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Mechanical Stability of Surface Nanobubbles
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ABSTRACT: Bubble cavitation is important in technologies
such as noninvasive cancer treatment and diagnosis, surface
cleaning, and waste-water treatment. The cavitation threshold
is the critical external tensile pressure that induces unstable
growth of the bubble. Surface nanobubbles have been
previously shown experimentally to be stable down to −6
MPa, in disagreement with the Blake threshold, which is the
classical cavitation model that predicts bulk bubbles with radii
∼100 nm should be unstable below −0.6 MPa. Here, we use
molecular dynamics to simulate quasi-two-dimensional (2D)
and three-dimensional (3D) nitrogen surface nanobubbles
immersed in water, subject to a range of pressure drops until
unstable growth is observed. We propose and assess new
cavitation threshold models, derived from mechanical equilibrium analyses for both the quasi-2D and 3D cavitating bubbles.
The discrepancies from the Blake threshold are attributed to the pinned contact line, within which the surface nanobubbles
grow with constant lateral contact diameter, and consequently a reduced radius of curvature. We conclude with a critical
discussion of previous experimental results on the cavitation of relatively large surface nanobubbles.

■ INTRODUCTION

Cavitation is a complex phenomenon in fluid mechanics where
a bubble of dissolved gas or vapor forms within a liquid, usually
as a result of a local drop in pressure.1 Repeated formation and
collapse of cavitating bubbles can be destructive to adjacent
solid surfaces, such as in turbo-machinery, over prolonged
periods of time.1,2 However, there are also beneficial uses
proposed for cavitation, including noninvasive cancer treat-
ment,3 surface cleaning,4 and industrial waste-water treat-
ment.5

Heterogeneous nucleation is the formation of cavitation
bubbles on the surface of an immersed substrate.1 The acoustic
cavitation threshold is the liquid pressure required to induce
unstable growth of a bubble and has been modeled by the
crevice theory for bubbles trapped in microscopic cracks of
immersed solids.6 This theory has been shown to predict the
acoustic cavitation threshold in well-controlled, cylindrical pits
down to 100 nm in diameter.7

Surface nanobubbles (see Figure 1) rest on a solid substrate
and have sizes of the order of 1−100 nm. They have recently
attracted interest because their long lifetimes seemingly go
against previous understanding of bubble stability. Due to the
relatively stronger effects of surface tension at decreasing
length scales, surface nanobubbles tend to form spherical cap
shapes. Their lifetimes are up to 10 orders of magnitude longer
than predicted for equivalently sized spherical nanobubbles.8,9

It has been suggested previously that the diffusive stability of
surface nanobubbles is due to an organic skin composed of
amphiphilic molecules or other contaminants.10,11 However,
surface nanobubbles have been shown experimentally to exist

stably without such contaminants.12 Experimental,13−15

simulation,16−18 and analytical19,20 investigations have all
concluded that pinning of the three-phase contact line (CL)
and a local supersaturation of dissolved gas in the surrounding
bulk liquid are essential for both mechanically and diffusively
stable equilibria of these bubbles.
The pressure inside a surface nanobubble (or any bubble) in

steady-state mechanical equilibrium can be estimated by the
Young−Laplace equation

γΔ ≡ + − =∞P P P P
R
2

g v (1)

where Pg is the internal gas bubble pressure, Pv is the vapor
pressure inside the bubble, P∞ is the surrounding, far-field
liquid pressure, γ is the liquid/gas interfacial surface tension,
and R is the bubble radius of curvature. When P∞ drops below
a cavitation threshold, P∞,c, it can be shown that the equality in
eq 1 cannot hold for any bubble size, and the nanobubble
experiences unstable, uncontrolled growth.
The cavitation threshold of spherical macroscale bubbles can

typically be predicted by the Blake threshold, which depends
on R.21 However, experiments have reported that surface
nanobubbles are stable under impinging shock wave pressures
of −6 MPa, despite the Blake threshold predicting a cavitation
threshold of −0.55 MPa for R ∼ 100 nm.22 So, what is the
threshold pressure drop which induces unstable growth in
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surface nanobubbles? Our aim in this paper is to investigate the
stable and unstable growths of surface nanobubbles using
molecular dynamics (MD) and compare the observed
threshold for stability with that predicted by considering the
balance of pressures in eq 1 as the bubble grows.

■ SIMULATION METHODOLOGY
The LAMMPS MD software was used in this work to simulate
surface nanobubble growth.23 We performed simulations in
quasi-two-dimensions (hereon referred to just as “2D”) and
three-dimensions (3D), with some variations in the corre-
sponding theoretical models to account for the cylindrical and
spherical cap shapes, respectively, and the different Laplace
pressure contributions. An example of the MD setup for a 2D
surface nanobubble is shown in Figure 1.
The internal gas and surrounding bulk liquid phases were

chosen to be nitrogen (N2) and water (H2O), respectively,
given their relevance to most of the experimental litera-
ture.3,5,9,13,25−27 All of the atoms comprising the fluid were
contained between upper and lower solid walls. Each surface
nanobubble was first equilibrated on the lower wall, which was
textured with alternating patterns of hydrophobic (So) and
hydrophilic (Si) atom types with a regular “pattern wave-
length”, λS = 3.14 nm. The equilibrium, gas-side contact angles
of the pure So and Si substrates were θ = 43° and θ = 99°,
respectively, as measured from individual MD presimula-
tions.28 The substrate patterning allowed the contact line to
expand to new pinning sites during bubble growth.29

A neutrally charged, two-site nitrogen model30 and the
TIP4P/2005 rigid water model31 were used, with relative
potential parameters chosen based on gas solubility. The
TIP4P/2005 model comprises four sites: two charged H
atoms, one uncharged O atom, and a massless charged site, M.
All interatomic interactions were modeled by the Lennard-

Jones (LJ) and Coulomb pair potentials

σ σ

π
= ϵ − +
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r r
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where ϵij and σij are the LJ potential well depth and
characteristic length scale, respectively, between atoms i and
j, separated by a distance rij; qi and qj are the charges of atoms i
and j, respectively; ϵ0 is the permittivity of free space.23

Potentials were truncated and shifted, with relatively large cut-
off radii (rc) of 1.65 and 1.45 nm for the LJ and Coulombic
potentials, respectively, to accurately model molecular effects
in a multiphase system.16

Interaction parameters between the H2O molecules and the
So and Si substrate atoms were previously determined to
provide the desired wettabilities, as mentioned above. For the
gas−solid energy parameters (So−N; Si−N), we use similar
values from refs 16, 32. All of the LJ and Coulombic
parameters are listed in Table 1.

All of the simulations were run in an NVT ensemble with
the Nose−́Hoover thermostat applied to all of the water
molecules at constant temperature, T = 300 K. The thermostat
operated on y-component velocities in the 2D simulations. In
the 3D simulations, the thermostat was applied to all velocity
components, relative to the total water molecules’ center of
mass velocity. All liquid and gas molecules were equilibrated to
300 K initially, but the thermostat was removed from the
nitrogen molecules during the pressure drop to allow the gas
phase to expand in a more realistic manner without forcing
isothermal or adiabatic behavior, which are commonly
assumed in cavitation analyses.1,7 A time step of Δt = 1 fs
was used throughout; time integration was performed by the
velocity Verlet algorithm.23 The So and Si substrate atoms were
kept rigid.
All surface nanobubbles were initialized from a cap shape to

reduce computational time and then allowed to equilibrate for
1.4 ns at an initial surrounding pressure of P∞,0 = 10 MPa. The
bulk liquid phase was doped with N2 molecules to achieve
supersaturation, otherwise the surface nanobubble would
dissolve during equilibration.16,19,20,33−35 The CL was pinned
at a lateral diameter ϕL = 14.11 nm (equivalent to 4.5λS) by a
single So patch for initialization of the system, then switched to
a textured substrate for equilibration. The end state of the
equilibrated bubble was then used as the starting point for all
subsequent pressure drop simulations.

Figure 1. Molecular dynamics (MD) simulation of a quasi-two-
dimensional (2D) surface nanobubble. The red and white atoms are
the TIP4P/2005 H2O molecules, cyan atoms are the diatomic N2
molecules, and the gray and yellow atoms are the hydrophilic (Si) and
hydrophobic (So) substrate sections, respectively.

24 The fluid domain
size for the initialized bubble case was 28.2 × 5.88 × 9.1 nm3 in the x,
y, and z directions, respectively.

Table 1. Atom Types and Parameters for Interatomic
Potential Interactions30,31a

atom/interatomic pair
atom mass
(g/mol)

ϵ
(kJ/mol) σ (nm) q (e)

H 1.008 0 0 0.5564
M 0 0 0 −1.1128
O 15.9994 0.7749 0.3159 0
O−N 0.5458 0.3243
O−So 0.5420 0.2815
O−Si 1.3550 0.2815
N 14.0067 0.3026 0.3320 0
N−So 4.2155 0.2815
N−Si 0.8421 0.2815

aLJ parameters for atoms in bold are assumed for pairs of like atoms.
Any interaction pairs not given are equal to zero.

Langmuir Article

DOI: 10.1021/acs.langmuir.8b02887
Langmuir XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.langmuir.8b02887


The drop in pressure was applied as a smooth hyperbolic
tangent function over a period of 0.1 ns to prevent any
separation of the water from the top channel wall; the period
of the pressure drop was still small enough that it could be
considered a step change. Care was taken not to run the
simulations too long in order to ensure that growth was purely
mechanical, i.e., due to the pressure imbalance in the gas,
liquid, and curved surface tension components, not due to an
increase in bubble mass by diffusion. Diffusive growth of
surface nanobubbles has been demonstrated to occur over a
time scale of microseconds,8,9,20,36 so should not be a problem
in this present setup.
We considered the vapor pressure, Pv, inside the bubble to

be negligible compared to the ∼MPa contribution of 2γ/R at
the nanoscale. So, the tensile load applied during the surface
nanobubble MD simulations was assumed to produce Pv − P∞
≈ −P∞.1
Periodic boundaries were applied in the x and y directions,

whereas fixed boundaries were used in the z direction. During
the pressure drop, the fluid domain was allowed to expand in
the z direction by vertical motion of the upper channel wall,
subjected to a force F = P∞Axy/N, where Axy is the area of the
piston in the x, y plane and N is the number of atoms in the
upper channel wall.
The 2D/3D steady-state surface nanobubble shapes

resembled cylindrical/spherical caps.16,19,25 To measure R,
ϕL, and θ from the MD simulations, cylindrical/spherical
profiles were fitted to the 50% isodensity contour of the
normalized fluid density (see Figure 1).16,37

■ RESULTS AND DISCUSSION
Two-Dimensional Cavitation Threshold. We performed

13 simulation cases in which an equilibrated 2D surface
nanobubble was subjected to a drop in pressure to final
absolute values in the range +3 to −4.5 MPa. Negative values
indicate tensile pressures in which the upper channel wall
(piston) forcing was directed in the positive z direction. Each
target pressure was sustained for 15 ns after the pressure drop,
during which the bubble either reaches a mechanically stable
size or exhibits unstable growth. A total of 43 000 H2O
molecules and 1200 N2 molecules were used in each of the 2D
simulations.
All our simulations started from the same equilibrated

surface nanobubble at P∞,0 = 10 MPa. The radius of curvature
and gas-side contact angle for this equilibrated bubble were R0
= 10.52 nm and θ0 = 43°, respectively, and the bubble was
pinned to the substrate at a lateral contact diameter ϕL,0 =
14.37 nm (see Figure 1). The initial gas pressure, Pg,0, is
estimated from the 2D equivalent of eq 1, where the right hand
side becomes γ/R and using P∞ = P∞,0 and R = R0.
During the simulations, the surface nanobubbles grew with a

pinned contact line, i.e., constant contact radius (CCR)
growth, until some time at which the contact line expanded out
rapidly to the next pinning site. For macroscopic bubbles and
droplets, this behavior is typically known as “stick-slip”,
although in our surface nanobubble simulations the expansion
of the CL is so rapid compared to the time spent during CCR
growth that we consider this “stick-jump” behavior.16 The
variations in the contact diameters in three bubble growth
cases are shown in Figure 2. The lateral contact diameters ϕL
of the surface nanobubbles were observed to grow in finite
increments of λS, i.e., ϕL,n = ϕL,0 + nλS, where n is an integer.
The discrete pinning sites ϕL,n are labeled in Figure 2. The

transient expansions in the bubble cross-sectional areas are also
shown in this figure. A video showing the growth of the cases
in Figure 2b,c can be found in the Supporting Information.
Surface nanobubbles experiencing a final applied pressure of

−4 MPa and below were found to exhibit unstable growth and

Figure 2. Typical variation of 2D bubble cross-section area (blue) and
contact diameter (red) for (a) stable, P∞ = −2.75 MPa, (b) stable, P∞
= −3.75 MPa, and (c) unstable, P∞ = −4 MPa growth cases.
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outgrew the domain within 5 ns. All of the other cases reached
stable steady states within around 3 ns. The variation in the
steady-state bubble cross-sectional areas, A, with applied
pressures, P∞, is shown in Figure 3. The lowest liquid pressure
that sustained a stable surface nanobubble had a nominal
applied pressure of −3.75 MPa, so we conclude the cavitation
threshold to be between −3.75 and −4 MPa.
We compare the results of the MD simulations to the 2D

Blake threshold equation21 (see the derivation in the
Supporting Information)

γ γ= − −∞

−

P P
k kR P

1
1

2 2 k
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where Pv is the vapor pressure at the bulk liquid temperature
and γ = 57.35 mJ/m2 from a preliminary MD simulation of a
simple plane interface system under equilibrium conditions; k
is the constant exponent in the polytropic gas equation, PgA

k ∝
PgV

k = const., which is estimated from the MD simulations
(see Figure 3) to be k = 1.18 ± 0.14.1,21 The lower bound of
this estimate is close to 1, which is indicative of isothermal
expansion; indeed, the stable bubble expansion cases were
found to grow with near constant temperature, as shown in
Figures S3a,b and S4. The unstable cases exhibited a more
substantial decrease in temperature, as shown in Figures S3c
and S4, suggesting that past the stability threshold the bubble
expansion cannot be considered isothermal. It is likely that
bubbles well beyond the threshold tend to more adiabatic
behavior, where the growth rate (as in Figure 2c) is too rapid
for adequate heat transfer to the gas to occur.
With these parameters, the Blake threshold pressure is

calculated using eq 3 to be −0.78 MPa, which is approximately
3 MPa higher than the lowest sustained pressure from our MD
simulations. This result is consistent with experiments, which
have shown Blake’s threshold to be inadequate for predicting
the acoustic superstable cavitation threshold of surface
nanobubbles.22 The Blake prediction is also included in Figure
3.

A corrected cavitation threshold can be obtained by
calculating the critical contact angle, θc, at each pinning site
(see the derivation in the Supporting Information)
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where θ ϕ= = −θ
θ θ

A A( )0 0
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ÑÑÑÑÑÑÑ is the initial cross-

sectional area of the 2D surface nanobubble. There is no
analytical solution to eq 4 in terms of θc, so we solve this
numerically.
The maximum contact angle observed in all of the MD

simulations was just less than 90°. It has been previously
suggested that surface nanobubbles cannot be in stable
diffusive equilibrium with gas-side contact angles greater than
90°, although they can still return to a point of diffusive
stability with an angle less than 90°.20,38 There is therefore no
reason why they could not sustain a gas-side contact angle
greater than 90° for short time scales in mechanical
equilibrium. However, given how close this is to the
equilibrium contact angle of the Si substrate, we assume that
the angle at which the CL would unpin and jump to the next
pinning site is closely linked to the Si surface’s wettability.
Here, to match the simulations, we assume that the maximum
contact angle that can be sustained is 90°, which imposes a
constraint on eq 4.
Once θc is determined from eq 4, the threshold pressure for

each pinning site can be calculated from

θ
γ θ

ϕ
= + −∞P P P

A
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Figure 3. Variation of 2D bubble area with liquid pressure. The solid black lines show the growth paths for individual pinning sites (i.e., ϕL,0, ϕL,1,
and ϕL,2) from eqs 4 and 5. The blue squares are the final stable nanobubbles in our MD simulations. Inset (a) shows the initial state of all of the
MD simulations at P∞, 0 = 10 MPa; insets (b) and (c) show the jump in pinning sites, ϕL,0 to ϕL,1, respectively, when P∞ ≈ −3 MPa.
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Equations 4 and 5 predict the critical size and threshold
pressure, respectively, for a bubble on a single pinning site with
lateral contact diameter ϕL. The surface nanobubbles in our
simulations expanded to new pinning sites as they grew, so the
assumption of CCR growth breaks down in our model.
However, the benefit of writing eq 4 in terms of Pg,0 and A0 (at
the original pinning site, ϕL,0) means that θc can then be found
for any of the succeeding pinning sites ϕL,n. By substituting θ
for θc and P∞ for P∞,c in eq 5, the quasistatic growth path of a
surface nanobubble can be found, relating the far-field liquid
pressure to the equivalent mechanically stable shape at a
particular pinning site. These growth paths are the solid black
lines in Figure 3.
The corrected threshold pressure from eq 5 is determined to

be P∞,c = −3.79 MPa, with the critical bubble angle θc = 90°
while pinned at ϕL,1. This threshold is the lowest point in the
predicted pressure lines in Figure 3 and is in good agreement
with the lowest stable pressure in our MD simulations. The
growth paths predicted by our corrected threshold model agree
well with the MD results too. The size of the bubble at the
threshold, as predicted by our model, is termed the critical size
and is also marked in Figure 3. Our model predicts the contact
angle, radius of curvature, and pinned contact diameters, which
agree well with the MD results in Figure 4a−c, respectively.
Figures 3 and 4 show that the surface nanobubble jumps

from its original pinning site ϕL,0 to the next pinning site ϕL,1 at
around 84°. The nanobubble growth then continues to agree
with our corrected threshold model for the new pinning site
ϕL,1 before reaching its critical size, this time at θ = 90°.
The growth path of surface nanobubbles at new pinning sites

is predicted well by our model, even if it is not possible to
determine at what contact angle they jump. The simulated
surface nanobubble jumped from a contact angle of 84° at the
original pinning site to 80° at the new site. Because this is only
a small decrease in contact angle, it could be possible to model
this stick-jump growth as constant contact angle for larger
bubbles as λS/ϕL → 0. However, for the purposes of this study,
we considered all growths to be stick-jump CCR acting at
discrete pinning sites.36

In Figure 4b, the radius of curvature is shown to decrease, as
the bubble grows on a particular pinning site. This is expected
for a cylindrical/spherical cap shape with constant ϕL and θ ≤
90°. However, the 2D Blake threshold, eq 3, does not capture
this growth behavior accurately because it assumes bubble
growth is a monotonically increasing function of R. From eq 1,
the surface tension component of the pressure balance varies
∼γ/R, so a decrease in R during surface nanobubble growth
means an increase in the surface tension contribution. This
suppresses excessive growth and enables the surface nano-
bubble to withstand lower pressures than the Blake threshold
for a spherically equivalent bubble. This is the main reason
why the Blake threshold does not correctly predict the surface
nanobubble cavitation threshold.
Figure 4c shows the contact diameters of the surface

nanobubbles do remain pinned to discrete positions during
growth, as we expected from the textured Si−So substrate
patterning. The jump in the contact diameter is equal to the
pattern wavelength, λS = 3.14 nm.
Given that our model has been shown to agree with MD

simulations, we then used it to predict the cavitation thresholds
for a range of surface nanobubble sizes (θ0 and ϕL,0), with
other parameters the same as in the 2D MD simulations. These
results are shown in Figure 5. Decreasing θ0 and ϕL,0 is

equivalent to reducing A0 and typically lowers the predicted
cavitation threshold. Increasing k from 1 (isothermal
expansion) to 1.4 (adiabatic) also tends to lower the predicted
cavitation threshold, which is a similar trend to the Blake
model.1,21 The inset in Figure 5 shows that the threshold tends

Figure 4. Variation of (a) bubble contact angle, (b) radius of
curvature, and (c) contact diameter, with pressure.

Langmuir Article

DOI: 10.1021/acs.langmuir.8b02887
Langmuir XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acs.langmuir.8b02887


to Pv for large bubbles, which is similar to the Blake threshold
in eq 3 for large bubbles.
Three-Dimensional Cavitation Threshold. To assess

the validity of our corrected threshold model, a 3D surface
nanoubble in MD was also equilibrated on a substrate,
patterned with alternating Si and So concentric rings, as shown
in Figure 6. The patterning for this 3D case was chosen to be

equivalent to the axisymmetric patterning used in the 2D
simulations and likewise allowed the CL to be pinned at a
particular diameter ϕL for CCR growth.37 A total of 230 000
H2O molecules and 3100 N2 molecules were used in each of
the 3D simulations. At an initial equilibrated pressure P∞,0 =
10 MPa, the radius of curvature and contact angle of the 3D
bubble were R0 = 10.5 nm and θ0 = 46°, respectively, pinned to
the substrate with ϕL,0 = 15.22 nm. The properties Pv, γ, and k
were assumed identical to the 2D case. Equation 1 is used to
estimate Pg,0, using P∞ = P∞,0 and R = R0.
Due to the significant computational cost of the 3D

simulations, only two pressure drop cases were investigated,
with final applied absolute pressures of −7.5 and −10.5 MPa,

based on conservative estimates of the cavitation threshold
model extended to 3D (which is discussed below). Both
simulations were run for a maximum of 5 ns: given that our 2D
simulations reached either a mechanically stable state or
exhibited unstable growth within the first 3 ns (see Figure 2),
we deemed this sufficient simulation time. The transient
expansions in the bubble volume for these two cases are shown
in Figure 7. The case with −7.5 MPa applied pressure was

stable, whereas the case with −10.5 MPa was unstable; the
cavitation threshold for the 3D surface nanobubble must be
between these two values. A video showing the bubble growths
for the two cases can be found in the Supporting Information.
The 3D form of the Blake threshold (see the derivation in

the Supporting Information) is

γ γ= − −∞
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and we use the parameters taken from the 3D MD simulation.
Equation 6 predicts a cavitation threshold of −4.08 MPa,

Figure 5. Variation in the predicted cavitation threshold for different
2D surface nanobubble sizes, with P∞,0 = 10 MPa and γ = 57.35 mJ/
m2.

Figure 6. Snapshot of an MD simulation of an equilibrated 3D surface
nanobubble. Some of the water molecules and top channel wall atoms
are not shown, for clarity. The fluid domain of the equilibrated bubble
system was 28.2 × 28.2 × 9.1 nm3 in the x, y, and z directions,
respectively.

Figure 7. Variation in 3D bubble volume for (a) stable, P∞ = −7.5
MPa, and (b) unstable, P∞ = −10.5 MPa, pressure drop cases.
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which is nearly 3.5 MPa greater than the stable pressure we
observed in the MD simulations.
Instead, we propose here a corrected cavitation threshold

(see the derivation in the Supporting Information) by finding
the critical contact angle, θc, from the following equation

θ θ θ
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where θ θ θ= = − +πϕ
θ

V V( ) (2 3 cos cos )0 0 24 sin 0
3

0
L
3

3
0

is the

initial volume of the surface nanobubble. As in the 2D case,
there is no analytical solution for θc, so we solve eq 7
numerically. Once obtained, θc can then be used to find the
threshold pressure for each particular pinning site, i.e.,
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The θc ≤ 90° constraint is applied again, as in the 2D case.
One further modification for the 3D model is that ϕL should
now jump in increments of 2λS, since the system is
axisymmetric, i.e., ϕL,n = ϕL,0 + 2nλS.
This corrected threshold model predicts a cavitation

threshold of −9.18 MPa, which is in good agreement with
the range observed in the MD simulations. The predicted
variation in the cavitation threshold with surface nanobubble
size, using the same parameters as in the 3D MD simulations,
is shown in Figure 8. Decreasing the initial contact angle, θ0,

produces a lower cavitation threshold. This could be because
the initial radius of curvature will be larger and hence the
Laplace pressure would increase relatively more as the bubble
grows, making it more stable to cavitation. Qualitatively,
increasing the polytropic exponent, k, from an isothermal
expansion (k = 1) to an adiabatic expansion (k = 1.4) tends to
lower the cavitation threshold, which is similar in the Blake
threshold prediction too.21 The inset in Figure 8 shows how
the threshold decreases as the bubble gets larger and tends to
Pv; eq 6 shows that the Blake threshold also tends to Pv for
large bubbles.

Previous experiments have indicated that surface nano-
bubbles are stable down to at least −6 MPa.22 Using our
model, the predicted variation in the cavitation threshold with
surface nanobubble size at experimental conditions, i.e., P∞,0 =
0.1 MPa and γ = 71.69 mJ/m2, is shown in Figure 9a, with

other model parameters taken from the previous 3D
simulation. The cavitation threshold is strongly dependent
on both the initial contact angle, θ0, and the initial contact
diameter, ϕL,0. However, it is clear that typically decreasing θ0
and ϕL,0 decreases the cavitation threshold, making the
nanobubbles more stable. For ϕL,0 < 20 nm, we predict that
most surface nanobubbles would be resistant to a −6 MPa
pressure fluctuation, and for some cases, e.g., θ0 = 10° and ϕL,0
= 10 nm, the cavitation threshold is predicted to be as low as
−28 MPa. For bubbles, the same initial size and shape as in the
3D MD simulations, i.e., θ0 = 46° and ϕL,0 = 15.22 nm, the
cavitation threshold is predicted to be P∞,c = −15 MPa under
typical experimental conditions. Although seemingly low, this

Figure 8. Variation in the predicted cavitation threshold for different
3D surface nanobubble sizes, with P∞,0 = 10 MPa and γ = 57.35 mJ/
m2.

Figure 9. Variation in the predicted cavitation threshold for different
3D surface nanobubble sizes; (a) results of our model with P∞,0 = 0.1
MPa and γ = 71.69 mJ/m2; (b) results of the Blake threshold of an
equivalent spherical bubble with identical mass to the surface
nanobubbles in (a). Also shown is the range of experimental results
of Borkent et al. (2007).22 Insets show the predicted threshold for
larger surface nanobubbles.
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threshold estimate is in line with estimates of homogeneous
vapor bubble nucleation of −126 MPa, which has long been
known to occur at much lower pressures than the
heterogeneous cavitation modeled here.1,39

Figure 9a shows that we predict most surface nanobubbles
should cavitate by −6 MPa pressure, provided that ϕL,0 > 50
nm. Yet the published experiment22 reported surface nano-
bubbles of sizes up to ϕL,0 = 300 nm that still did not undergo
cavitation at −6 MPa.
As already noted, the Blake model gives a poor prediction of

the cavitation threshold when using the nanobubble’s radius of
curvature, R0, in eq 6. However, consider instead a free
spherical bubble of equal mass to the surface nanobubble, with
a radius of curvature, Rm; combining eq 1, the polytropic gas
law, and the volume of a spherical bubble enables us to obtain
the radius of this equivalent spherical bubble numerically from
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Then by substituting Rm for R0 in eq 6, the Blake threshold is
found to be many MPa lower than for a surface nanobubble of
equal mass, as seen in Figure 9b. This means that if a surface
nanobubble detached from the surface and formed a spherical
bubble, while still remaining very close to the surface, there is a
larger range of tensile pressures within which the bubble could
still be stable.10

We also acknowledge the possibility of contamination from
polymer droplets in the cited experiments,22 which could be
mistaken for surface nanobubbles and lead to anomalous
results, particularly for the larger bubbles.9,40

■ CONCLUSIONS
The cavitation threshold for unstable growth of a surface
nanobubble cannot be predicted using the classical Blake
threshold equation. Here, we have proposed a corrected
cavitation threshold model, which assumes that the surface
nanobubble expands with a pinned lateral diameter, i.e., the
constant contact radius mode of growth. The decreasing radius
of curvature increases the surface tension component of the
internal bubble pressure. The growth paths of 2D surface
nanobubbles can be predicted by our model and are in good
agreement with molecular dynamics simulations of air bubbles
in water.
The cavitation threshold of 3D surface nanobubbles

predicted by our model is also in agreement with molecular
dynamics simulations. For experimental conditions, i.e., γ =
71.69 mJ/m2 and P∞,0 = 0.1 MPa, the model predicts a
cavitation threshold of P∞,c ≈ −15 MPa for small surface
nanobubbles (ϕL = 15 nm, θ0 = 46°), which is many MPa
lower than the classical Blake threshold prediction.
Our model also predicts that larger surface nanobubbles

considered in experiments (i.e., 60 nm < ϕL < 300 nm) should
become unstable in the constant contact radius mode of
growth. We hypothesized a possible mechanism for the
experimentally observed stability, in which unstable surface
nanobubbles detach from the surface during their unstable
growth phase and form more stable bulk nanobubbles with
reduced radius of curvature, Rm. Whether or not this proposed
detachment process is feasible requires further investigation.
The cavitation threshold model we have presented here

assumes that the maximum contact angle a surface nanobubble

can sustain is θ = 90°, which is the equilibrium contact angle
on the hydrophilic region of the patterned substrate. Future
work could vary the surface/liquid interatomic potentials to
assess whether wettability has a significant effect on the
cavitation threshold.
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