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Abbreviations 

Alzheimer’s disease (AD); Amyloid beta (Aβ); Apolipoprotein E (APOE); Disease Associated Microglia 

(DAM); Glial fibrillary acidic protein (GFAP); Human Leukocyte Antigen-DR (HLA-DR); Interleukin 1β 

(IL-1β); Interleukin 6 (IL-6); Lipopolysaccharide (LPS); Macrophage Scavenger Receptor-A (MSR-A); 

Oligomeric amyloid beta (oAβ); Prostaglandin E2 (PGE2); Triggering Receptor Expressed on Myeloid 

cells 2 (TREM2); Tumour Necrosis Factor α (TNF- α) 

 

Short running title 

Review of APOE in Alzheimer’s disease pathogenesis 

 

Abstract 

Despite more than a century of research, the aetiology of sporadic Alzheimer’s disease (AD) remains 

unclear and finding disease modifying treatments for AD presents one of the biggest medical 

challenges of our time. AD pathology is characterised by deposits of aggregated amyloid beta (Aβ) in 

amyloid plaques and aggregated tau in neurofibrillary tangles. These aggregates begin in distinct 

brain regions and spread throughout the brain in stereotypical patterns. Neurodegeneration, 

comprising loss of synapses and neurons, occurs in brain regions with high tangle pathology, and an 

inflammatory response of glial cells appears in brain regions with pathological aggregates. Inheriting 

an apolipoprotein E ε4 (APOE4) allele strongly increases the risk of developing AD for reasons that 

are not yet entirely clear.  Substantial amounts of evidence support a role for APOE in modulating 

the aggregation and clearance of Aβ, and data have been accumulating recently implicating APOE4 

in exacerbating neurodegeneration, tau pathology and inflammation. We hypothesise that APOE4 

influences all the pathological hallmarks of AD and may sit at the interface between 

neurodegeneration, inflammation and the spread of pathologies through the brain. Here we 

conducted a systematic search of the literature and review evidence supporting a role for APOE4 in 

neurodegeneration and inflammation.  While there is no direct evidence yet for APOE4 influencing 

the spread of pathology, we postulate that this may be found in future based on the literature 

reviewed here. In conclusion, this review highlights the importance of understanding the role of 

APOE in multiple important pathological mechanisms in AD. 
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Introduction 

 

The greatest genetic risk factor for sporadic AD is a polymorphism in the apolipoprotein E (APOE) 

gene. The APOE 4 (APOE4) allele is associated with increasing risk of AD in a dose-dependent 

manner when compared to the more common APOE 3 (APOE3) allele; whereas the much rarer 

APOE 2 (APOE2) allele has been shown to be protective [1].  The inheritance of two copies of 

APOE4 increases the chance of developing AD by 12 times compared to the risk of a person with two 

copies of APOE3. Homozygous APOE4 carriers who develop AD also have a lower average age of 

clinical onset of 68 years of age compared to an average age of onset of 84 for an individual with two 

copies of APOE3. One copy of APOE4 increases the chance of AD by 3 times and lowers the average 

age of onset to 76 years of age [1]. Although mentioned in association with AD most frequently, 

APOE has also been linked to Parkinson’s Disease [2], Frontotemporal dementia [3] and other 

neurological diseases (reviewed in [4]) as well as linked to lower cognition in non-demented aged 

individuals [5]. The pathways by which APOE impacts the development of AD have been widely 

studied both in vitro and in vivo however the exact mechanisms have yet to be uncovered. 

 

Much of the work looking at APOE in AD investigates its relationship with Aβ. Early post mortem 

work found a positive correlation between APOE4 allele dose and Aβ plaque density in individuals 

with AD [6]. A wide range of compelling studies indicate that APOE4 affects the production, 

clearance and aggregation of Aβ (reviewed in [4,7]).  Recent genetic data that strongly suggest 

inflammation to play a role in AD risk have re-invigorated the investigations of the role of APOE in 

neuroinflammation and how this contributes to disease [8]; and there are emerging data suggesting 

that APOE may also influence tau-mediated neurodegeneration [9].   

 

We hypothesise that APOE4 acts beyond its well-known roles in influencing Aβ pathology and lipid 

homeostasis and has a strong influence on neurodegeneration, inflammation and potentially the 

spread of pathological proteins through the brain.  Here we conducted a systematic literature search 

and review the current support in the literature for this hypothesis. 
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Methods 

A systematic literature search approach was taken for finding studies to review in this paper. In 

February 2018, Embase, Web of Science and MedLine were searched to identify primary research 

articles published from 1980 to the date searches were run. Search terms covering APOE, AD and 

inflammation/pathological protein spread/neurodegeneration were developed (Supplemental Table 

1) to suit each database. Initially, there were no language or selection restrictions on the type of 

study included or how outcomes were defined, measured or when they were taken. Searches 

identified 22,909 abstracts and titles that were exported to Endnote, where 12,638 duplicates were 

removed. 10,271 articles were uploaded into Covidence, where a further 767 duplicates were 

removed. A two-stage screening strategy was conducted on titles/abstracts and then on full-texts 

using pre-determined exclusion criteria (Supplemental Table 2). Three researchers contributed to 

the abstract and title screening process such that 50% of abstracts/titles were screened by at least 2 

people and 50% by one. All full-text articles were double screened. Of the 9502 titles/abstracts 

screened, 214 progressed to full-text review and 88 studies were included. 20 hand-picked papers 

that were either published after the search date or were missed during the search but deemed 

pertinent to the review were also included as is standard practice for full systematic reviews (Figure 

1; Supplemental Table 3). In the results section, we synthesize the findings of the papers identified 

by the systematic search. Due to the heterogeneous nature of the studies, we did not perform 

standardised quality control checks of all of the papers, however all papers included were published 

in peer-reviewed journals. Because systematic reviews are designed to test evidence of an 

intervention and due to the inability to conduct formal quality control due to the many types of 

experiments reviewed, this is not a fully registered systematic review but instead uses some of the 

principles of systematic reviews to perform a systematic literature search and screen for relevant 

papers which we review.  

 

Results of the systematic literature search 

APOE and Neurodegeneration 

In order to determine whether there is evidence that APOE influences neurodegeneration search 

terms were used to identify papers containing both APOE and indicators of neuron and synapse loss 

(papers relating to APOE and neurodegeneration identified in the systematic search are coloured 

blue and orange in Supplemental Table 1). 
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APOE-related atrophy and neuronal loss in AD 

 

Imaging studies in AD populations repeatedly demonstrated possession of an APOE4 allele to be 

associated with more extensive atrophy in disease-specific brain regions such as the medial 

temporal lobe [3,11–23], although this was not universal [24,25]. This is unsurprising when 

considering that brain structures located here have clinical correlates to well-defined AD symptoms 

(e.g. memory impairments – hippocampus; altered emotional responses - amygdala), and that 

APOE4 carriers are at increased risk of developing these symptoms in the form of AD. APOE4-related 

atrophy of medial temporal lobe structures was suggested to occur in a gene-dose-dependent 

manner [15–17,19,21], with one study finding each APOE4 allele to impart a 4.8% reduction in 

hippocampal volume and a 3.8% reduction in amygdala volume [16]. In longitudinal studies, 

accelerated rates of hippocampal atrophy were associated with the APOE4 allele [13,22,26–29], 

although this was not always observed [30,31]. APOE4-related atrophy was also observed in the 

parietal cortex [3,13] and some prefrontal areas [3,12], although again these were not consistently 

reported and may be related to the inclusion of younger AD patients in these studies. 

 

Diffuse cerebral atrophy is a gross pathological feature of AD. Somewhat surprisingly, however, 

whole brain volume has been proposed to increase with increasing number of APOE4 alleles in AD 

patients [19,32]. Greater APOE4 allele dose was associated with larger volumes in the frontal lobes 

[11,17,20], although not always [12,14], which might potentially outweigh reductions in other brain 

regions and account for increased whole brain volume. Nonetheless, these studies indicate that the 

APOE4 allele selectively influences the topography of regional brain atrophy, and thus 

neurodegeneration, in AD.  

 

Studies of post-mortem human AD brain have identified neuronal loss in vulnerable brain regions to 

be characteristic of AD. From our literature search, determining whether APOE influences this was 

less clear. In the nucleus basalis, APOE4 was found to exacerbate neuronal loss [33], but have no 

impact in other studies [34,35]. These discrepancies may be due to the different methods employed 

in quantitation of neuronal loss and groups studied. APOE4 allele possession was also found to 

enhance neuronal loss in other subcortical structures [33,34], but have no effect on the CA1 region 

of the hippocampus or superior temporal sulcus [34,36].  
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In vivo and in vitro studies supported an association between APOE4 and neuronal degeneration. In 

aged mice expressing human APOE, those expressing APOE4 exhibited increased hippocampal and 

cortical atrophy compared to those expressing APOE3 [37,38]. In APOE4, but not APOE3 mice, 

activation of the amyloid cascade by inhibition of the Aβ degrading enzyme neprilysin was sufficient 

to induce degeneration of hippocampal and entorhinal cortex neurons, suggestive of a specific effect 

of APOE4 in exacerbating Aβ-related neuronal loss [39]. Isoform-specific effects of APOE on Aβ-

induced neurodegeneration were also suggested in vitro, with APOE3 and APOE2, but not APOE4, 

protecting hippocampal and cortical neurons from Aβ-induced neurotoxicity [40–42]. APOE4 has 

also been shown to exacerbate neurodegeneration in the absence of Aβ, instead operating through 

a tau-dependent mechanism [9].  

 

Animal studies support an isoform-specific role for APOE in the loss of GABAergic interneurons 

[43,44]. Mice expressing human APOE4 exhibited greater age-dependent loss of GAD67- and 

somatostatin-positive interneurons in the dentate gyrus compared to those expressing APOE3. 

Interestingly, loss of somatostatin immunoreactivity was exacerbated by APOE4 in the AD brain [45]. 

The detrimental effects of APOE4 on GABAergic interneurons was sex-dependent, only being 

observed in female mice [44]. This is interesting when considering APOE4 confers greater AD risk in 

females and some effects of APOE4 on regional brain atrophy are more prominent in females 

[16,18,21].  

 

In summary, there is strong evidence that APOE4 influences neuron loss in AD, however there are 

some conflicting reports and future well-powered, rigorous studies in both human brain and animal 

models are needed to fully understand the age, sex, and region-specific effects of APOE on neuron 

death. 

APOE-related synaptic and dendritic degeneration in AD 

Prior to the onset of neuronal loss in AD, extensive synapse loss and dendritic changes occur. These 

can be considered early neurodegenerative processes that contribute to synaptic and neuronal 

dysfunction, which pave the way for more generalised neurodegeneration later in the disease. In 

contrast to neuronal loss, synaptic and dendritic degeneration are dynamic processes, with the 

potential to be reversed if targeted early enough. Thus, it is important to consider the role of APOE 

in these changes. 
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Whether synapse loss associates with APOE genotype was the subject of a few studies identified by 

our search. Electron microscopy coupled with stereological counting in post-mortem tissue 

identified AD-related loss of synapses in the dentate gyrus, stratum radiatum of the CA1 region of 

the hippocampus and lamina III of the inferior temporal gyrus. However, this was not related to 

APOE status [46–48]. These findings contrast with results from aged APOE mice, which suggested 

APOE4 to be associated with a reduced number of synapses in the dentate gyrus [49]. Although not 

accounting for these discrepancies, it is worth noting that electron microscopy is limited by its ability 

to only quantify synaptic changes in small areas of tissue. Thus, its use for characterising changes in 

a disease that stereotypically results in widespread pathology may not be entirely representative.   

 

In AD, loss of the presynaptic vesicle protein, synaptophysin, is evident in various brain regions. In 

post-mortem studies, APOE genotype did not modulate synaptophysin levels in frontal or temporal 

regions [50,51] although a trend towards lower synaptophysin immunoreactivity was observed in AD 

patients with an APOE4 allele [50]. A further study of another presynaptic vesicle protein, Rab3a, 

also found no association of synapse loss with APOE genotype [52]. This contrasts with animal 

studies demonstrating that mice expressing human APOE4 alone or in concurrence with human 

amyloid precursor protein display increased age-dependent degeneration of synaptophysin-positive 

presynaptic terminals in the neocortex and hippocampus [53,54]. Preservation of synaptophysin-

positive presynaptic terminals in aged APOE4 mice has also been reported, however [55]. 

Contradictory results have also been reported in APOE KO mice, with both age-dependent 

reductions in synaptophysin-positive terminals [56] and no changes [57] observed.  

Although the findings discussed thus far tend to suggest that APOE4 does not contribute to synaptic 

degeneration, it is important to consider that techniques used may not be optimal for quantification 

of synapses or synaptic protein loss, and that many of these studies did not consider plaque 

proximity in the analyses which is known to drive substantial local synapse loss as will be discussed 

below. The axial resolution of even confocal microscopy is not sufficient to resolve individual 

synapses in standard tissue sections. In addition, immunoblotting is inferior to techniques that yield 

absolute synaptic protein concentrations. Indeed, using ELISA, pre-synaptic protein levels were 

found to be reduced in AD patients with an APOE4 allele, although only a trend towards reduction 

was seen for synaptophysin [58]. 
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A relatively recently described histological technique, array tomography, has been used to overcome 

some of the limitations associated with synapse quantification using other methods, offering a 

means for high-resolution characterisation of synapses in post-mortem tissue. Additionally, this 

approach avoids some issues associated with electron microscopy in that thousands of synapses can 

be analysed. Using this technique, synapse density was found to be specifically reduced within the 

‘halo’ surrounding amyloid plaques. In both AD human post-mortem tissue and a mouse model, this 

was isoform-specific, with APOE4 exacerbating peri-plaque synapse loss [59,60].  

 

APOE4-related peri-plaque synapse loss affects both pre- and post-synapses [59] and greater age-

induced reductions in post-synaptic proteins have been observed in AD mouse models expressing 

APOE4 compared to other isoforms [61]. Dendritic abnormalities, such as dystrophic neurites, 

alterations in dendrite complexity and loss of spines are widespread in AD. Considering that 

dendritic abnormalities are closely linked to synaptic dysfunction, and thus potentially synaptic 

degeneration, the effect of APOE here is relevant.  

 

The presence of dystrophic neurites are a neuropathological hallmark of AD and are exacerbated by 

APOE4 in AD mouse models when compared to other isoforms [59]. Such changes in dendritic 

morphology are predicted to alter synaptic function, and thus may influence degeneration. Indeed, 

neuritic degeneration requires the presence of APOE [62], with APOE4 mice showing increased age-

dependent loss of neocortical and hippocampal dendrites compared to APOE3 mice [53]. 

 

The density of dendritic spines, the post-synaptic site of over 90% of excitatory neurons, has 

consistently been shown to be reduced in the presence of APOE4 in cortex, hippocampus, entorhinal 

cortex and amygdala in vitro [63], in vivo [64–68] and in humans [68]. A reduction in dendrite length 

was also observed in APOE4 mice [66,67], which contributes to reduced connectivity. Interestingly, 

expression of APOE2 can rescue reduced spine density in AD mouse models [69]. The morphology of 

dendritic spines has also been suggested to be influenced by APOE, with APOE4 being associated 

with shorter spines and APOE2 with longer spines [64]. Additionally, APOE may influence spine 

morphology such that APOE4 specifically reduces the number of spines associated with learning and 

memory [65]. Finally, APOE4 is associated with reductions in dendritic arborisation and less 

complicated branching patterns, impacting on neuronal function [64,65,67]. 
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Collectively, these studies suggest that, in the context of dendritic and synaptic changes, APOE4 is 

less effective at maintaining synaptic and neuronal integrity in disease-specific brain areas than 

other isoforms, which likely contributes to synaptic and neuronal degeneration.  

 

Mechanisms of APOE-related neurodegeneration 

Dendritic, synaptic and neuronal degeneration are all influenced by APOE in an isoform-specific 

manner. However, the mechanisms by which APOE4 impacts neurodegeneration are not completely 

understood. Elucidating these mechanisms may enable the development of appropriate therapies, 

particularly in relation to APOE effects on synapses and dendrites, which have potential to be 

reversible. 

 

In vivo and in vitro studies suggested that APOE4 may drive neurodegeneration through an Aβ-

dependent mechanism [37,39–42]. Recent revisions of the amyloid hypothesis of AD, have 

suggested soluble oligomeric forms of Aβ (oAβ) to be the effectors of Aβ-induced degeneration, with 

APOE4 exacerbating oAβ-associated degeneration relative to other isoforms [41,42,70] (Figure 2) 

(details of participants in Figures 2-5 found in Supplementary Table 4). APOE and oAβ may act 

intracellularly to enact this degeneration, with APOE uptake into neurons correlating with neuronal 

death and intracellular accumulation of soluble Aβ [71]. APOE4-specific increases in intraneuronal 

oAβ have been suggested to drive neurodegeneration through impairments of mitochondria and 

lysosomes [39,72], although the role of intracellular Aβ remains hotly debated in the field. Isoform-

specific interactions between APOE and the C-terminal domain of soluble Aβ, or lack of in the case of 

APOE4, have also been suggested to influence the propensity for APOE4 to promote Aβ-mediated 

neuronal death [42]. Moreover, protection against oAβ-mediated synaptic loss by APOE3 has been 

suggested to be mediated by a novel intracellular protein kinase C pathway, which is not activated 

by APOE4 [70]. 

APOE and oAβ may also act extracellularly to impact neurodegeneration. Interestingly, oligomeric 

forms of Aβ are increased in the ‘halo’ surrounding plaques , an area where synaptic degeneration is 

exacerbated by APOE4 [59,60]. Mechanistically, APOE4 might exacerbate peri-plaque synapse loss 

by facilitating the association of oAβ with synapses where it is toxic, thus resulting in synapse loss 

[60].  
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While APOE certainly influences Aβ-dependent neurodegeneration, it is becoming increasingly clear 

that there are other mechanisms by which APOE influences degeneration (Figure 3). For example, in 

mice expressing a form of mutant human tau associated with frontotemporal dementia, co-

expression of human APOE4 led to a drastic increase in neurodegeneration compared to that seen 

with other APOE isoforms. APOE was necessary for this tau-mediated neuronal death to occur [9], 

suggestive of APOE exerting a neurodegenerative effect through tau. APOE4 has also been shown to 

impair  GABAergic interneurons though a tau-dependent mechanism in vivo [43]. Although known to 

be related to Aβ, dysregulation of calcium homeostasis has also been implicated as a mechanism of 

APOE-related neurodegeneration, independent of Aβ. Here, APOE4 increased levels of cytosolic 

calcium, an effect that was dose-dependently associated with cell death [73].   

 

Another important consideration, and one that is often neglected, is the cellular source of APOE. 

Although primarily produced by glial cells, under conditions of stress or injury neurons also 

synthesise APOE [74]. Considering that the AD brain can be considered both a ‘stressed’ and 

‘injured’ environment, the cellular source of APOE is likely to be relevant to its effect on 

neurodegeneration. Indeed, at the level of the dendrite, loss of spines, reduced arborisation and 

alterations in morphology were observed in mice expressing neuronal APOE4, but not astrocytic 

APOE4 [65,75]. This phenomenon has also been confirmed to occur at the level of the synapse, with 

only neuronal APOE4 promoting the degeneration of presynaptic terminals and cell death [75]. 

Consequently, the cellular source of APOE seems to impact upon its capacity to induce 

neurodegeneration. Further studies are needed to examine how neuronal and astrocytic APOE differ 

from one another, to characterise how these effects are mediated.  

 

A potential mechanism by which neuronal APOE4 exerts increased neurotoxic effects may be due to 

the intraneuronal proteolytic processing of APOE, whereby APOE can be cleaved to generate C-

terminally-truncated fragments. In the human AD brain, these fragments are more numerous in 

individuals carrying an APOE4 allele. In vitro, APOE4 is more susceptible to proteolytic cleavage than 

APOE3 and, in mice, these APOE fragments are capable of eliciting AD-like neurodegeneration [76]. 

Further work has identified the lipid-binding region of APOE to be essential for toxicity although not 

sufficient alone. Instead, the lipid- and receptor-binding regions appear to act in concert to mediate 

toxic effects [77]. APOE4 fragments have also been shown to interact synergistically with Aβ and tau, 
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exacerbating both pathologies and increasing the degree of neurodegeneration [43,78]. In relation 

to Aβ, APOE4 fragments bind poorly to Aβ leading to reduced clearance and increased deposition 

[78] and these fragments also promote intraneuronal Aβ accumulation [79]. In relation to tau, APOE 

fragments increase the degree of phosphorylation, likely exacerbating neurodegeneration [43]. 

Cleavage fragments of APOE may also exert neurodegenerative effects by increasing intracellular 

calcium [80], a mechanism that has previously been associated with full-length APOE4, as 

aforementioned, or by impairing mitochondrial function and integrity [77]. Finally, structural 

differences among APOE isoforms may also contribute to the more neurodegenerative phenotype 

associated with APOE4. Unlike APOE2 and APOE3, APOE4 exhibits a domain interaction, whereby a 

salt bridge mediates interaction between N- and C-terminal domains. Indeed, in mice, this domain 

interaction has been shown to be associated with pre- and post-synaptic protein loss [81], thus 

suggesting another mechanism by which APOE4 might contribute to synaptic pathology and 

neurodegeneration.  

 

APOE genotype may further contribute to synaptic degeneration, and subsequent neuronal 

degeneration, through its effects on dendrites. Dendritic changes are suggested to alter neuronal 

plasticity and regenerative capacity, leading to synaptic dysfunction and subsequent synapse and 

neuron loss. Indeed, more plastic changes are seen in the human AD brain in the absence of an 

APOE4 allele [33]. Various mechanisms have been proposed as to how APOE isoforms differentially 

regulate dendritic changes in AD. These range from altered binding of APOE to receptors and 

subsequent intracellular signalling cascades [82,83], impaired regulation of receptors within spines 

[63], elevations in calcineurin activity that is associated with reductions in spine density [84] and 

impairments of neuronal outgrowth [82], among others. 

 

Overall, these results highlight the far-reaching and diverse biological effect APOE4 has on 

neurodegeneration in AD with particularly strong evidence supporting a role for APOE4 in synapse 

degeneration.   

APOE and Inflammation 

In order to determine whether there is evidence that APOE influences inflammation, search terms 

were used to identify papers containing both APOE and indicators of inflammation (papers from the 

systematic search that support a role for APOE in inflammation are coloured in green and orange in 

Supplemental Table 1). 
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Increased glial activation and gliosis with APOE4 

There is substantial reactive glial cell accumulation, termed gliosis, during AD which is enhanced in 

the presence of the APOE4 allele (Figures 4 and 5). Markers of glial activation are commonly used to 

reflect a variety of functional outcomes and to quantify the changes in glial numbers and their 

respective phenotype.  

 

Human post-mortem studies have quantified gliosis in different brain regions using multiple markers 

of activation. By immunophenotyping microglia in the frontal gyrus and correlating to APOE status in 

AD and control cases, markers of activation (CD68, Human Leukocyte Antigen-DR isotype [HLA-DR], 

CD64) were found to be significantly associated with APOE4 carriers while APOE2 carriers were 

associated with higher levels of more homeostatic microglial markers (Iba1 and Macrophage 

Scavenger Receptor-A; MSR-A) and lower levels of the reactive ones [85]. Although the microglial 

phenotype was insufficient in predicting the APOE status in dementia, the elevated markers of 

phagocytosis, adaptive immune response and antigen recognition seen in APOE4 carriers point 

towards a more pathological environment. Other brain regions have been assessed for microglial 

levels, where in an APOE4 dose-dependent manner, there was extensive microgliosis in both the 

frontal and temporal cortices [86]. Similarly, there is elevated GFAP-positive astrogliosis in the grey 

matter of APOE4 AD patients compared to other APOE genotypes, and an overall greater astrogliosis 

between AD and age-matched control cases [87]. Interestingly, the APOE4 allele was associated with 

differences in GFAP burden in non-demented individuals, despite the increased plaque burden of 

non-demented aged APOE4 individuals, supporting the importance of glial cells in AD pathogenesis. 

As always, the post-mortem tissue only provides a snap-shot of end-stage of disease, so we rely on 

mouse models for deciphering the mechanistic changes that APOE4 induces during AD.  

 

Mouse studies looking at the effects of the human APOE allele with AD-like pathology have mostly 

replicated the gliosis data seen in human post-mortem tissue. APOE4 mice crossed to the 5xFAD 

amyloidosis model showed increased microgliosis in deep cortical layers accompanied by a greater 

number of dystrophic microglial processes in the presence of the APOE4 allele, compared to APOE4 

and APOE3 [88]. Of note, both APOE2 and APOE4 5xFAD mice had more Aβ-associated microglia 

than APOE3 [88,89], suggesting that the APOE2 conformation may be protective not by preventing 

microglia/plaque interactions but by mediating more effective ways to respond to the plaques and 
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making microglia more resistant to amyloid toxicity. These changes were not observed in the 

subiculum of these mice, reiterating regional differences in microglia. Furthermore, when APOE 

knock-in mice were crossed to a tauopathy model (P301S), CD68-positive microglial burdens in the 

hippocampus and entorhinal/piriform cortex were markedly increased in APOE4 mice compared 

APOE3 and APOE knock-out mice in a tau pathology mediated manner [9]. The same effect was also 

observed with GFAP immunoreactivity, further establishing an aberrant glial response to AD-like 

pathology in combination to the presence of the APOE4 allele. Similarly, there was 

neurodegeneration-associated microgliosis and astrogliosis in the hippocampus of APOE4 mice, 

compared to APOE3, but no differences were found in the septum [90]. However, in the 

hippocampus of APOE4 LPS-injected mice there was marked microgliosis although astrogliosis was 

found in the APOE3 mice [91]. In summary, in APOE4 amyloidosis (5xFAD) and tauopathy (P301S) 

mouse models there was exacerbated gliosis. Although, there was important regional variability, 

taken together these data strongly support a role for APOE4 in promoting inflammatory changes in 

microglia and astrocytes.  

 

The precise mechanisms by which reactive gliosis is established in the APOE4 AD brain is unknown, 

but a key question that remains is whether this gliosis is a driver of the disease, accounting for the 

earlier onset and worse prognosis APOE4 carriers face, or a by-product of the exacerbated amyloid 

and tau pathology. To answer these questions, the inflammatory capacity of glial cells and their 

transcriptomic signatures in the presence of the APOE4 are being currently assessed.  

 

Apoe-related glial transcriptional changes 

Transcriptional studies are becoming increasingly popular in the microglia and neuroinflammation 

field, with Apoe upregulation consistently being a top hit in AD-like mouse models. The advantages 

of RNA-sequencing are a non-biased, high-yield output of all transcriptional changes as well as the 

ability to use these long data sets to investigate biological pathways. As such, this process speeds up 

the identification of genetic and molecular pathways involved in AD pathogenesis and ways they can 

be therapeutically targeted.  
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Recently, microglial Apoe mRNA transcript levels were quantified in two models of AD-like pathology 

(amyloidosis and tauopathy) and ageing [92]. Its high abundance in all conditions supports a role for 

APOE as a key part of the microglial signature, despite its expression not being restricted to 

microglial cells. In terms of its relative expression, Apoe was highly upregulated in aging and disease 

models, with aging female mice showing a marked increase. Pathway analysis puts APOE as the 

driver of a network whose downstream effectors are also highly upregulated in these models, like 

the chemoattractant CCL3, whose relevance to neuroinflammation will be discussed in the next 

section if this review.  

 

Apoe transcription is also downstream of the activation of a microglial receptor TREM2 (Triggering 

Receptor Expressed on Myeloid cells 2), another AD risk gene [93]. This APOE activation pathway 

results in a more pro-inflammatory microglial response and a degenerative phenotype, as seen in 

the AD brain. Microglial and astrocytic pro-inflammatory genes were also profoundly upregulated in 

APOE4 KI mice crossed with a tauopathy model (P301S), compared to APOE3 [9]. Conversely, APOE 

knock-out/P301S mice showed attenuation of this impaired pro-inflammatory profile, highlighting 

APOE as a master regulator of glial inflammatory response with its APOE4 allele being associated to 

a pro-degeneration phenotype.  

 

Single-cell RNA sequencing takes this a step further by identifying and characterising clusters of 

subpopulations within a cell type, for instance disease-associated microglia (DAMs) [94]. Specifically, 

Apoe is upregulated early in DAMs of the 5xFAD AD-like model, even in the absence of TREM2. A 

TREM2 independent pathway is thus proposed to initiate Apoe upregulation in the early phase of 

AD, with a later TREM2-dependent pathway activating Apoe transcription which induces 

neurodegenerative microglia. This potentially forms a therapeutic window where preventing the 

second Apoe induction via TREM2 may protect against the exacerbated inflammation and 

degeneration caused by microglia. Understanding the ways in which TREM2 is activated in the AD 

brain and the effectors mediating this TREM2-APOE pathway can provide new ways to halt AD 

progression and hinder neuroinflammation.  

Human induced pluripotent stem cells (iPSCs) derived from AD patients were recently 

transcriptionally characterised after directing them towards a microglial-like lineage [95]. 

Importantly, the microglia-like cells were engineered with Crispr-Cas9 to correct APOE4 into APOE3. 
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Not only did this result in attenuation of AD-associated morphological and transcriptomic signatures, 

but immune-related genes were also upregulated.  

 

Overall, Apoe is consistently one of the most upregulated genes in transcriptomic studies of 

microglia in AD-like models. Nevertheless, a limitation of transcriptomics involves the isolation 

process which pushes microglia into an activated phenotype [92]. There is a lack of detailed studies 

of human post-mortem tissue profiling transcription in cases with different APOE genotypes, which 

will be needed to confirm the translational relevance of mouse studies. As this is still at the 

transcriptional level, studies looking a more functional level are imperative to understand how these 

RNA changes relate to disease.  

 

Altered inflammatory response by glial cytokine release 

Innate and adaptive immune cells respond to environmental stimuli by releasing signalling cytokines 

and chemokines. Our systematic literature search showed that the process of cytokine release by 

glia to maintain homeostasis and respond to damage is dysfunctional in the aging and AD brain [96], 

with substantial evidence pointing towards the APOE4 allele playing a crucial role in this [97–99], 

supporting the transcriptional profile changes seen in ε4 microglia and astrocytes.  

 

APOE4 alters the baseline pro-inflammatory response even in the absence of disease. Addition of 

APOE4, but not APOE3 protein, to rat microglia cultures alone stimulated the secretion of 

prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and nitric oxide (NO) [100–103]. On the other hand, 

microglial and astrocyte stimulation with APOE4 and Aβ attenuated the production of inflammatory 

mediators [103–105], indicating a more complex interaction of microglia, APOE, and Aβ in vivo. A 

physiological concentration of Aβ may therefore be beneficial for glial functioning by interacting 

with APOE.  

 

LPS-activated microglia and astrocytes are a well-characterised model of glial activation by 

mimicking the inflammation seen in AD. Microglia induced with LPS in the APOE4 background 

released greater amounts of pro-inflammatory cytokines, like tumour necrosis factor-α (TNF-α), IL-

1β, and interleukin-6 (IL-6) [106], an effect replicated in AD-like models [88,107]. Simultaneously, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

APOE4 treated LPS-induced microglia suppressed the production of TNF-α less than the APOE3 and 

APOE2 isoforms [108] while APOE-/- mice secrete lower levels of anti-inflammatory cytokines [109], 

showing a physiological role of APOE in modulating inflammation. Indeed, knocking out murine Apoe 

increases glial production of nitric oxide (NO) [110] and other inflammatory mediators, like TNF-α, 

IL-1β and IL-6 transcripts in the CNS [111]. Murine Apoe is therefore required to suppress glial-

mediated inflammation providing a physiological role in CNS homeostasis, which is disrupted in AD, 

potentially in an age-dependent manner.  This evidence points to APOE4 expressing microglia being 

both more pro-inflammatory and anti-inflammatory at the same time.  

 

In contrast to the microglial data, astrocytes from APOE2 and APOE3 animals treated with LPS 

produced more of these pro-inflammatory cytokines than the APOE4 counterparts (IL-1β, TNF-α, and 

IL-6) [112]. APOE4 astrocytes also produce more CCL3 (chemokine C-C motif ligand 3) [113], similar 

to microglial Ccl3 mRNA upregulation in AD-like models [92], which is downstream of the APOE-

driven network while APOE-/- mice produce less CCL3 [109]. Despite the increase of CCL3, the 

chemoattraction ability of microglia is impaired in the presence of the APOE4 allele, as they are less 

migratory and receptive to immune sensing [114–116]. Data so far suggest that APOE4 confers a 

more pro-inflammatory and less anti-inflammatory phenotype in microglia, with an opposing 

pattern in astrocytes.  

 

APOE at the interface of inflammation and neurodegeneration: glial-mediated synapse loss  

The synaptic loss during the early phase of AD is now thought to be partly due to aberrant microglial 

and astrocyte complement-mediated phagocytosis [117,118]. Given APOE’s role in synapse loss and 

inflammation, we postulate that the APOE4 genotype is implicated in synaptic loss through a glial-

mediated mechanism (Figure 6).   

 

 

LPS intracerebral injections in APOE4 mice led to decreased pre- and post-synaptic protein levels as 

well hippocampal gliosis and pro-inflammatory cytokine release [119]. Moreover, APOE4 is 

accompanied by greater complement activation [120], which is the proposed synaptic tag for 

synaptic clearance. Still, this evidence is correlative and there are other mediators than could affect 

synaptic loss. In development, astrocytes of the APOE4 background were less phagocytic towards 
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pHrodo-labelled synaptosomes than those of APOE3 and APOE2 [121], leading to the hypothesis 

that some synapses are not pruned by APOE4 astrocytes, accumulating complement and making 

them more vulnerable in AD. Whether these synapses are defective or not is a key question, as loss 

of healthy synapses with accumulated complement would explain the initial synapse loss in AD, and 

the earlier onset of APOE4 carriers.  

 

Although a lot more evidence is required, particularly from the human perspective, to understand if 

and how glial cells drive the synapse loss during AD, understanding why APOE e4 carriers at greatest 

risk have this extensive synapse loss and greater onset will be crucial to tailor therapies for 

individuals of this genotype.   

 

 

Potential role for spread of pathological proteins through the brain 

No studies were found in the systematic search that specifically investigated the role of APOE in 

pathological protein spread. Two of the current hypotheses about the spread of tau through the 

brain are that tau spreads trans-synaptically and that microglia eat tau-containing synapses 

facilitating its spread (Figure 7). Interestingly, in this review APOE genotype is shown to affect both 

tau and microglia in multiple ways, implicating APOE4 as a potential facilitator of misfolded proteins 

spreading between brain regions.  

 

Conclusion 

Our systematic literature search revealed strong links between APOE and synapse degeneration, 

which is further supported by relevant literature that did not fall into our search terms. The impaired 

phagocytic capacity of TREM-/- microglia for synapses and synaptosomes in development [122] 

highlights yet again the TREM2/APOE pathway as a potential AD-related mechanism of synaptic 

elimination. The interplay between glia cell types in relation to APOE genotype is also a new avenue 

to be assessed considering that astrocytic IL-33 induces microglial synaptic engulfment of both 

excitatory and inhibitory synapses [123]. Conversely, microglia have been shown to induce a 

neurotoxic astrocyte phenotype via IL-1α, C1q, and TNF [124], the two latter being increased with 
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APOE4 expression. Moreover, APOE4-elevated soluble factors released by microglia like NO and IL-6 

can induce synapse loss in neuron culture systems [125], suggesting microglia may alter synaptic 

numbers both by phagocytosis and their secretome.  

 

In studies identified by our systematic search, APOE4 was consistently associated with increased 

neurodegeneration within the medial temporal lobe; this region includes the entorhinal cortex, 

where tau pathology begins [126]. APOE4-associated degenerating synapses may release tau seeds 

via exosomes, stress-produced nanotubes [127], or passively as terminals degenerate. These may be 

taken up by recipient cells therefore propagating tau trans-synaptically. However, our recent data 

indicate that presynaptic terminal degeneration is not necessary for the spread of tau through 

neural circuits [128], making it important to investigate other mechanisms of pathological protein 

spread.  

 

Microglia have also been suggested to mediate tau spread [129]. The exacerbated 

neurodegeneration in APOE4 likely induces microglia and astrocytes to phagocytose degenerating 

tau-containing synapses and neurons. Exosomes synthesised from these microglia, containing 

synaptic-impairing micro-RNA [130] and tau seeds, may propagate tau pathology and 

neurodegeneration [131]. Astrocytes may also be involved in this, given their role in α-synuclein 

transfer via tunnelling nanotubes in Parkinson’s disease [132].  

 

APOE, therefore, is potentially at the interface of inflammation, neurodegeneration, and the 

pathological protein spread (summarized in figures 6 and 7). Tau pathology and synapse loss are the 

strongest correlates with cognitive impairments [133]; therefore, preventing these processes could 

have significant impact on disease progression. Further evidence is, however, needed to directly link 

APOE to these spreading mechanisms. 

 

Our systematic literature search and review of the resulting papers highlights the need for multiple 

approaches to understand the complex role of APOE in disease, as has been observed recently for 

many fields in science [134].  Many findings remain contradictory and will need further support and 

investigation using different model systems to warrant moving forward to therapies targeting APOE. 

These caveats notwithstanding, our review of the literature supports the idea that understanding 
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how APOE influences multiple pathological features of AD will be important for developing effective 

therapeutics to prevent or treat the disease. Currently, there is debate as to whether lowering or 

increasing levels of APOE will be beneficial in treating AD. Increasing astrocytic APOE levels can help 

displace synaptic Aß [135] and prevent subsequent synaptotoxicity. Such interventions, with the 

recent example of Bexarotene, have had mixed outcomes in mouse models of AD [136–139] and no 

direct benefits so far in human trials [140]. In contrast, lowering levels of APOE4 and increasing 

levels of APOE2 [59] and APOE3 [141], or decreasing total APOE [142] are promising alternative 

avenues for maintaining brain resilience and synaptic integrity.   
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Figure Legends 

 

Figure 1. PRISMA flow diagram. Summary of the review process. Template edited from [10]. Papers 

referenced in the main body of text were identified through our systematic search and can be found 

in Supplemental Table 3.  

 

Figure 2. Amyloid-β pathology in APOE3/3 and APOE3/4 carriers in normal ageing and AD. Aβ 

plaque deposition is evident in aged controls (A) and is exacerbated in the presence of the APOE4 

allele (B), resembling an AD-like phenotype. Both APOE3/3 and APOE3/4 AD cases (C and D, 

respectively) have substantial Aβ deposition in all six layers of the cortex. Images taken from the 

grey matter of inferior temporal lobe (Brodmann area [BA] 20/21). Information about all participants 

donated tissue can be found in Supplemental Table 4. Aβ is stained with 6F/3D (mouse monoclonal, 

DAKO, M087201-2, 1:100, 98% formic acid, 5 minutes). Scale bar 1mm.  

 

Figure 3. Tau pathology in APOE3/3 and APOE3/4 carriers in normal ageing and AD. In aged 

controls, phosphorylated tau species are absent in APOE 3/3 cases (A) and rarely found in APOE3/4 

cases (B). In AD, both APOE3/3 (C) and APOE3/4 (D) have markedly increased numbers of tau-

positive neurons. Images taken from the grey matter of inferior temporal lobe (BA20/21). 

Phosphorylated tau is stained with AT8 (mouse monoclonal, ThermoFisher, 1020, 1:2500). Scale bar 

50μm, insert scale bar 25μm.  

 

Figure 4. Activated microglia (CD68) in APOE3/3 and APOE3/4 carriers in normal ageing and AD. 

The lysosomal marker of microglia and macrophages, CD68, shown in AD (C-D) and age-matched 

control cases (A-B). Various microglial morphologies can be observed, for example ramified (A and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

D) and amoeboid (B and C) in both ageing/AD and APOE3/x. Images taken from the grey matter of 

inferior temporal lobe (BA20/21). Microglia are stained with CD68 (mouse monoclonal, DAKO, 

M0876, 1:100, citric acid antigen retrieval). Scale bar 100μm, insert scale bar 25μm. 

 

Figure 5. Activated astrocytes in APOE3/3 and APOE3/4 carriers in normal ageing and AD. Glial 

fibrillary acid protein (GFAP) is a cytoskeletal protein in activated astrocytes. Activated astrocytes are 

seen in both ageing (A-B) and AD (C-D), but more pronounced astrogliosisis is observed in AD. In AD, 

astrocytes express more GFAP in the cell bodies, thus appearing darker, especially in APOE3/4 cases 

(D), and have more processes (C-D). Images taken from the grey matter of inferior temporal lobe 

(BA20/21). Astrocytes are stained with GFAP (rabbit polyclonal, DAKO, 0334, 1:800). Scale bar 

200μm, insert scale bar 100μm.  

 

Figure 6. APOE at the interface of inflammation and neurodegeneration via glial-mediated 

mechanisms.  Microglia and astrocytes expressing APOE4 promote parenchymal gliosis and release 

pro-inflammatory signals that are potentially associated with synaptic and neuronal loss. The 

paracrine signalling of microglial mediators along with the APOE-TREM2 pathway induces a pro-

inflammatory phenotype, creating a vicious-cycle of inflammation and neurodegeneration. 

Ineffective clearance of excess synapses by astrocytes in APOE4 mice allows accumulating levels of 

C1q that can act as a tag for synaptic elimination later in life. 

 

Figure 7. Schematic diagram of pathological protein spread. While direct evidence for 
APOE influencing the spread of tau through the brain is lacking, the papers in our systematic 
literature search implicate APOE in many processes that could influence spread. These 
include synaptic transfer through the synaptic cleft (1), via nanotubes (2), by glial 
phagocytosis (3), or vesicular secretion (4 & 5). 
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