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The osmoresponsiveness of oxytocin and vasopressin neurones: mechanisms, allostasis and 

evolution.

Gareth Leng and John A. Russell

Centre for Discovery Brain Sciences, The University of Edinburgh UK

Abstract

In the rat supraoptic nucleus, every oxytocin cell projects to the posterior pituitary, and is 

involved in both reflex milk ejection during lactation, and in regulating uterine contractions 

during parturition. All are also osmosensitive, regulating natriuresis. All are also regulated by 

signals that control appetite, including neural and hormonal signals that arise from the gut after 

food intake and from the sites of energy storage. All are also involved in sexual behaviour, 

anxiety-related behaviours, and social behaviours. The challenge is to understand how a single 

population of neurones can coherently regulate such a diverse set of functions, and adapt to 

changing physiological states. Their multiple functions arise from complex intrinsic properties 

which confer sensitivity to a wide range of internal and environmental signals. Many of these 

properties have a distant evolutionary origin, in multi-functional, multisensory neurones of 

Urbilateria, the hypothesised common ancestor of vertebrates, insects and worms. Their 

properties allow different patterns of oxytocin release into the circulation from their axon 

terminals in the posterior pituitary, into other brain areas from axonal projections, and 

independent release from their dendrites.

Introduction

In 1989, in the first issue of this journal, we, with Richard Dyball and Ruth Blackburn, 

published a paper entitled “Role of anterior peri-third ventricular structures in the regulation of 

supraoptic neuronal activity and neurohypophysial secretion in the rat” (1). Despite the less than 

catchy title, the Web of Science records that it has been cited 121 times. The studies it describes 

resolved an argument between us, and the notice that it received is an indication that there were 

many parties to that argument. So what exactly were the controversial issues?

Osmoregulation and neurohypophysial hormones
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In the 1940’s Verney (2) had established that, when water and salt balance are threatened by 

dehydration, ‘osmoreceptors’ in the brain detected such threats and mediated stimulation of 

vasopressin secretion from the posterior pituitary gland to counteract the disturbance. He 

suggested that these were in the supraoptic nucleus of the hypothalamus, functioning as “stretch 

receptors” that directly stimulated the neurones of the hypothalamo-hypophysial tract.

Our 1989 paper addressed the issue of the osmoresponsiveness of magnocellular 

neurones, in terms of whether these neurones are directly osmosensitive, or whether they respond 

to inputs from osmoreceptors elsewhere. To understand the argument it is germane to note that 

one of us (GL) was an electrophysiologist, working in Barry Cross’s group at Babraham, while 

the other (JAR) was a classical physiologist, mentored by Mary Pickford, at Edinburgh. Pickford 

had pioneered our understanding of how afferent signals regulated these neurones, particularly 

by her studies of the regulation of antidiuresis by central acetylcholine (3).

Distinguishing oxytocin and vasopressin cells. In 1959, Cross and Green made the first 

attempt to study the electrical behaviour of magnocellular neurones in response to hyperosmotic 

stimulation (4), but this was confounded by the difficulty in distinguishing them from 

neighbouring neurones. However, the introduction of antidromic identification in the 1970s 

enabled electrophysiological recordings to be made from neurones identified as projecting to the 

posterior pituitary gland. This technique involves placing a stimulating electrode on the neural 

stalk by which neurones that project to the posterior pituitary can be positively identified by the 

appearance of fixed latency action potentials evoked “antidromically” by stimuli applied to the 

stalk. It soon became apparent that oxytocin cells as well as vasopressin cells responded to 

osmotic stimulation. In response to systemic osmotic stimulation, oxytocin cells fired 

continuously at an elevated rate, while many vasopressin cells fired phasically, in long bursts of 

spikes, with the duration of bursts and the spike frequency within bursts determining the rate of 

vasopressin secretion (5).

For direct osmosensitivity. By 1989, there was compelling electrophysiological evidence 

that magnocellular neurones were directly osmosensitive; direct application of hypertonic saline 

would excite these cells in vivo, (6) and the first intracellular recordings in vitro had shown that 

they were depolarized by an increase in extracellular osmotic pressure even when all synaptic 

input was blocked (7). However, classical physiologists remained sceptical: they noted that the 
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experimental conditions of the in vitro electrophysiological studies were ‘unphysiological’, and 

that the saline doses applied were excessively (“supraphysiologically”) high.

For osmosensitive inputs. Just as compelling to physiologists as the electrophysiological 

evidence was to electrophysiologists was evidence that lesions of brain regions anterior to the 

supraoptic nucleus eliminated the osmotic regulation of vasopressin secretion (8-11). Typically, 

these lesions encompassed the ventral median preoptic nucleus (also called the nucleus 

medianus), the organum vasculosum of the lamina terminalis (OVLT), and periventricular tissue 

caudal and lateral to the ventral lamina terminalis, and producd retrograde degeneration in the 

subfornical organ and terminal degeneration in the supraoptic nucleus (12).Lesions to the 

subfornical organ alone also produced a reduction on osmotically-evoked vasopressin release 

(13).

This focused attention on three sites: two of these, the subfornical organ and OVLT (14) 

are densely vascularized circumventricular organs and lie outside the blood-brain barrier, 

apparently ideally situated to monitor the composition of the blood. The third site, the nucleus 

medianus, lies between the subfornical organ and the OVLT and receives a dense synaptic input 

from both (15). Collectively these came to be known as the AV3V region – the region anterior 

and ventral to the third ventricle. All three sites projected densely to the magnocellular neurons 

(15).

Recalling those past clashes, several themes stand out. The evidence itself was not in 

dispute: both ‘sides’ of the evidence had been replicated extensively. Accordingly, the challenge 

was to construct a credible narrative that accommodated all the evidence. There were two 

important impediments: skepticism about how the same neuroendocrine system could 

simultaneously regulate such disparate functions as electrolyte homeostasis and the reproductive 

functions, and the counter-intuitive notion that neurones might be osmosensitive despite 

evidence that their osmoresponsiveness was selectively eliminated by lesions of an afferent 

pathway.

The osmoresponsiveness of magnocellular neurones.

Evidence for the importance of circumventricular organs came from studies that 

addressed three things of physiological importance: thirst, sodium excretion, and urine 

production. Each of these was profoundly impaired by lesions to any part of the AV3V region. 
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The effects on urine flow clearly reflected a loss of the antidiuretic actions of vasopressin, while 

effects on thirst were believed to reflect actions independent of pituitary hormone secretion (16). 

However, the effects on sodium excretion were problematic. In some species, vasopressin 

contributes to sodium excretion (17), but this could not account for the observed deficit – there 

was a missing “natriuretic factor”: “It is thus probable that a cerebral natriuretic system is 

involved in the functional expression of any other peripheral natriuretic system, e.g. the heart 

atrial natriuretic system “(18).

A possibility was that, in at least some species, oxytocin might be such a natriuretic 

factor, as Brooks and Pickford had shown in the dog that oxytocin could increase sodium 

excretion (3), and oxytocin also had natriuretic actions in the rat (19-21). The 

electrophysiological studies implied that, in the rat, oxytocin cells were just as osmosensitive as 

vasopressin cells, and Young and van Dyke had in 1968 shown that in the rat progressive 

dehydration reduced the neurohypophysial content of both oxytocin and vasopressin to a similar 

extent (22). However, oxytocin was the hormone of milk-ejection and parturition, and a 

predominant assumption was that different physiological functions were compartmented in 

different neuronal populations – and that different hormones had separate physiological roles. 

There appeared to be no osmotic regulation of oxytocin secretion in humans (23, 24) and no 

clear renal actions (25). Thus in 1974, Lee and de Wardener declared: “One cannot better the 

conclusions reached by Bentley in 1971 (26) that in mammals the neurohypophysial hormones 

may, in an unpredictable way, increase sodium excretion in the rat, dog, camel and sheep, but 

not man” (27).

However, by 1989, the osmoresponsiveness of oxytocin cells in rats had been shown 

from many studies. Dehydration and sodium loading by intraperitoneal injection of hypertonic 

saline increased the electrical activity of oxytocin cells in vivo and increased oxytocin secretion 

as strongly as they increased the activity of vasopressin cells and vasopressin secretion (28, 29). 

Moreover, in rats, oxytocin had natriuretic effects at low doses (24, 30), and evidence 

accumulated that osmotically-stimulated oxytocin secretion contributed to natriuresis (31, 32) 

both by possible direct actions at the kidney (24) and by regulating the secretion of atrial 

natriuretic peptide from the heart (33). Lesions to the AV3V region abolished not only 

osmotically-induced vasopressin secretion (34), but also osmotically-induced oxytocin secretion, 

and blocked increased synthesis of both peptides in response to water deprivation (8). By 
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contrast, AV3V lesions did so without affecting suckling-induced oxytocin release (35) or 

parturition (36)– the progress of which, in rats, is driven by uterine contractions that activate 

oxytocin cells via an input from the caudal brainstem (37-39).

Intrinsic osmosensitivity dependence on an excitatory input. To reconcile the 

electrophysiological evidence with the results of lesion studies, it was necessary to explain how a 

lesion to an afferent input selectively impaired the ability of magnocellular neurones to express 

their intrinsic osmosensitivity. That explanation, as first presented (6, 40) acknowledged that the 

spiking activity of magnocellular neurones depends on excitatory synaptic inputs, but proposed 

that the frequency at which spikes occurred in response to such inputs depends on the level of 

intrinsic depolarization. Accordingly, an input might be essential for osmoresponsiveness even if 

it was not itself osmoregulated. This notion, that neuronal “noise” might be important, was a 

seeming affront to the idea that spike activity in neurones was the harbour of physiologically 

meaningful information in the brain.

It was this hypothesis, disputed amongst us, that we put to collaborative test in 1989 (1). In 

anesthetized rats, we lesioned the AV3V region rendering the magnocellular neurones silent and 

unresponsive to systemic osmotic stimulation. We then restored normal levels of electrical 

activity by continuous ejection of glutamate from the recording microelectrode. We found that 

this rescued the ability of the neurones to respond to systemic osmotic stimulation, showing that 

their intrinsic osmosensitivity was indeed sufficient to modulate their firing rate in the presence 

of an input that was not itself osmoresponsive. However, the extent of the activation was less 

than in normal rats, indicating that normal osmoresponsiveness involves both intrinsic 

osmosensitivity and increased synaptic input.

The direct osmosensitive mechanism can depolarize magnocellular neurones by only a few 

millivolts—too little to explain, on its own, the changes in spike activity that physiological 

increases in plasma osmotic pressure produce (Figure 1).

However, if the membrane potential of a neurone is continually fluctuating, a small sustained 

depolarization, by altering the probability that fluctuations will exceed the spike threshold, will 

increase the firing rate. This phenomenon by which noise enhances the sensitivity of neurones is 

called stochastic resonance and is now recognized as a general feature of sensory systems (43).

Osmosensitive mechanisms. The osmosensitivity of magnocellular neurones involves 

specialised stretch-sensitive ion channels, as shown by Oliet and Bourque in 1993. When the 
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extracellular osmotic pressure rises, the cells shrink, and this opens stretch-sensitive membrane 

ion channels causing a depolarizing current to flow (44). This involves an N-terminal variant of 

the transient receptor potential vanilloid 1 (Trpv1) channel, activation of which triggers a 

mechanical process that engages a thin layer of actin filaments (F-actin) beneath the plasma 

membrane, and a network of microtubules (45, 46). The same mechanism contributes to the 

osmotic regulation of thirst by neurones within the AV3V region (47).

The experiments implicating this channel involved local application of mannitol as a 

hypertonic stimulus, However, mice lacking the Trpv1 channel show normal vasopressin 

secretion and normal thirst in response to hypernatremia (48), raising the possibility that the 

Trpv1 channel contributes to vasopressin secretion and thirst stimulated by hyperosmolality but 

not that stimulated by hypernatremia. Consistent with this, Kinsman (49) reported that systemic 

injection of mannitol stimulates thirst similarly in normal mice and Trpv1 knockout mice. Thus 

magnocellular neurones are directly sensitive to both osmotic pressure and sodium.

Magnocellular neurones express two other members of the Trpv family of channels. In the 

paraventricular nucleus, Trpv4 is expressed selectively in magnocellular vasopressin cells (50), 

and seems also to be involved in osmoresponsiveness (51, 52). Trvp2 is also expressed densely 

in the supraoptic nucleus and the magnocellular portion of the paraventricular nucleus in both 

oxytocin cells and vasopressin cells (53, 54); little is known of its function in these cells, but in 

other tissues Trpv2 channels have been associated with mechanosensitivity, thermosensitivity 

and osmosensitivity (51). The Trpv1 channels that mediate osmosensitivity also confer 

thermosensitivity on the vasopressin cells (55, 56): vasopressin is released in hot conditions to 

preserve body water in the face of evaporative loss.

Degeneracy. Osmoresponsiveness thus involves multiple ‘degenerate’ mechanisms. 

Degeneracy refers to different mechanisms that converge to produce the same result, whereas 

redundancy refers to duplication of a mechanism (57). Degeneracy contributes to robustness in 

biological systems, and it has been argued that the evolution of degenerate mechanisms is a 

common consequence of natural selection, as there is little selection pressure for the elimination 

of either neutral or degenerate mutations. Several types of sodium channel appear to contribute 

to sodium detection in the supraoptic nucleus (58-60). Osmotic stimuli also promote the 

phosphorylation of extracellular signal-regulated protein kinases in magnocellular neurones and 
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in many neurones of the AV3V region, and this modulates osmotransduction by a mechanism 

still undetermined (61).

Complex osmosensitive inputs. The osmoresponsiveness of magnocellular neurones involves 

many other factors (62), including afferent signals from the AV3V region; some of which are 

also osmosensitive. The OVLT and subfornical organ also contain neurones that respond to 

blood-borne hormones that have an important role in electrolyte homeostasis, including 

angiotensin II, relaxin and atrial natriuretic peptide (63). As well as conventional 

neurotransmitters, efferent signals from the AV3V region involve a variety of peptides including 

angiotensin II from the subfornical organ (64). Angiotensin II has opposite effects on vasopressin 

and oxytocin cells: in both it opens the channels that mediate osmosensitivity (65, 66), but in 

oxytocin cells it also induces endocannabinoid release, which opposes the excitatory effects of 

OVLT stimulation. Thus angiotensin promotes antidiuresis but inhibits natriuresis, as seems 

appropriate for a signal primarily regulating blood volume and activated by hypovolemia.

Role for glia. The osmoresponsiveness of supraoptic neurones is modulated by taurine from 

local astrocytes; taurine is an osmolyte which is actively exported from many cells under 

hypotonic conditions to help maintain cell volume homeostasis, and hypertonic aCSF 

microdialysed into the supraoptic nucleus strongly stimulates Fos and c-fos mRNA expression in 

astroglia in this nucleus (67). Taurine is an agonist at glycine receptors; these ligand-gated 

chloride channels are expressed in supraoptic neurones, and because the electrochemical 

gradient for chloride favors influx under resting conditions, taurine promotes hyperpolarization, 

moderating the gain of their excitatory response to hypertonic stimuli (68, 69).

Importance of inhibitory input. The AV3V region provides both excitatory and inhibitory 

synaptic inputs to magnocellular neurones (70). The osmoreceptive neurones in the OVLT that 

project to the supraoptic nucleus are all glutamatergic (71), but the OVLT and the subfornical 

organ also project indirectly via the median preoptic nucleus – and this involves the inhibitory 

transmitter GABA (72). Systemic osmotic stimulation thus triggers the release of both GABA 

and glutamate in the supraoptic nucleus, as confirmed by microdialysis in vivo (41). While it 

might seem perverse that magnocellular neurones receive an osmotically regulated input that 

comprises a mixture of inhibition and excitation, this might be adaptive. The response of 

vasopressin secretion to increasing osmotic pressure is linear over the range of osmotic pressure 

experienced by animals over prolonged water deprivation, and linearity is also apparent in the 
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responses of individual oxytocin cells and vasopressin cells in vivo. This linearity is surprising: 

neurones typically become more excitable as they are excited– an EPSP is more likely to cross 

the spike threshold when a neurone is partially depolarised, so their response to an increasing 

excitatory input tends to increase non-linearly. This non-linearity truncates their dynamic range, 

as they reach maximum firing rates more quickly. However, we noted that if an input comprised 

a mixture of synaptic excitation and synaptic inhibition then the neuronal response to increasing 

input rates would be more linear and the dynamic range would be extended (73). It might be 

expected that an excitatory input would be cancelled out by an equal and opposite inhibitory 

input, but this is not the case for random inputs. A mixed random input produces a membrane 

potential that fluctuates around the mean; spikes arise when fluctuations exceed spike threshold, 

and these spike triggering events increase in frequency linearly with the mean input rate (41, 73).

In normal rats, GABA inhibits both oxytocin and vasopressin cells in vivo. As mentioned, 

stimulation of the OVLT region produces mixed excitatory and inhibitory effects on oxytocin 

and vasopressin cells in vivo, with the inhibitory effects arising via activation of a GABAergic 

input from the nucleus medianus. This inhibitory effect can be blocked by microdialysis of the 

GABA antagonist bicuculline onto the supraoptic nucleus (74) (Figure 2), as can inhibition 

arising from stimulation of the arcuate nucleus (75). 

In magnocellular vasopressin cells in slice preparations in vitro, excitatory responses to 

GABA have been reported in some experimental conditions (76, 77) though not in others (78). 

This indicates that the intracellular chloride concentration, which determines the direction of the 

neuronal response to GABA, is vulnerable to particular experimental conditions, and raises the 

question of whether a similar change occurs in physiological conditions. This might be 

anticipated in conditions of chronically sustained activation of GABA inputs which lead to a 

sustained elevation of chloride entry. Systemic osmotic stimulation, as indicated above, involves 

activation of GABA inputs to the magnocellular neurones, and chronic salt loading indeed leads 

to a change in the direction of GABA actions (78). Two other studies have indicated that the 

direction of GABA actions can change from inhibition to excitation in conditions of chronic 

hyperactivation of vasopressin secretion (79, 80), and one has reported a change affecting both 

oxytocin and vasopressin cells in lactation (81).

Wider inferences. These issues were harbingers of the coming revolution in our 

understanding not just of the magnocellular neurones but of neuroendocrine systems in general. 
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Today, it is accepted that neuroendocrine neurones are multifunctional; that they express a wide 

range of properties that make them directly sensitive to their immediate external environment 

(Figure 3); and that they are phenotypically plastic, with properties that vary with physiological 

state.

It is also now clear that both populations of magnocellular neurones are heterogeneous in 

their intrinsic properties. These neurones have some features that distinguish them clearly from 

most other hypothalamic neurones, and some features that are more commonly observed in 

vasopressin cells than in oxytocin cells and vice versa, but there is considerable variation within 

each of these populations (85). A few cells appear to have an ambiguous phenotype – for 

example a few cells generate both suckling-induced milk-ejection bursts, classically identifying 

them as oxytocin cells, but also show phasic firing patterns that are mainly associated with 

vasopressin cells. Most magnocellular neurones express mRNAs for both oxytocin and 

vasopressin; usually these are present at very different levels but a small proportion (~3%) 

express both at equivalent levels. Interestingly, in conditions of sustained elevated demand, the 

proportion that express appreciable amounts of both peptides increases (to 24% in the study of da 

Silva et al. (86)).

Multi-functional magnocellular neurones

Different physiological responses arise in part from different patterns of activity. In 

response to raised plasma osmotic pressure, oxytocin cells fire continuously (41), but in response 

to suckling and during parturition they fire in intense synchronised bursts every few minutes. 

These bursts lead to a secretion that is amplified by non-linearities in stimulus-secretion coupling 

at the nerve terminals (87), resulting in a sequence of large pulses of oxytocin secretion. Only at 

term pregnancy does the uterus express abundant receptors for oxytocin, and only in lactation 

does the mammary gland. The mammary gland “senses” only pulses of secretion: being 

relatively insensitive to oxytocin, the mammary gland is indifferent to the lower concentrations 

induced by osmotic challenge. By contrast, the kidney responds to secretion evoked by small, 

sustained increases in oxytocin secretion, and is indifferent to brief intermittent pulses (88, 89). 

Thus oxytocin cells can regulate milk-let down and natriuresis simultaneously without conflict.

Salt appetite. Electrolyte homeostasis necessarily involves regulation of both sodium 

excretion and sodium intake. Dietary sodium deprivation elicits a strong salt appetite in rats (90), 

as does bilateral adrenalectomy (91, 92); aldosterone through its actions on the brain (93, 94); 
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and hypovolemic stimuli (95-97). The AV3V region is strongly implicated in salt appetite, in 

part through central angiotensin II pathways from the subfornical organ (98-102).

However, sodium intake is not always stimulated when hypovolemia is present or when 

blood angiotensin II levels are elevated. Diverse treatments inhibit salt appetite, including acute 

hyperosmolality, uremia, severe hypovolemia, hypotension and nausea (103) – all stimuli that 

increase oxytocin secretion. Conversely, angiotensin-II-induced salt intake is potentiated by 

treatments that decrease oxytocin secretion, including systemic injection of deoxycorticosterone 

(104) or ethanol (105), and is also potentiated by destruction of central neurones bearing 

oxytocin receptors (106) (107) and by pretreatment with an oxytocin antagonist (108). In rats, 

sodium depletion evokes a powerful and selective sodium appetite, and many studies have shown 

that centrally administered oxytocin inhibits this, as do many physiological stimuli that increase 

oxytocin secretion, such as dehydration or salt loading. Naloxone, which augments stimulated 

oxytocin secretion, inhibits salt appetite induced by colloid treatment, and this is abolished by 

i.c.v. pretreatment with an oxytocin receptor antagonist (103). It has also been proposed that the 

neuropeptide adrenomedullin inhibits salt appetite via its effects on oxytocin release (109). Thus 

there is extensive evidence that, in rats, central release of oxytocin suppresses salt appetite: an 

effect complementing its peripheral natriuretic action.

The sites at which oxytocin modulates salt appetite may include the AV3V region itself, 

as the OVLT contains oxytocin fibres (104), and there is electrophysiological evidence that some 

magnocellular neurones of the supraoptic nucleus project to that region (110). Another key site is 

the parabrachial nucleus, where oxytocin receptor-expressing neurones have been implicated in 

the regulation of water and saline intake (111, 112).

Food intake. Salt appetite is a conspicuous feature of animals whose diet is mainly 

vegetarian, and which may accordingly have difficulty in gaining enough sodium in their diet to 

meet their needs. Humans, by contrast, do not exhibit a strong salt appetite even in conditions of 

hyponatremia. However, oxytocin is involved in the regulation of food intake more generally. 

Both oxytocin cells and vasopressin cells are activated acutely by food ingestion (113, 114). This 

might be an anticipatory response to the electrolyte imbalance that will arise from solute intake, 

but oxytocin has a now well-established central role in energy balance: in rats it suppresses 

voluntary intake of sweet carbohydrates, and in mice it promotes energy expenditure and 

thermogenesis (115). The oxytocin cells of the rat supraoptic nucleus express insulin receptors 
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and glucokinase, and are activated by both glucose and insulin (116). They also express receptors 

for leptin and insulin, as well as for many anorectic peptides released from the brain itself, such 

as α-MSH (melanocyte stimulating hormone) (117), and they are activated by systemic 

administration of leptin, secretin and cholecystokinin (CCK) (115, 118, 119). The effects of 

CCK (120) and probably those of secretin too are mediated by activation of gastric vagal 

afferents that lead to activation of neurones in the nucleus tractus solitarii (NTS) (121), including 

the noradrenergic A2 cells that project directly to oxytocin cells. Oxytocin cells are also 

activated during voluntary food intake (113), by intragastric gavage of the dietary amino acid L-

tryptophan (122), and by gavage of sweet energy dense food, but interestingly they are inhibited 

by gavage of isocaloric cream (123). Many secreted peptides are co-expressed with oxytocin 

and/or vasopressin, and some of these, like nesfatin (124, 125) CCK (126), galanin-like peptide 

(127) and pituitary adenylate cyclase activating polypeptide (PACAP) (128) have anorectic 

effects that may support the anorectic effects of oxytocin at central sites. The central sites at 

which oxytocin exerts its effects on feeding are likely to include the ventromedial nucleus of the 

hypothalamus (115) and the central amygdala, two sites that express oxytocin receptors densely; 

the central amygdala is involved in salt appetite (129) as well as more generally in food intake 

(130) and receives a projection from magnocellular oxytocin cells (131). Thus the roles of 

central oxytocin on appetite go far beyond the regulation of salt intake.

Allostasis.

The well-established principle of physiology is that homeostasis maintains a constant internal 

environment, and theoretical models have envisaged a ‘set-point’ that a control system aims at 

maintaining. However, controlled variables vary with functional demand and environment, while 

control mechanisms are expected to settle at a level that uses least energy to resolve challenges- 

i.e. allostasis, or stability through change, including in anticipation of future demands (132). 

Anticipatory changes in vasopressin secretion and thirst  occur in response to water intake in 

advance of any change in plasma [Na+] (133, 134), thirst (135) is activated independently of 

plasma [Na+] by circadian cues mediated by a projection from the suprachiasmatic nucleus to the 

OVLT, and the osmoresponsiveness of magnocellular neurones is also modulated by a circadian 

input (136).
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During chronic dehydration or salt loading there are extensive changes to the 

magnocellular system, as apparent from analyses of the transcriptome of the rat supraoptic 

nucleus (137-139). The changes include hypertrophy of the magnocellular neurones, increased 

synthesis of their products, intracellular machnery and various transcription factors, a re-

organisation of the neurone-glial architecture(140), and increased expression of the gaseous 

transmitters nitric oxide and carbon monoxide (141).

Allostasis in pregnancy. Allostatic adaptations also accompany pregnancy. While normal 

homeostatic mechanisms serve to maintain a constant blood volume, a constant electrolyte 

composition of the blood and a stable body weight, pregnancy requires an expanded blood 

volume to support the metabolic demands of the growing fetus and an expansion of fat mass in 

preparation for meeting the nutritional demands of the newborn (142). To accommodate these 

requires a re-setting of these homeostatic set points, and this involves a complex array of 

adaptations that affect the oxytocin cells (137, 143-146).

Resetting of the set-points for volume and electrolyte balance arises in part from the 

actions on the subfornical organ and OVLT of relaxin, a peptide hormone produced by corpora 

lutea in pregnancy in increasing amounts as pregnancy progresses. Circulating relaxin stimulates 

both water intake (147) and vasopressin secretion via its actions on the AV3V region, and the 

combination of increased water intake and increased water retention contribute to a dilutional 

expansion of plasma volume with accompanying hyponatremia (148). This reduces plasma 

osmolality to below the normal set point for osmotic stimulation of oxytocin and vasopressin 

secretion (149). However, a reduction in the activity of oxytocin cells would entail a reduction in 

oxytocin synthesis, as observed with experimentally induced hyponatremia – and this would not 

be desirable, as the pituitary stores of oxytocin need to be expanded in preparation for the 

demands of parturition and subsequent lactation. However, relaxin also stimulates oxytocin 

neuronal activity (150), maintaining the normal level of synthesis. At the same time, oxytocin 

secretion needs to be restrained, both to minimise natriuresis and to help expand the pituitary 

store of oxytocin. This is achieved through another adaptation of pregnancy, involving the opioid 

peptide dynorphin.

Autoregulation of oxytocin secretion by dynorphin. Both magnocellular vasopressin cells 

and oxytocin cells co-express dynorphin, which acts at κ-opioid receptors on the cells of origin. 

In vasopressin cells, somato-dendritic release of dynorphin has a role in the phasic patterning of 
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spike activity (151), but in oxytocin cells dynorphin is an inhibitory feedback regulator of 

secretion from the pituitary, and upregulation of dynorphin expression in pregnancy contributes 

to the accumulation of pituitary oxytocin content in preparation for parturition (39). Excitation of 

the nerve terminals in the posterior pituitary releases dynorphin along with oxytocin, and this 

normally restrains activity-dependent secretion (152, 153).This effect is enhanced in early 

pregnancy, contributing to the accumulation of pituitary oxytocin content, but towards the end of 

pregnancy, it fades to leave action potentials more effective in stimulating oxytocin secretion 

(152).

In the pregnant rat, oxytocin cells will barely respond to modestly increased plasma 

[Na+]; if the actions of dynorphin at the nerve terminals are blocked by the opioid antagonist 

naloxone, the response is enhanced, but is still weaker than in virgins (Figure 4). However, if 

plasma [Na+] is further increased, the response is greater in late pregnant rats than in virgins 

(154); hence, in late pregnancy plasma [Na+] is reduced below the threshold to stimulate 

oxytocin cells, but above this threshold the gain of their response is increased, probably as a 

reflection of the increased oxytocin store.

Central opioid mechanisms. Towards the end of pregnancy, the restraining influence of 

dynorphin wanes, but the activity of oxytocin cells must still be kept in check until the birth 

canal is ready for parturition. This check is effected by inhibition of oxytocin cell activity by 

opioid peptides that act at µ-opioid receptors. This involves opioid actions on afferent inputs to 

the oxytocin cells from the caudal brainstem (155), and might also involve direct actions, 

possibly by an input from arcuate nucleus β-endorphin neurones (156).

Increased food intake is an appropriate adaptation in late pregnancy, The mechanisms are 

complex (157), but decreased stimulation of oxytocin cells by appetite-related signals might be a 

contributing factor (158). Oxytocin cells are directly innervated by A2 noradrenergic neurones of 

the NTS, and this pathway is activated by gastric distension and by systemic administration of 

the gut hormone cholecystokinin (CCK). The A2 projection also carries inflammatory signals, 

and information from the contracting uterus (37), though whether these are conveyed through the 

same A2 neurones or different subsets is not known. Certainly the A2 cell group as a whole is 

functionally heterogeneous, as CCK preferentially activates Fos expression in the subset that 

projects to the supraoptic nucleus (120). The noradrenergic nerve terminals are regulated 

presynaptically by an opioid peptide that acts at µ-opioid receptors (159). As A2 neurones co-
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express both pro-enkephalin-A and µ-opioid receptor mRNAs (160), it seems likely that this 

reflects an autoregulatory brake on noradrenaline release analogous to the dynorphin brake on 

oxytocin secretion from the pituitary. In late pregnancy there is increased expression of both pro-

enkephalin-A and µ-opioid receptor mRNAs in the NTS (160), and at this time (but not in virgin 

rats or in lactation (161)), naloxone enhances the activation of oxytocin cells by CCK (155). 

Thus, in late pregnancy, there is enhanced opioid restraint of the noradrenergic projection.

We measured oxytocin secretion in response to different stimuli in virgin and late pregnant rats, 

and in these experiments we blocked all opioid actions by pretreating the rats with naloxone 

(Figure 4). Both AV3V stimulation and i.p. hypertonic saline stimulated oxytocin secretion less 

effectively in late pregnant rats, seeming to suggest a reduction in the drive by AV3V inputs, 

while oxytocin secretion in response to CCK or interleukin-1β (IL-1β) was greater, suggesting 

that the brainstem input to the oxytocin cells is more effective. However, the reduced response to 

an osmotic challenge at least in part reflects the chronic hyponatremia that is present in late 

pregnancy, and this might also affect the response to AV3V stimulation. Moreover, the enhanced 

response to CCK and IL-1β in part reflect the increase in the availability of oxytocin for activity 

dependent release that results from the accumulation of pituitary content that occurs in 

pregnancy. What we see from such experiments is that pregnancy entails multiple changes in the 

oxytocin system, changes in the oxytocin cells themselves, in their inputs, and in stimulus –

secretion coupling at the nerve terminals; some of these alter the responsiveness of oxytocin 

secretion to particular input(s), but other changes are necessary to maintain normal 

responsiveness. 

Allopregnanolone. In considering what might drive the expression of pro-enkephalin-A 

mRNA in the NTS in pregnancy, we ruled out progesterone, having found very few neurones 

expressing the progesterone receptor in the NTS (162). However, the high levels of progesterone 

in pregnancy are associated with increased levels of its metabolite allopregnanolone in the 

circulation and in the brain. Allopregnanolone is an allosteric modulator of GABAA receptors, 

prolonging their opening time when activated by GABA, and in late pregnancy this also 

enhances GABAergic inhibition of oxytocin cells (163, 164). Expression of mRNA for 5α-

reductase, the rate-limiting enzyme in allopregnanolone production, is increased in late 

pregnancy, and blocking this enzyme with finasteride reduces pro-enkephalin-A expression in 

the NTS (165).
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The consequences of this can be seen by studying oxytocin release in response to 

systemic administration of IL-1β; this increases the firing rate of oxytocin cells in virgin rats, but 

not in late pregnant rats unless naloxone is given just before IL-1β (166). Similarly IL-1β 

increases Fos expression in virgin but mot pregnant rats, and again the responsiveness to IL-1β is 

rescued by pre-treatment with naloxone, or by blocking allopregnanolone production with 

finasteride. Conversely allopregnanolone treatment of virgin rats suppresses the responsiveness 

of oxytocin neurones to IL-1β (167).

Allopregnanolone also moderates the functional effect of oxytocin in the spinal cord. The 

spinal cord receives a dense projection from a small population of oxytocin neurones in the 

paraventricular nucleus (168), and this pathway modulates pain sensitivity. Oxytocin-induced 

analgesia in the spinal cord appears to be mediated in part at least by activation of GABA 

release, and its effectiveness is amplified by the actions of allopregnanolone (169).

The evolution of magnocellular neurones

Oxytocin and vasopressin arose by duplication of the vasotocin gene at around the time 

of appearance of the earliest vertebrates. Most modern vertebrates have at least two oxytocin- 

and vasopressin-like peptides, while most invertebrates – including mollusks, annelids and many 

insects (170, 171) - have only one. 

Fishes. The earliest vertebrate fossils are of jawless fish, like modern lampreys, and 

lampreys have only one peptide that is like oxytocin and vasopressin, vasotocin. Jawed fish, a 

category that includes cartilaginous fish and bony fish, appeared about 440 million years ago and 

all living jawed fishes have vasotocin and an oxytocin-like peptide. Bony fish all have vasotocin 

and isotocin, and include ray-finned fish and lobe-finned fish (such as lungfish). Amphibians, 

mammals, reptiles, and birds evolved from lobe-finned fish and all have at least one homolog of 

oxytocin and one of vasopressin.

In ray-finned fishes, vasotocin is involved in osmoregulation and isotocin in regulating 

electrolyte concentration, so it appears that, in the aquatic vertebrates where vasotocin and 

isotocin first appeared as distinct hormones, both were involved in water and electrolyte balance; 

they may also have been involved in reproduction, the timing of which is generally tied to 

environmental conditions. In bluehead wrasse, vasotocin influences social behavior and is 

regulated by sex steroids: (172). In medaka, isotocin expression is up-regulated selectively in 
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male brains by gonadal androgens (173, 174). In goldfish, isotocin is a regulator of food intake 

(175).

Out of water. In land vertebrates, isotocin evolved into mesotocin by a single amino acid 

substitution and from mesotocin into oxytocin by another. Vasotocin evolved into vasopressin; 

again with a single amino acid substitution. Thus vasopressin and oxytocin arose through 

duplication of the vasotocin gene in a species of jawless fish that lived about 400 million years 

ago. When a gene is duplicated, one copy can maintain the original function, leaving the other 

free to mutate, and diverge, as happened here.

Receptors. Pituitary or peripherally released peptides cannot be anatomically confined — 

once released, they can diffuse or be conveyed by the blood, hemolymph, or extracellular fluid to 

distant sites; accordingly, for co-existing descendants of such a peptide to acquire differentiated 

functions, they must act at different receptors. The Cambrian explosion involved two episodes of 

whole genome duplication, and these separated V1a, V1b and oxytocin receptors; V2 receptors 

had apparently already separated from an ancestor of the V1 receptor family in an earlier gene 

duplication (176, 177).

Passwords for separate cell expression. When the vasotocin gene was duplicated, there 

were thus already two families of receptors present that could allow the functions of descendant 

peptides to diverge. However, for those functions to diverge, vasopressin and oxytocin had to be 

expressed in different cells. Every cell type has a molecular “password,” a combination of 

transcription factors that determine its identity, and genes with regulatory elements that 

recognize this password will be expressed in those cells (178). Murphy et al. (179) produced 

transgenic rats by inserting 40,000 bases of pufferfish DNA that included the isotocin gene. In 

these rats, isotocin was expressed only in oxytocin cells, and, in response to dehydration, 

expression of both isotocin and oxytocin were stimulated in a similar way. Thus mammalian 

oxytocin cells must have the same password as isotocin cells in fish, a password that arose early 

in vertebrate evolution and which has been conserved through subsequent evolution. Equally, the 

regulatory elements of oxytocin-like genes must also have appeared early in vertebrate evolution. 

In effect, the Cambrian explosion resulted in a duplication of the vasotocin cells, allowing these 

two sets of cells to diverge in function.

Conclusions
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Oxytocin and vasopressin cells arose by duplication of a cassette of genes that defined a 

common neuronal phenotype, a phenotype that can be traced back to Urbilateria, hypothesized 

marine organisms that are proposed to be the last common ancestor of vertebrates, flies, and 

worms. In Urbilateria, cells that secreted a peptide ancestor of vasotocin apparently responded to 

diverse cues from their marine environment. These cells combined properties that we have 

thought of as separate properties of endocrine cells and neurons. They used a diversity of 

signaling mechanisms, made both peptides and neurotransmitters, and were endowed with a wide 

range of specialized senses, linking feeding, reproduction and internal homeostasis, to external 

conditions. They were not committed to a single role, but integrated multiple behavioral and 

physiological functions. In the nematode C. elegans, nematocin, a homolog of oxytocin and 

vasopressin, is critically involved in gustatory associative learning – the process by which 

nematode behaviour is modified by a learned association of salt and food availability (180).

Magnocellular neurones communicate with each other, with other neurones, and with 

other cells including glial cells. This communication involves many different messengers, 

including oxytocin and vasopressin but also other peptides including dynorphin that are co-

packaged in the same vesicles as oxytocin and vasopressin, nitric oxide and prostaglandins that 

are produced de novo, and other neuromodulators such as adenosine (151). The release of these 

messengers is governed differentially; the rules that link neuronal activity to release vary 

according to the messenger concerned, and they differ between different sites of release within 

the same neurone, differ according to physiological state, and differ between oxytocin cells and 

vasopressin cells.

All magnocellular neurones express vesicle glutamate transporter-2 (181), indicating that 

they use glutamate as a conventional neurotransmitter at synaptic terminals. While all 

magnocellular neurones project to the posterior pituitary, subpopulations project to various 

central sites including the nucleus accumbens, the hippocampus, the amygdala, and the bed 

nucleus of the stria terminalis (182). Oxytocin receptors are expressed at these sites but also at 

many sites in the brain that receive few if any oxytocin fibres. It seems likely that within the 

brain, oxytocin cells release glutamate at synapses in the manner typical of neurotransmitters, but 

also release occasional vesicles containing oxytocin from axonal varicosities, to act as a local 

neuromodulator (183-188).
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Vasopressin and oxytocin are released not only from nerve terminals in response to spike 

activity but also from the soma and dendrites in response to the mobilization of intracellular Ca2+ 

(189). Considerable amounts of peptide can be released from the dendrites; the oxytocin that is 

released from dendrites during suckling has a key role within the nucleus in generating milk-

ejection bursts (190), but there is also considerable dendritic oxytocin release during parturition 

and sexual activity, and this appears to have a neurohormonal action at relatively distant sites to 

influence social behaviours (189, 191) 

Like oxytocin, vasopressin has many behavioural effects. The role of magnocellular 

vasopressin cells is less well explored, but they are also active during feeding (114) and appear 

to have an anorectic action (192, 193). However, vasopressin is not only expressed in 

magnocellular neurones, but also in parvocellular neurones of the paraventricular nucleus that 

regulate the stress axis, in neurones of the suprachiasmatic nucleus that regulate circadian 

rhythms (194), and in diverse other populations, including in the olfactory bulbs (195) and retina 

(196). Accordingly, the behavioural roles of vasopressin might reflect compartmentalisation of 

function in different subsets of neurones. However, oxytocin cells do not allow this explanation: 

these are found only in the hypothalamus, and in the rat at least, only a few project exclusively 

within the brain (182), mainly to the dorsal vagal complex to regulate gastric reflexes and to the 

spinal cord to modulate penile erection and pain responses.

Thus we have to abandon any notion that oxytocin has a single function or even a single 

‘main’ function. We must acknowledge that oxytocin cells are intrinsically multi- functional. 

Throughout their evolutionary history there has been co-evolution of the oxytocin system and its 

inputs to maintain that multi-functionality, and evolution of mechanisms that allow that multi-

functionality to be adapted to meet changing physiological states. This means that we cannot 

interpret physiological changes in neuronal properties in isolation, but only in the context of 

everything else in the system that has changed. We cannot escape the necessity of building a 

systems level understanding to understand the importance of cellular properties.
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Figure Legends

Figure 1. The osmoresponsiveness of magnocellular neurones.

A. Response of a vasopressin cell of the rat supraoptic nucleus to systemic osmotic stimulation in 

a urethane-anaesthetised rat. The graph plots the firing rate in 1-min bins during continuous i.v. 

infusion of 1 M NaCl at 26 µl/min for more than 2 h. The protocol was similar to that in Leng et 

al. (41), but a lower concentration of NaCl was used over a longer time. The data are from 

unpublished experiments with Nancy Sabatier used to support the development of a 

computational model (42). The extracts of spike activity in B-D are from at the beginning of 

infusion (B); after 4000 s (C); and after 8000 s (D). They show the evolution of intense phasic 

activity in C, and then of continuous fast spiking activity in D. The minute-by-minute variability 
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of firing rate reflects the intermittent phasic firing pattern, but note the linear rise in mean rate 

over the duration of infusion.

E. The osmoresponsiveness of magnocellular neurons involves an increase in afferent input and a 

direct osmosensitive mechanism. Here in a simple simulation, a fluctuating membrane potential 

around a mean level 9 mV below the spike threshold (indicated by the red lines) is mimicked by 

a randomly generated sequence of simplified EPSPs and IPSPs, each with an amplitude of 3 mV 

and a half-life of 5 ms, arriving at an equal mean rate of 100 Hz. None of the fluctuations cross 

the spike threshold. If the spike threshold is reduced by 2 mV (green line) mimicking the effects 

of a 2 mV direct depolarization, just one of the fluctuations crosses the threshold (green asterisk). 

Thus at this level of synaptic input, a small direct depolarization has little effect on spiking 

activity.

F, In this case, the mean input rate for both EPSPs and IPSPs is 200 Hz. Now, the fluctuations 

exceed the spike threshold on three occasions (red asterisks), and a depolarization of 2 mV 

results in an additional 11 threshold crossings. Thus in the presence of sufficient synaptic input, 

small levels of direct depolarisation can have a large effect on the spiking activity of 

magnocellular neurones.

Figure 2. GABA inputs to vasopressin cells.

In these experiments, single vasopressin cells were recorded from the supraoptic nucleus of a 

urethane-anaesthetised rat, and single electrical stimuli were applied to the OVLT every 5 s. 

A. The experimental set-up. The supraoptic nucleus was exposed by ventral surgery, a 

stimulating electrode was placed on the neural stalk to allow supraoptic neurons to be 

antidromically identified, a microdialysis loop was placed on the ventral surface of the nucleus to 

allow direct application of the GABA antagonist bicuculline, and a stimulating electrode was 

placed on the OVLT.

B shows interspike interval (ISI) distributions compiled over 1200 s of activity before (orange) 

and after (blue) bicuculline, showing the resultant increase in mean activity.

C shows mean spike activity before (above) and below (during) bicuculline.

D shows the response to OVLT stimulation before (orange) and after (blue) bicuculline as post-

stimulus time histograms (in 1-ms bins) constructed over the periods shown in D. In this cell, 
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OVLT stimulation produced a marked inhibition; bicuculline blocked this inhibition and 

unmasked an excitatory response. See (74) for details.

E shows the difference between the two histograms in D, showing the inferred inhibitory effects 

of OVLT stimulation by subtracting the excitatory effects (blue in D) from the mixed effects 

(orange in D), indicating that in this cell, the inhibitory effects of OVLT stimulation have a 

latency of onset of about 20-30 ms.

Figure 3. The main regulators of osmoresponsiveness in oxytocin cells.

In the rat, extracellular osmotic pressure and increased [Na+] are sensed both by magnocellular 

neurons and by cells in the subfornical organ (SFO) and OVLT. Cells in the SFO and OVLT are 

also responsive to changes in the circulating levels of a number of blood-borne hormones that 

have important effects on fluid and electrolyte homeostasis. Cells in the OVLT and SFO project 

directly to the magnocellular neurons, and this direct projection involves the excitatory 

transmitter glutamate and various peptides. They also project indirectly via the nucleus 

medianus, and this projection involves the inhibitory transmitter GABA. Astrocytes in the 

supraoptic nucleus release taurine in response to hypotonic stimulation, and this inhibits via 

action at glycine receptors on the supraoptic neurons. The GABA-ergic inputs are amplified by 

nitric oxide, produced by oxytocin cells in an activity-dependent manner (82), and the 

glutamatergic inputs are moderated by endocannabinoids, also produced by oxytocin cells in an 

activity-dependent manner (83). Oxytocin release is autoregulated by dynorphin at the level of 

the nerve terminals in the pituitary. In pregnancy, allopregnanolone enhances the inhibitory 

effects of GABA, and there is upregulation of both dynorphin expression and down regulation of 

nitric oxide synthase activity (84).

Figure 4. Oxytocin cell responses in pregnancy

A. In pregnancy, endogenous opioids suppress oxytocin secretion. In these experiments we 

blocked all opioid actions by pretreating the rats with naloxone to assess opioid-independent 

changes in the responsiveness of the oxytocin system. Responses were measured in virgin (black 

bars) and late pregnant rats (day 21, blue bars). The bars show increases in plasma oxytocin 

concentration (S.E.M.) above basal levels in response to different stimuli. Changes were 

measured in anaesthetized rats after electrical stimulation of the AV3V region; hypertonic saline, 
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CCK; and in conscious rats following IL-1β. Both AV3V stimulation and hypertonic saline 

stimulated oxytocin secretion less effectively in late pregnant rats. Conversely, oxytocin 

secretory responses to CCK and IL-1β are greater in late pregnant rats. See (149) for details.

B. Responses of oxytocin cells to CCK (firing rate in 1-min bins above mean basal level) were 

measured in the same cells before (blue symbols) and after (yellow symbols) naloxone 

administration in virgin rats and on days 16 and 21 of pregnancy. Note that responses to CCK are 

increased in pregnancy, but on day 21 there is an opioid suppression of the input. See (155) for 

details.
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Figure 1. The osmoresponsiveness of magnocellular neurones. 
A. Response of a vasopressin cell of the rat supraoptic nucleus to systemic osmotic stimulation in a 

urethane-anaesthetised rat. The graph plots the firing rate in 1-min bins during continuous i.v. infusion of 1 
M NaCl at 26 µl/min for more than 2 h. The protocol was similar to that in Leng et al. (39), but a lower 

concentration of NaCl was used over a longer time. The data are from unpublished experiments with Nancy 
Sabatier used to support the development of a computational model (40). The extracts of spike activity in B-
D are from at the beginning of infusion (B); after 4000 s (C); and after 8000 s (D). They show the evolution 

of intense phasic activity in C, and then of continuous fast spiking activity in D. The minute-by-minute 
variability of firing rate reflects the intermittent phasic firing pattern, but note the linear rise in mean rate 

over the duration of infusion. 
E. The osmoresponsiveness of magnocellular neurones involves an increase in afferent input and a direct 
osmosensitive mechanism. Here in a simple simulation, a fluctuating membrane potential around a mean 
level 9 mV below the spike threshold (indicated by the red lines) is mimicked by a randomly generated 

sequence of simplified EPSPs and IPSPs. These are given an amplitude of 3 mV and a half-life of 5 ms, and 
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arrive at an equal mean rate of 100 Hz for 5 s. None of the fluctuations cross the spike threshold. If the 
spike threshold is reduced by 2 mV (green line) mimicking the effects of a 2 mV direct depolarization, just 
one of the fluctuations crosses the threshold (green asterisk). Thus at this level of synaptic input, a small 

direct depolarization has little effect on spiking activity. 
F, In this case, the mean input rate for both EPSPs and IPSPs is 200 Hz. Now, the fluctuations exceed the 
spike threshold on three occasions (red asterisks), and a depolarization of 2 mV results in an additional 11 

threshold crossings (green asterisks). Thus in the presence of sufficient synaptic input, small levels of direct 
depolarisation can have a large effect on the spiking activity. 
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Figure 2. GABA inputs to vasopressin cells. 
In these experiments, single vasopressin cells were recorded from the supraoptic nucleus of a urethane-

anaesthetised rat, and single electrical stimuli were applied to the OVLT every 5 s. 
A. The experimental set-up. The supraoptic nucleus was exposed by ventral surgery, a stimulating electrode 

was placed on the neural stalk to allow supraoptic neurons to be antidromically identified, a microdialysis 
loop was placed on the ventral surface of the nucleus to allow direct application of the GABA antagonist 

bicuculline, and a stimulating electrode was placed on the OVLT. 
B shows interspike interval (ISI) distributions compiled over 1200 s of activity before (orange) and after 

(blue) bicuculline, showing the resultant increase in mean activity. 
C shows mean spike activity before (above) and below (during) bicuculline. 

D shows the response to OVLT stimulation before (orange) and after (blue) bicuculline as post-stimulus time 
histograms (in 1-ms bins) constructed over the periods shown in D. In this cell, OVLT stimulation produced a 

marked inhibition; bicuculline blocked this inhibition and unmasked an excitatory response. See (74) for 
details. 
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E shows the difference between the two histograms in D, showing the inferred inhibitory effects of OVLT 
stimulation by subtracting the excitatory effects (blue in D) from the mixed effects (orange in D), indicating 

that in this cell, the inhibitory effects of OVLT stimulation have a latency of onset of about 20-30 ms. 
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Figure 3. The main regulators of osmoresponsiveness in oxytocin cells. 
In the rat, extracellular osmotic pressure and increased [Na+] are sensed both by magnocellular neurones 

and by cells in the subfornical organ (SFO) and OVLT. Cells in the SFO and OVLT are also responsive to 
changes in the circulating levels of a number of blood-borne hormones that have important effects on fluid 
and electrolyte homeostasis. Cells in the OVLT and SFO project directly to the magnocellular neurones, and 
this direct projection involves the excitatory transmitter glutamate and various peptides. They also project 

indirectly via the nucleus medianus, and this projection involves the inhibitory transmitter GABA. Astrocytes 
in the supraoptic nucleus release taurine in response to hypotonic stimulation, and this inhibits via action at 
glycine receptors on the supraoptic neurones. The GABA-ergic inputs are amplified by nitric oxide, produced 

by oxytocin cells in an activity-dependent manner (80), and the glutamatergic inputs are moderated by 
endocannabinoids, also produced by oxytocin cells in an activity-dependent manner (81). Oxytocin release is 

autoregulated by dynorphin at the level of the nerve terminals in the pituitary. In pregnancy, 
allopregnanolone enhances the inhibitory effects of GABA, and there is upregulation of both dynorphin 

expression and down regulation of nitric oxide synthase activity (82). 
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Figure 4. Oxytocin cell responses in pregnancy. 
A. In pregnancy, endogenous opioids suppress oxytocin secretion. In these experiments we blocked all 

opioid actions by pretreating the rats with naloxone to assess opioid-independent changes in the 
responsiveness of the oxytocin system. Responses were measured in virgin (black bars) and late pregnant 
rats (day 21, blue bars). The bars show increases in plasma oxytocin concentration (S.E.M.) above basal 

levels in response to different stimuli. Changes were measured in anaesthetized rats after electrical 
stimulation of the AV3V region; hypertonic saline, CCK; and in conscious rats following IL-1β. Both AV3V 

stimulation and hypertonic saline stimulated oxytocin secretion less effectively in late pregnant rats. 
Conversely, oxytocin secretory responses to CCK and IL-1β are greater in late pregnant rats. See (142) for 

details.
B. Responses of oxytocin cells to CCK (firing rate in 1-min bins above mean basal level) were measured in 
the same cells before and after naloxone administration in virgin rats and on days 16 and 21 of pregnancy. 
Note that responses to CCK are increased in pregnancy, but on day 21 there is an opioid suppression of the 

input. See (148) for details. 
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