329-3p and unaffected miR-495-3p. 

Immunohistochemical staining confirmed expression of both CIRBP and HADHB in the 

adductor muscle of mice. Expression of both CIRBP and HADHB was upregulated after hind 

limb ischemia in mice. Using RBP immunoprecipitation experiments, we showed specific 

binding of CIRBP to pre-miR-329, but not to pri-miR-329. Finally, using CRISPR/Cas9, we 

generated HADHB-/- 3T3 cells, which display reduced expression of miR-329 and miR-495, 

but not their precursors. These data suggest a novel role for CIRBP and HADHB in 

posttranscriptional regulation of 14q32 microRNAs.   
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Introduction 

MicroRNAs (miRs) are short, non-coding RNA molecules (~22 nucleotides) that decrease 

expression of their target genes via translational repression1. MiR genes are transcribed by 

RNA polymerase II as primary miR (pri-miR) transcripts. Subsequently, the microprocessor 

complex, containing the RNase III Drosha and co-factor DGCR8, processes these pri-miRs 

into precursor miRs (pre-miRs) about 70 nucleotides long. Pre-miRs are exported to the 

cytoplasm where the enzyme Dicer cleaves the pre-miR into a miR duplex. Generally, one 

strand of the miR duplex (guide strand) is preferred for association with an Argonaute (AGO) 

protein and loading into the RNA induced silencing complex (RISC). However, accumulating 

evidence suggests that the other strand (passenger strand) can also be loaded into the RISC2, 3. 

MiRs guide the RISC to specific mRNA targets, in order to control mRNA translation1. A 

single miR is able to target numerous genes and by doing so, that miR can regulate complex, 

physiological processes. Over the past decade, miRs have been shown to play an important 

role in human disease, including cardiovascular disease4-8. Although miRs regulate 

physiological and pathological processes via modulation of target gene expression, miR 

expression itself is also subject to regulation. 

MiR expression can be regulated at transcriptional as well as posttranscriptional level. 

Processing of miR precursors is controlled during the conversion of pri-miR to pre-miR 

through modulation of Drosha/DGCR8 activity9-16. The conversion of pre-miR to mature miR 

is regulated at the level of Dicer cleavage. RNA binding proteins (RBPs) have been found to 

bind sequences in the terminal loop and stem of pri-miRs, thereby enhancing or inhibiting pri- 

to pre-miR cleavage9, 11, 16-18. For example, processing of pri-miRs with conserved terminal 

loop regions, such as pri-miR-18a or pri-let-7a, have been shown to be stimulated and 

inhibited by hnRNP A1 protein, respectively11, 12, 19. In addition, p53 and SMADs have been 

reported to interact indirectly with Drosha and modulate pri- to pre-miR cleavage9, 13. The 
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RNA binding proteins LIN28a and LIN28b were reported to block accumulation of let-7 

levels by repression of both Drosha18, 20, 21 and Dicer20, 22-25.  

Many miRs are encoded within clusters and can be transcribed as long polycistronic 

transcripts. With 54 miR precursors, the 14q32 cluster is the largest polycistronic miR gene 

cluster in humans to our knowledge. In mice, this cluster is located on chromosome 12F1 and 

contains 61 miR genes. We have previously described the differential regulation of 14q32 

miRs in a mouse model for ischemia in the hind limb26. Furthermore, we showed that 14q32 

miR expression can be regulated by the transcription factor MEF2A, but not via altered 

transcription but via direct binding of MEF2A to precursor miRs27. The miRs from the 14q32 

cluster follow three different expression patterns after induction of ischemia. Some miRs are 

upregulated early (early upregulated), some late (late upregulated) and the levels some miRs 

remain unchanged (unaffected). These patterns are independent of the chromosomal location 

of the 14q32 miR genes. Furthermore, baseline expression levels of these 14q32 miRs vary 

greatly. These findings indicate that individual 14q32 miR expression is regulated 

predominantly at posttranscriptional level26.  

We hypothesized that RNA binding proteins (RBPs) regulate posttranscriptional processing of 

14q32 miRs and in this study we aimed to identify these RBPs. We could show that 14q32 

miRs are indeed regulated at posttranscriptional level. We identified two RBPs (Cold 

Inducible RNA Binding Protein (CIRBP) and Hydroxyacyl-CoA Dehydrogenase 

Trifunctional Multienzyme Complex Subunit Beta (HADHB) that bind and aid in the 

processing of specific 14q32 miR precursors. This helps to explain the differential expression 

of 14q32 miRs under ischemia and expands our knowledge of regulation of miR biogenesis 

under pathological conditions. As 14q32 microRNAs play a crucial role in post-ischemic 

neovascularization, understanding how the 14q32 miRs are controlled will be relevant to 

future molecular therapies in cardiovascular disease.  
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Results 

In vivo miR regulation 

MiR microarray was performed in order to determine differential expression of miRs after 

induction of ischemia in vivo. MiRs from the 14q32 cluster showed three different temporal 

expression patterns after single ligation of the femoral artery. One third of the 14q32 miRs 

were upregulated within 24 hours after ischemia induction (early upregulated, Figure 1A, 

average expression Figure 1B). Another third of 14q32 miRs were upregulated 72 hours after 

induction of ischemia (late upregulated, Figure 1C, average expression Figure 1D), whereas 

the other 14q32 miRs were not differentially expressed after ischemia (unaffected, Figure 1E, 

average expression Figure 1F). When looking at the distribution of early and late upregulated 

and unaffected miRs on the 14q32 locus, there was no association between the expression 

profiles of miRs and their corresponding gene’s chromosomal location (Figure 1G). In 

addition, baseline expression levels of 14q32 miRs were variable and also independent of 

their corresponding gene’s chromosomal location. Because of their proven efficacy in post-

ischemic neovascularization, we focused on early upregulated miR-494-3p, late upregulated 

miR-329-3p and unaffected miR-495-3p for further experiments26. 

 

Pri-miR, pre-miR and mature miR levels of 14q32 miRs 

MiRs are transcribed as primary transcripts (pri-miRs), which are cleaved into precursor miRs 

(pre-miRs) inside the nucleus by DROSHA/DCGR8. The pre-miRs are then transported into 

the cytoplasm and cleaved further into mature miRs by DICER, potentially facilitated by 

other RBPs (Figure 2A). Using specific primers for each of the processing steps of three 

14q32 miRs; miR-329-3p, miR-494 and miR-495-3p, we determined the expression levels of 

the pri-miR, pre-miR and mature miRs in the adductor muscle tissue after induction of 
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ischemia in mice. Expression of pri-miR-329 decreased slightly after induction of ischemia 

but increased in expression by day 7 after induction of ischemia. Pre-miR-329 followed 

expression of pri-miR-329 at 24 hours after ischemia but continued to decrease until 72 hours 

after ischemia induction. Expression of mature miR-329-3p showed an opposite trend to that 

of pre-miR-329 (Figure 2B). For early upregulated miR-494, expression of the pri-miR 

transcript was also decreased at 24 and 72 hours after ischemia induction. The abundance of 

pre-miR-494 however was only slightly reduced 24 hours after ischemia, whereas mature 

miR-494-3p levels were upregulated (Figure 2C). Expression of pri-miR-495 and pre-miR-

495 followed the same pattern after ischemia, showing decreased expression within 24 hours, 

which continued at later time points (Figure 2D). Despite this, mature miR-495-3p levels 

remained unchanged after ischemia induction. In general, whereas pre-miR expression levels 

declined, we observed increased (miR-494, miR-329) or sustained (miR-495) expression of 

mature miR levels. This suggests that regulation of 14q32 miR-329, miR-494 and miR-495 

processing takes place at the conversion of pre-miR to mature miR. 

 

Pre-miR pull down followed by SILAC Mass Spectrometry reveals putative 14q32 miR 

biogenesis factors 

We decided to further explore this regulation by comparing the pre-miR interacting protein 

partners of the upregulated miR-329 and the unaffected miR-495, upon serum-starvation in 

3T3 cells, mimicking the nutrient depravation during ischemia. We did not pursue miR-494 

due to lack of response in our in vitro starvation model. To identify the RBPs responsible for 

differential expression of these two miRs via posttranscriptional regulation, we performed 

RNA-pulldown Stable Isotope Labelling of Amino Acids (SILAC) mass spectrometry (RP-

SMS) (Figure 3A-B). We identified a number of proteins, which were specifically bound to 
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pre-miR-329 and pre-miR-495, namely RBM28 and TBL3 (pre-miR-329 specific), RBM15 

(pre-miR-495 specific) as well as proteins CKAP4, P4HB, CIRBP and HADHB, which were 

bound to both pre-miR-329 and pre-miR-495, showing an increase in binding after serum 

starvation. Using Western Blot analysis, we could only validate binding of HADHB and 

CIRBP to miR-329 and miR-495 precursors (Figure 3C-F). This could either be due the 

quality of the available antibodies against other identified proteins or due to low expression 

levels. While both HADHB and CIRBP showed a general increase in binding upon serum 

starvation to both pre-miRs, this was particularly evident in the case of HADHB binding to 

pre-miR-329, which displayed little to no binding in non-starvation conditions but showed an 

increase in binding upon starvation. A more modest increase in HADHB binding to pre-miR-

495 was also observed, where in contrast to pre-miR-329, this protein also binds in normal 

serum conditions. 

 

CIRBP and HADHB expression in vivo  

We next determined expression of RNA binding proteins CIRBP and HADHB in vivo in the 

adductor muscle at different timepoints after induction of ischemia. Using 

immunohistochemistry, expression of both CIRBP and HADHB was confirmed in the 

adductor muscle of mice on day 1 after ischemia. Expression of CIRBP and HADHB was 

dispersed throughout the cells (Figure 4A and 4B, respectively). At mRNA level, expression 

of CIRBP was increased within 24 hours after induction of ischemia, whereas HADHB 

mRNA was increased at 3 days after induction of ischemia (Figures 4C and 4D). Importantly, 

this timepoint (day 3) corresponds to the maximum changes observed for levels of mature 

miR-329, as well as pre-miR-329 and pre-miR-495 after induction of ischemia. Next, we 

wanted to confirm a change in protein expression using western blot. Due to low signal, 
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CIRBP protein levels could not be detected. Importantly however, we were able to confirm an 

increase of HADHB in the adductor muscle at day 3 after induction of ischemia compared to 

day 0 and day 1 (Figure 4E), in line with the results obtained for HADHB mRNA. 

 

HADHB and CIRBP binding to miR-329 pri-miR, pre-miR and mature miR transcripts 

To determine interaction between HADHB and CIRBP and 14q32 miR-329 and miR-495 

precursors, RNA immunoprecipitation (RIP) experiments were performed using antibodies 

against these RBPs or a negative control IgG in 3T3 cell cultures. Whereas HADHB was 

shown to bind to both pri-miR-329 and pre-miR-329, CIRBP showed specific binding to pre-

miR-329, not to pri-miR-329 (Figure 5). CIRBP and HADHB both bind the mature miR-329-

3p. Expression of pri-miR-495 and pre-miR-495 was too low to either confirm or exclude 

binding of CIRBP or HADHB. RIP experiments using an unrelated RBP that has been shown 

to regulate processing of polycistronic miRs, namely SND128, showed no specific binding to 

either pri-miRs or pre-miRs of miR-329 and miR-495 (Supplemental Figure 1). 

 

Changes in miR levels in CRISPR/Cas9 generated HADHB KO cell lines 

Next, we sought to understand the effects that depletion of CIRBP and HADHB would have 

on the levels of miR-329 and miR-495. To achieve this, we used CRISPR/Cas9 to generate 

3T3 KO cell lines. Our attempts to generate a CIRBP KO line were unsuccessful. This 

indicates that the protein could be essential for 3T3 cell vitality. Nevertheless, we identified 

two colonies (AQ and Z) grown from individual cells that had been targeted for disruption of 

HADHB. These colonies showed complete depletion of HADHB as measured by western blot 

(Figure 6A). We confirmed this deletion by sequencing the region surrounding the targeted 
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sequence (Figure 6B). All the sequences identified either correspond to a frame-shift deletion, 

or a deletion spanning an exon-intron junction. 

Following this, we analysed the levels of mature miR-329 and miR-495 by qRT-PCR, in 

colony AQ. We observed a decrease of over 80% in the levels of both mature miR-329-3p and 

miR-495-3p (Figure 6D). Importantly, the expression of miR-423, a widely expressed and 

stable miR, not from the 14q32 cluster, did not change (Figure 6D). This suggests that the 

downregulation of mature miR-329-3p and miR-495-3p in HADHB knockout cells is specific 

and not due to a global reduction in mature miR levels. Finally, we determined the levels of 

the pre-miR-329 and pre-miR-495 and showed lack of statistically significant change (Figure 

6E). Similar results were obtained for colony Z (data not shown). This corroborates our in 

vivo results as well as showing that HADHB is involved in post-transcriptional regulation of 

miRs from the 14q32 cluster at the level of pre-miR to mature miR cleavage. 
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Discussion 

In this study, we investigated posttranscriptional regulation of 14q32 miRs during ischemia. 

Using specific primers for each of the miR processing steps, we found that increased 

expression of 14q32 miRs after hind limb ischemia is not determined by increased 

transcription, but that it is the result of increased processing of pre-miR to miR. We have used 

serum starvation of 3T3 cells to mimic certain aspects of hind limb ischemia. This allowed us 

to investigate which RBPs can bind to pre-miR transcripts of 14q32 miRs. Using RNA pull-

down and quantitative mass spectrometry (RP-SMS) we have found that CIRBP and HADHB 

bind to miR-329 and miR-495 precursors. We confirmed expression and upregulation of these 

RBPs in murine muscle tissues during ischemia, at mRNA level as well as protein level for 

HADHB. Furthermore, we have shown that upon deletion of HADHB from 3T3 cells by 

CRISPR/Cas9, levels of mature miR-329-3p and miR-495-3p, but not pre-miR-329 or pre-

miR-495, are significantly reduced. These data are consistent with our in vivo data, supporting 

the hypothesis that HADHB is involved in the post-transcriptional regulation of these miRs in 

the pre-miR to mature miR processing step. Further in-depth analysis will be necessary to 

uncover the mechanism and physiological significance of HADHB- (and CIRBP-) mediated 

regulation of microRNA biogenesis. 

Posttranscriptional regulation of polycistronic miRs has been described previously. In fact, 

differential expression after induction of hindlimb ischemia, similar to that of the 14q32 miRs, 

has also been shown for miRs of the polycistronic miR-17-92a cluster. The miR-17-92a 

cluster encodes for seven miRs and is transcribed as one single primary transcript29. However, 

individual members of the miR-17-92a cluster were differentially expressed during 

endothelial differentiation of murine embryonic stem cells30. The SND1 protein, which is a 

component of the RISC, was found to bind to pri-miRs, pre-miRs and mature miRs of the 

miR-17-92a cluster. Silencing of SND1 reduced processing of miR-17-92a cluster members, 
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especially under hypoxic conditions28. Here, we could not demonstrate binding of SND1 to 

either pri-miRs or pre-miRs of 14q32 miRs miR-329 and miR-495 using RIP experiments. 

Our data demonstrated that processing of 14q32 miRs miR-329 and miR-495 is independent 

of SND1 binding, but instead relies on CIRBP and HADHB.  

CIRBP is an evolutionary conserved RBP that is transcriptionally upregulated in low 

temperature conditions or other conditions of stress, including ischemia31, 32. CIRBP protein is 

predominantly expressed in the nucleus, but can also be transported to the cytoplasm under 

physiological or stressful conditions33. In our immunohistochemical stainings (Figures 4A and 

4B), CIRBP, and HADHB, were observed in both the nucleus and the cytoplasm of 

intramuscular arteriolar wall cells. MiR processing from pre-miR to mature miR also occurs 

in the cytoplasm. CIRBP is involved in posttranscriptional regulation of mRNAs34. Here 

however, we showed for the first time that CIRBP could be involved in posttranscriptional 

regulation of miRs. Future experiments will have to determine whether CIRBP can also 

regulate other miRs during ischemia. 

HADHB forms the beta subunit of the mitochondrial trifunctional protein, which catalyzes the 

last steps of mitochondrial beta-oxidation of long chain fatty acids. In addition, HADHB was 

found to act as an RBP and bind renin mRNA, leading to its destabilization35. Localization of 

HADHB was found to be predominantly in mitochondria, but also in the cytoplasm and 

nucleoli of Calu-6 cells36. In this study, we observed both cytoplasmic as well as nuclear 

expression of both HADHB and CIRBP in murine adductor muscle tissue after ischemia. In 

addition, we have now shown that HADHB can also bind pri-miRs, pre-miRs and mature 

miRs of the 14q32 miR cluster, indicating its role in posttranscriptional regulation of miR 

expression under ischemia.  
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Regulation of miR processing under stress conditions, such as hypoxia, has been previously 

reported by several studies37-39. In endothelial cells, hypoxia was shown to both increase 

expression of certain miRs (such as miR-21039) as well as to reduce miR processing38. Further 

examination revealed that chronic hypoxia down-regulated expression of Dicer, reducing 

subsequent miR processing38. More recently, the involvement of the Epidermal Growth Factor 

Receptor (EGFR) in miR processing under hypoxic conditions was reported. EGFR was 

shown to increase phosphorylation of AGO2 under hypoxic conditions, which reduced AGO2 

binding to Dicer and subsequent miR processing from pre-miR to mature miR by Dicer26, 40, 

41. Although we did not study regulation of 14q32 miR processing under true hypoxic 

conditions in vitro, we were able to demonstrate increased binding of CIRBP and HADHB to 

pre-miRs under conditions of serum starvation, which is a major contributor of cellular stress 

after artery occlusion in vivo.  

In this study, we identified RBPs that bind and regulate specific 14q32 miR precursors. These 

results provide insights into the complex regulation of the 14q32 miRs. We showed for the 

first time that CIRBP and HADHB, which have been shown to control posttranscriptional 

regulation of mRNAs, could also be involved in posttranscriptional processing of miRs. 

Finally, we demonstrated that depletion of HADHB in 3T3 cells has a negative effect on 

selected 14q32 miR expression levels. Through manipulation of CIRBP and HADHB, which 

control expression of 14q32 miRs, we may be able to influence 14q32 miR expression higher 

up the regulatory cascade, potentially having more profound therapeutic effects on post-

ischemic neovascularization. As ischemic cardiovascular disease is still one of the leading 

causes of death worldwide, novel therapeutic options to induce neovascularization remain 

highly needed. 
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Materials and Methods 

 

Hind limb ischemia model 

All experiments were approved by the committee on animal welfare of the Leiden University 

Medical Center (Leiden, the Netherlands. Approval reference numbers 09163 and 10243). 

This study was conducted in accordance with the Dutch government guidelines and the 

Directive 2010/63/EU of the European Parliament. Unilateral hind limb ischemia was induced 

in healthy adult male C57BL6 mice by single ligation of the left femoral artery, as previously 

described26, 41. Briefly, electrocoagulation of the femoral artery was performed proximal to the 

superficial epigastric artery. C57Bl/6 mice (n=4 per timepoint) were sacrificed at several 

timepoints (day 0 (before ligation of the femoral artery), day 1, 3, 7, 10, 14 and 28) after hind 

limb ischemia induction42, 43. Upon sacrifice, the adductor muscles were harvested and either 

snap-frozen on dry ice or fixed in 4% paraformaldehyde. 

 

Microarray 

For microarray analysis, total RNA was isolated from adductor muscles using the RNeasy 

fibrous tissue minikit (Qiagen). RNA concentration, purity and integrity were analysed by 

nanodrop (Nanodrop® Technologies) and Bioanalyzer (Agilent 2000) measurements. 

Animals  

For miR expression profiling, adductor muscle tissue of day 0, 1, 3 and 7 after induction of 

hind limb ischemia was used. MiR expression profiling was performed as previously 

described, using LNA based arrays (miRCURY LNA™ miR Array ready-to-spot probe set, 

Exiqon)26. Normalization and background correction were performed in the “statistical 

language R” using “vsn” package (Bioconductor). Differential expression was assayed using 

the “limma” package (Bioconductor) by fitting the eBayes linear model and contrasting 
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individual treatments with untreated controls. Log2 fold changes were calculated using the 

toptable function of the limma package4, 44. 

For whole genome expression profiling, adductor muscle tissue of day 0, 1, 3, 7, 14 and 28 

after induction of hind limb ischemia was used. Whole genome expression profiling was 

performed using MouseWG-6 v2.0 Expression Beadchips (Illumina) and expression levels 

were Log2-transformed, as previously described26, 42.  

 

Cell culture  

3T3 cells were cultured at 37ºC in a humidified 5% CO2 environment. Culture medium 

consisted of DMEM GlutaMAX™ (Gibco) supplemented with 10% heat inactivated fetal calf 

serum (PAA) and 1% penicillin/streptomycin (PAA). Culture medium was refreshed every 2-

3 days. Cells were passed using trypsin-EDTA (Sigma) at 90% confluency.  

 

In vitro cellular starvation model 

To mimic the effects of nutrient depravation after in vivo ischemia, 3T3 cells were cultured 

under serum starvation conditions (DMEM glutaMAX™ supplemented with 0.5% heat 

inactivated fetal calf serum and 1% penicillin/streptomycin). Cells were starved for 24 hours 

under serum starved conditions after which they were collected and processed as necessary. 

 

RNA pull-down and SILAC Mass Spectrometry (RP-SMS) 

RNA pull-down and mass spectrometry were performed as described previously, with slight 

modifications. In brief, total protein extracts from normal serum and serum starved 3T3 cells 

grown in ‘light’ [12C]Arg/[12C]Lys and ‘heavy’ [13C]Arg/[13C]Lys isotopes, respectively, 

were incubated with in vitro transcribed RNAs chemically coupled to agarose beads. The 

incubation was followed by a series of washes with buffer G (20 mM Tris pH 7.5, 135 mM 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

NaCl, 1.5 mM MgCl2, 10% (v/v) glycerol, 1 mM EDTA, 1 mM DTT and 0.2 mM PMSF). 

After the final wash, the proteins associated with the RNA on the beads were analyzed by 

SDS–PAGE followed by in-gel digestion and mass spectrometry or western blotting. 

 

Western Blot Analysis 

Total protein samples from 3T3 cells (100 µg per lane), isolated by sonication, were resolved 

by standard NuPAGE SDS–PAGE electrophoresis with MOPS running buffer (Life 

Technologies) and transferred onto a nitrocellulose membrane. Total protein samples from 

murine adductor muscle tissue were isolated using a standard TRIzol protocol (Thermo 

Fisher) at day 0, 1, and 3 after induction of ischemia. The membrane was blocked overnight at 

4°C with 1:10 western blocking reagent (Roche) in TBS buffer with 0.1% Tween-20 (TBST). 

The following day, the membrane was incubated for 1 h at room temperature with primary 

antibody solution in 1:20 western blocking reagent diluted in TBST in the following 

concentrations; rabbit polyclonal CIRBP (Protein Tech 10209-2-AP) 1:1000, rabbit 

polyclonal HADHB (LSBio-LS-C334236) 1:2500. After washing in TBST, the blots were 

incubated with the appropriate secondary antibody conjugated to horseradish peroxidase and 

detected with SuperSignal West Pico detection reagent (Thermo Scientific). The membranes 

were stripped using ReBlot Plus Strong Antibody Stripping Solution (Chemicon) equilibrated 

in water, blocked in 1:10 western blocking solution in TBST and re-probed as described 

above. Western Blots were quantified using ImageJ analysis software (1.48v, NIH) and 

ImageStudio (Licor) and normalized to the input. 

 

RNA immunoprecipitation  

RNA immunoprecipitation (RIP) was performed using the EZMagna RIP kit (Millipore), 

according to manufacturer’s instructions. 3T3 cells were grown to 90% confluency and lysed 
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in complete RIP lysis buffer. Cell lysates were incubated with RIP buffer containing magnetic 

beads conjugated with antibodies against Cold Induced RNA binding protein (CIRBP, Abcam 

ab106230), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 

(trifunctional protein), beta subunit (HADHB, Novus Biologicals NBP1-82609), SND1 

(Abcam ab71186) and rabbit control IgG (Millipore PP64B). Before immunoprecipition, 10% 

of cell lysate was taken and served as input control. Next, samples were treated with 

proteinase K to digest protein and RNA was isolated using a standard TRIzol-chloroform 

extraction protocol.  

 

RT/qPCR 

Adductor muscles from day 0 and day 1, 3 and 7 after surgery were homogenized by 

grounding with a pestle and mortar in liquid nitrogen. Total RNA was isolated using a 

standard TRIzol-chloroform extraction protocol. RNA concentration and purity were 

determined by nanodrop (Nanodrop® Technologies). RNA was reverse transcribed using 

high-capacity RNA to cDNA RT kits (Life Technologies, USA). Relative quantitative mRNA 

PCR was performed on reverse transcribed cDNA using, SYBR® green dye (Qiagen). 

Primers for pri-miRs, pre-miRs, HADHB and CIRBP were designed using Primer3. 

Sequences of primers are listed in Supplementary Table 1. MiR quantification was performed 

using Taqman® miR assays (Applied Biosystems) according to manufacturer’s protocol. 

Relative quantitative PCR was performed on the Viia7 system (Applied Biosystems) and 

amplification efficiencies were checked by standard curves. Data were normalized using a 

stably expressed endogenous control (snRNA-U6).  

 

Levels of mature miRs in 3T3 WT and HADHB KO cells were measured using miRScript RT 

(Qiagen) and SYBR® green (Qiagen). The levels of pre-miRs were also measured by 
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miRScript RT (Qiagen) and SYBR® green (Qiagen) with prior fractionation of total RNA on 

10% denaturing polyacrylamide gel to isolate the fraction containing RNAs from 50nt to 

100nt. MiR and pre-miR levels were normalized to miR-16 and pre-miR-16, as both proved 

highly stable in 3T3 cells. 

 

Immunohistochemical staining 

Formaldehyde fixed adductor muscles were paraffin-embedded and 5 µm thick cross-sections 

of muscles were stained to visualize expression of RNA binding proteins. Cross sections of 

adductor muscles were re-hydrated and endogenous peroxidase activity was blocked. Antigen 

retrieval was performed with Citrate buffer (pH 6.0) at 100ºC for 10 minutes. Muscles were 

stained with rabbit polyclonal anti-HADHB (Novus Biologicals, NBP1-82609, 1:1000) or 

goat polyclonal anti-CIRBP (Abcam, ab106230, 1:400) to visualize HADHB and CIRBP 

respectively, and counterstained using haematoxylin.  

 

Generation of HADHB KO by CRISPR/Cas9  

3T3 cells were transfected with Cas9 containing-plasmid px458, which included guide RNAs 

targeting the third exon of HADHB as well as a GFP cassette to be used as a reporter for 

positive transfection. Single cell FACS sorting was carried out for selection of individual 

transfected cells which were then grown into colonies, from which genomic DNA was 

extracted. The region surrounding the Cas9 target was amplified by PCR and cloned into 

pJET cloning vector (Thermo K1232) and sequenced using pJET sequencing primers. 

Western Blot was then used to confirm protein level depletion for colonies showing deletions 

in this region. 

 

Statistical Analyses 
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Analyses of the microRNA and mRNA microArrays is describe above. 

Western blot and rt/qPCR data are represented as mean values ± SEM. Differences between 

groups were evaluated using one-way ANOVA followed by two-sample t-test (Figures 3 and 

4) or one-sample t-test (Figure 6). P-values > 0.05 were considered statistically significant. 

The number of replicates is given in the figure legends. 
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Figure Legends 

Figure 1. Differential expression patterns of 14q32 microRNAs after induction of 
ischemia. MiR expression was evaluated before induction of ischemia (T0) and day 1 (T1), 
day 3 (T3) and day 7 (T7) after induction of ischemia in whole adductor muscle of 4 mice per 
timepoint. (A) Early upregulated 14q32 miRs were upregulated within 24 hours after 
ischemia. (B) Average intensity of all early upregulated miRs. (C) Late upregulated 14q32 
miRs were not upregulated until 72 hours after ischemia induction. (D) Average intensity of 
all late upregulated miRs. (E) Unaffected 14q32 miRs were not regulated after ischemia. (F) 
Average intensity of all unaffected miRs. (G) Chromosomal location of early upregulated 
(red), late upregulated (green) and unaffected (blue) miRs on the murine 12F1 locus. 

Figure 2. MicroRNA Processing. (A) MiRs are transcribed as primary transcripts (pri-miRs), 
which are cleaved into precursor miRs (pre-miRs) inside the nucleus by DROSHA/DCGR8. 
The pre-miRs are then transported into the cytoplasm and cleaved further into mature miRs by 
DICER, potentially facilitated by unknown regulatory factors.  (B-D) Pri-miR, pre-miR and 
mature miR expression levels of 14q32 miRs, measured in whole adductor muscle of 4 mice 
per timepoint. Percentage of expression (Relative to Day 0) at day 0 (no ischemia), day 1, day 
3 and day 7 after ischemia induction of pri-miR-329, pre-miR-329 and mature miR-329-3p 
(B) pri-miR-494, pre-miR-494 and mature miR-494-3p (C) and pri-miR-495, pre-miR-495 
and mature miR-495 (D). 

Figure 3. Identification of proteins binding pre-miR-329 and pre-miR-495. (A) Schematic 
representation of RNA pull down combined with SILAC mass spectrometry (B) Proteins 
showing increased/decreased binding to pre-miR-329, pre-miR-495 or both. (C) Western blot 
validation of HADHB and CIRBP binding to pre-miR-329 and pre-miR-495 under conditions 
of normal serum and serum starvation. DHX9 is used as a binding control. (D-E) 
Quantification of western blot showing HADHB (D) and CIRBP (E) binding to pre-miR-329 
and pre-miR-495 under conditions of normal serum and serum starvation (relative to input) 
*p<0.05, n=3.  

Figure 4. Expression of CIRBP and HADHB in vivo. (A-B) Immunohistochemical staining 
of the murine adductor muscle after ischemia induction revealed expression of both CIRBP 
(A) and HADHB (B) in these tissues, predominantly in the cytoplasm of cells. (C-D) 
Microarray analysis of mRNA expression of CIRBP (C) and HADHB (D) mRNA in the 
adductor muscle of mice at several time points after induction of ischemia (4 mice per 
timepoint). (E) Western blot showing HADHB levels in murine adductor muscle tissue at day 
0, day 1 and day 3 after hindlimb ligation. At each time point samples from right (R) unligated 
paws and left (L) ligated paws are presented next to each other. Tubulin is used as a loading 
control. (F) Quantification of western blot, HADHB signal was normalized against tubulin 
and the relative change between ligated and unligated is presented. Each bar represents a 
biological triplicate and technical duplicate. 

Figure 5. RNA binding protein immunoprecipitation with HADHB and CIRBP 
antibodies. Pri-miR-329, pre-miR-329 and mature miR-329 expression levels were measured 
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in 3T3 cell lysates after immunoprecipitation with HADHB (top) and CIRBP (bottom) 
antibodies and non-specific IgG antibody. Bars represent technical tripliclates. 

Figure 6. Generation of NIH-3T3 HADHB KO cell lines by CRISPR/Cas9. (A) Western 
Blot analysis of HADHB protein levels in two HADHB KO clones (AQ and Z) compared to 
decreasing amounts of total protein extract from WT NIH-3T3 cells. (B) Alignment of region 
surrounding CRISPR-Cas9 target sequence from genomic DNA of clones AQ and Z. Levels 
of mature (C) or precursor (D) miR-329 and miR-495 as well as control miR-423 in WT and 
HADHB KO cell lines quantified by qRT-PCR and normalized to miR-16. For pre-miRs, 
n=3, for mature miRs, n=9. 
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