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Abstract 

 

Autoimmune thyroid diseases (AITD) are multifactorial endocrine diseases most frequently 

accompanied by Tg and TPO autoantibodies. Both antibodies have a higher prevalence in 

females and act under a strong genetic influence. 

 

To identify novel variants underlying thyroid antibody levels, we performed GWAS meta-

analysis on the plasma levels of TgAb and TPOAb in three Croatian cohorts, as well as 

gender specific GWAS and a bivariate analysis. 

 

No significant association was detected with the level of TgAb and TPOAb in the meta-

analysis of GWAS or bivariate results for all individuals. The bivariate analysis in females 

only revealed a genome-wide significant association for the locus near GRIN3A (rs4457391, 

P=7.76x10-9). The same locus had borderline association with TPOAb levels in females 

(rs1935377, P=8.58x10-8).  

 

In conclusion, we identified a novel gender specific locus associated with TgAb and TPOAb 

levels. Our findings provide a novel insight into genetic and gender differences associated 

with thyroid antibodies.  

 

 

Keywords: genome-wide association study, meta-analysis, thyroid antibody, thyroglobulin, 

thyroid peroxidase, single nucleotide polymorphism 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Introduction 

 

Thyroglobulin (Tg) and thyroid peroxidase (TPO) are major components of the thyroid gland, 

both engaged in the production of the thyroid hormones (1). Autoimmune thyroid diseases 

(AITD) are one of the most common autoimmune diseases, affecting 2-5% of the general 

population (2). The presence of circulating autoantibodies with specificity for Tg and TPO, 

might represent an early stage in the pathogenesis of AITD (3). Hashimoto thyroiditis (HT) 

and Graves' disease (GD) are autoimmune diseases in which the immune system turns against 

the thyroid gland. HT is characterised by destruction of thyroid gland and underproduction of 

thyroid hormones (hypothyroidism), whereas antibody stimulation of thyroid gland in GD 

results in overproduction of thyroid hormones (hyperthyroidism) (4, 5). The prevalence of 

TgAb and TPOAb positivity in the total and disease-free population is greater in females and 

increases with age, especially among females (6, 7). The prevalence of TgAb positivity is 60–

80% in patients with HT and 30–60% in patients with GD. Positivity of TPOAb is detected in 

90–95% patients with HT and 80% patients with GD (8).  

 

Many genetic loci seem to be associated with multiple traits in human complex diseases and 

have the direct biological influence on more than one phenotypic trait (9). HT and GD have 

some unique loci, as well as some common to both diseases, indicating that there is a shared 

genetic susceptibility to HT and GD (10). Since various autoimmune diseases often cluster 

within the same patient, identifying the basis for this shared pathogenesis could be important 

not only for the fundamental understanding of AITD mechanisms but also in the 

understanding of other associated diseases (11, 12). 

 

Thyroid antibodies are under the strong genetic influence. Autoimmune prevalence and 

clinical differences in thyroid function are known to be gender-related (6, 7, 13, 14). 

According to a twin study, the estimate of genetic influence on serum TgAb concentrations is 

39% in males and 75% in females (15). For serum TPOAb concentrations, the estimates are 

61% in males and 72% in females (15).  

 

Until now, two genome-wide associations studies were performed on TPO antibody in general 

population, one in Caucasians (16), and the other in an Asian (Korean) population (17). Also, 

there is one meta-analysis (18) in which previous GWAS findings (16) were used as a basis 

for an identification of additional novel genetic variants. Those studies have reported the 

genome-wide association of several loci with TPOAb level and/or positivity, including 

variants near TPO, HCP5, HLA-DPB1 and in ATXN2, MAGI3, KALRN, BACH2, RERE, HLA-

DOB genes (16-18). Although the heritability of TPOAb accounts for around 70% (15), the 

identified risk loci for AITD accounts for only 4% of the heritability. The genetic association 

of TgAb has not been analysed on a genome-wide scale so far. 

 

The aim of this study was to identify novel loci associated with thyroid antibodies. We 

performed genome-wide meta-analysis for TgAb plasma levels in 2629 individuals from three 

Croatian cohorts for the first time. Genome-wide meta-analysis for TPOAb plasma levels was 

also performed in 2618 individuals. In addition, we conducted bivariate analysis for these two 
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correlated traits (i.e., TgAb and TPOAb), gender specific GWAS as well as biological 

pathway analyses. 

 

Methods 

The study was carried out on samples from three Croatian populations: the mainland city of 

Split and the islands of Vis and Korcula. The samples were obtained from the large-scale 

project of “10,001 Dalmatians” (19). Cohorts’ description is reported in Table 1. We excluded 

participants with known thyroid pathologies, the ones that underwent thyroid surgery or were 

treated for thyroid conditions. After these exclusions, 2629 individuals were included in the 

analyses for TgAb level, and 2618 for TPOAB level. The study was approved by the Research 

Ethics Committees in Croatia and Scotland, and all participants provided informed consent. 

 

Genotyping and Imputation  

Genotyping platforms and quality control procedures are summarized in Table 2. SHAPEIT2 

was used for genotypes pre-phasing, along with duoHMM for refine phasing (20, 21). 

Samples from Split cohort were collected and genotyped in two rounds (Split1 and Split2) 

with two different genotyping platforms (Table 2). Cohorts of Vis, Korcula, and Split2 were 

directly imputed using 1000 Genomes project phase I version 3, whereas for the imputation of 

Split1 a merged reference panel of 1000 Genomes and Split2 was used. For imputation of 

Split cohorts, we used SNPTEST, while for Vis and Korcula cohorts IMPUTE2 (22, 23). 

Variants with minor allele frequency >5%, no significant deviation from HWE (p >10-7), and 

imputation info score > 0.4 were kept for further analysis. The final number of overlapping 

SNPs was 5 527 232. 

 

Measurement of Tg and TPO antibodies 

Plasma TgAb and TPOAb were determined by a sandwich chemiluminescence immunoassay 

method in the Laboratory of Biochemistry, Department of Nuclear Medicine, University 

Hospital Split. The immunoassay was conducted in a fully automated instrument "Liaison" 

Biomedica Chemiluminescence Analyzer, using LIAISON®Anti-Tg and LIAISON®Anti-TPO 

in vitro assays for the quantitative determination of TgAb and TPOAb in the plasma. The 

reference range of TgAb is 5-100 IU/mL, and for the TPOAb is 1-16 IU/mL. 

 

Statistical analyses 

Genome-wide association analyses 

TgAb and TPOAb levels were adjusted for age and sex under a linear regression model. 

Derived residuals were inverse-normal transformed and included in the linear mixed model, 

which accounts for population structure and relatedness. Association analysis was performed 

assuming an additive genetic model to test for association between each SNP and adjusted 

TgAb and TPOAb levels.  For the Split sample analysis was carried out using a combination 

of R-package GenABEL and SNPTEST software, while for the Korčula and Vis samples 

association analyses were conducted using R-packages GenABEL and VariABEL (24-26). 

Genomic inflation factors (lambdas) were calculated in each data set prior performing meta-
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analysis. There was no need for adjustments (λTgAb_Korčula=1.00, λTgAb_Split=0.93, 

λTgAb_Vis=1.01; λTPOAb_Korčula=0.99, λTPOAb_Split= 1.00, λTPOAb_Vis=1.02). 

Meta-analyses 

We combined evidence of associations from single GWAS using inverse-variance fixed-effect 

meta-analysis. Meta-analyses showed no significant evidence for inflated statistics 

(λTgAb=0.97, λTPOAb=1.01) hence no genomic correction was applied. Manhattan and quantile-

quantile (QQ) plots were generated using the qqman R package (27). Regional association 

plots for loci of interest (400 kb) were created using Locus Zoom based on 1000 genomes 

EUR population (28). Illumina GenomeStudio software package was used to create cluster 

plots for confirmation of genotyping quality for associated SNPs. In cases where the SNP of 

interest was imputed, and not directly genotyped, cluster plots were created for directly 

genotyped SNPs that were in high LD with the SNP of interest (r2 > 0.8). The genome-wide 

significance of association was defined as 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 5 × 10−8. Meta-analyses were 

performed with the R-package MetABEL (29).  

Gender specific analyses 

The prevalence of positive TPOAb and positive TgAb in the general population is higher in 

females than males (6). To identify gender specific effects we performed GWAS for each 

gender separately in each cohort. We used the same procedures as in the primary analyses 

except for the gender covariate. Association results were meta-analysed using the inverse-

variance fixed-effects method. The total sample sizes for TgAb were 1596 for women and 

1033 for men, while 1593 for women and 1025 for men for the TPOAb. 

 

Bivariate analysis 

We applied a multiple-trait analysis method to test the association between each SNP and the 

two correlated traits TgAb and TPOAb simultaneously, since joint analysis of correlated traits 

may increase power for identification of novel loci (30). The association was tested using 

multivariate analysis of variance (MANOVA). Multi-trait association test statistic was 

calculated on the basis of the summary statistics from single univariate GWAS. We have also 

performed bivariate analysis of TgAb and TPOAb for females. Correlation amongst 

antibodies in males was not sufficient for the performance of bivariate analysis. 

 

Pathway analysis 

Pathway analysis was performed with ConsensusPathDB (http://cpdb.molgen.mpg.de) (31, 

32). For each of the loci with 𝑃 < 5𝑥10−6, downstream genes in ± 500 kb window were 

extracted and used as the input for analysis. The significance of results was defined as a 𝑃 <

0.01.  The same analysis was performed separately for males and females. 
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Results 

Meta-analyses 

Suggestive associations from genome-wide meta-analyses of TgAb and TPOAb levels are 

shown in Supplementary Table 1 and 2. We did not find any significant association in the 

meta-analysis for TgAb or TPOAb level. The Manhattan and Quantile-quantile plots for both 

traits are shown in Supplementary Figure 1 and 2.  

Genome-wide meta-analysis of TgAb levels in females revealed a borderline significant 

association with rs4710782 genetic variant. SNP is located near protein coding gene DLL1 

(Table 3, Figure 1 and 2).  

 

The rs1935377 locus had borderline significance in females for association with TPOAb 

(reference allele C, P=8.58x10-8) (Table 3, Figure 1 and 2). The SNP is located near protein 

coding gene GRIN3A. 

 

Top findings from bivariate genome-wide meta-analyses are shown in Supplementary Figure 

3 and Supplementary Table 3. The bivariate analysis in females revealed a genome-wide 

significant rs4457391 locus near GRIN3A gene (reference allele G, P= 7.76x10-9) (Table 3, 

Figure 1 and 2).  

 

Pathway analysis 

No enrichment was obtained in general population for neither TgAb nor TPOAb. Results of 

pathway analyses performed for each gender separately are shown in the Supplementary 

Table 4 and 5.  

For females, there were ten significantly enriched pathways at the 𝑃 < 0.01 for TgAb level, 

while only one pathway was enriched for the level of TPOAb. For males, the enrichment for 

TgAb level was obtained for twenty-nine significant pathways at the 𝑃 < 0.01, while two 

pathways were enriched for the level of TPOAb (Supplementary Table 4 and 5).  

 

Replication of previous GWA findings 

We investigated variants that were previously associated with the level or/and positivity of 

TPOAb (16, 18). Nine loci were reported in previous studies (TPO, ATXN2, MAGI3, KALRN, 

BACH2, RERE, HCP5, HLA-DOB, HLA-DPB1), however locus HLA-DOB could not be 

tested since the SNPs or any surrogate (r2>0.5) were not available in our data. From eight 

reported variants that were available for the analysis in our data set, two were nominally 

replicated with P< 0.05, SNP rs11675434 for TPO gene (P=0.009) and SNP rs653178 in 

ATXN2 gene (P=0.035). All other variants with available data for effect sizes were similar in 

size and direction as in our study (Supplementary Table 6). 

 

Discussion 
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Our study confirms the gender specificity of genetic influences on serum thyroid antibody 

level. In females, a novel significantly associated locus near GRIN3A gene was identified in 

the bivariate analysis of TgAb and TPOAb, and the same locus showed borderline 

significance in association with TPOAb levels. Furthermore, we detected marginally 

significant locus associated with variation in TgAb levels in females (DLL1). Genetic variants 

affecting the TgAb level at a genome-wide scale are analysed for the first time in this study.     

 

The levels of TPOAb and TgAb are correlated and participate in the onset and diagnosis of 

AITD (33). In our study, an intermediate correlation between both antibodies was found in 

our 3 general populations (r=0.5-0.7) as well as in females only (r=0.6-0.7), which enabled us 

to perform the bivariate analysis. The bivariate analysis revealed a significant association for 

a locus near the GRIN3A gene in females, with rs4457391 as a leading SNP (P=7.76x10-9). 

The rs4457391 SNP showed evidence of association for the level of TPOAb and TgAb in 

females (P=1.04x10-7 and P=1.17x10-5, respectively). The same locus with rs1935377 as 

leading SNP was marginally associated with TPOAb levels (P=8.58x10-8) and suggestively 

associated at the bivariate analysis (P=3.09x10-7). The rs1935377 is in moderate LD with 

rs4457391 (r2=0.72, 1000Genomes phase3). Both these polymorphisms showed no 

association in men with p values < 0.05, however effect sizes were in the same direction as in 

females.  

GRIN3A gene encodes a subunit of the N-methyl-D-aspartate (NMDA) receptors, which 

belongs to the superfamily of glutamate-regulated ion channels. GRIN3A gene is expressed in 

several tissues, mostly in brain, bone marrow, immune system, female and male tissue (34). 

The GRIN3A gene is associated with the high-density lipoprotein (HDL) cholesterol levels 

and suggestively associated with the low-density lipoprotein (LDL) cholesterol and 

triglyceride levels (35). Decreased levels of thyroid hormones in the liver have an effect on 

the breakdown of circulating cholesterol, consequently, the higher level of triglycerides, total 

and LDL cholesterol and lower level of HDL cholesterol are associated with hypothyroidism 

(36). It is important to emphasize that Eriksson et al. found evidence of association of intronic 

variant (rs9792648, 2.7x10-5) in GRIN3A gene with the hypothyroidism (37). A recent study 

by Joehanes et al. showed that SNPs associated with GRIN3A have the trans-eQTL effect, 

thus may act on phenotypes by affecting the expression of distant genes (38). For distant 

affected genes (ZNF782, LCE2B, TEKT5 and MORF4L2) from the study (38), 

polymorphisms with evidence of association with the level of hypothyroidism, LDL, HDL 

and total cholesterol, as well as with adiponectin level were found (37, 39-42). For 

polymorphisms in ZNF782 gene evidence of genome-wide association with hypothyroidism 

(P=10-5), as well as with LDL and total cholesterol level (P=10-2-10-3) were detected.  

 

Genes underlying AITD can be divided into thyroid-specific genes and immunoregulatory 

genes (14). GD and HT, although clinically antithetical, share number of immunological 

features including thyroid lymphocytic infiltration and autoreactivity against the key thyroid 

autoantigens (43). Different genes and mechanisms seem to be implicated in autoimmune 

prevalence in men and woman (13, 14).  
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Gender specific GWAS meta-analysis identified a novel locus associated with TgAb levels in 

females. Identified variant rs4710782 (P=6x10-8) is located on chromosome 6, 9 kb upstream 

of the protein coding gene DLL1. DLL1 is a human homolog of the Notch Delta ligand and a 

member of the delta/serrate/jagged family (44). It plays a role in mediating cell fate decisions 

during lymphopoiesis. Notch ligand Delta-1 inhibits the differentiation of human 

hematopoietic progenitors into the B cell lineage, while promotes the emergence of cells with 

a phenotype of T cell/natural killer (NK) precursor (45). Notch1 signalling plays a role in 

promoting maturation into both the CD4 and CD8 T cell lineages (46). CD4 T cells induce B 

cells in antibody production both in HD and GD, while CD8 T cells cause the death of 

thyrocytes in HT (8). Variations near DLL1 gene are associated with type 1 diabetes (T1D) 

(47) and suggestively associated with systemic lupus erythematosus (SLE) (48). T1D, as well 

as SLE, frequently occur with AITD within the same individuals (49, 50). 

 

In general population, bivariate analysis revealed some interesting, suggestive associations 

with PDE10A gene (rs611909, P=2.37x10-6), which was previously associated with thyroid 

stimulating hormone (TSH) levels, as well as with the hypothyroidism (43). Likewise, NFIA 

gene (rs17121639, P=2.97x10-6), previously associated with the level of TSH (43), had the 

suggestive association in the general population. These findings imply on the possibility of 

shared genetic susceptibility for thyroid function and autoimmunity. 

 

While there were no functionally enrichment pathways for general populations, interesting 

findings were obtained for both antibodies in gender specific manner. Most of the 

enrichments were related with different immune and inflammatory responses. The most 

interesting pathways enriched for TgAb levels in females were Proteasome Degradation 

(Wikipathways), Notch, Hedgehog and GPCR signaling-G alpha i (INOH). For TPOAb levels 

in females, the pathway for Neutrophil degranulation (Reactome) was enriched. The most 

interesting pathway enriched for TgAb levels in males were Alpha9 beta1 integrin signaling 

events (PID) and Vitamin D Receptor Pathway (Wikipathways), while for the TPOAb 

Inflammatory mediator regulation of TRP channels (KEGG) and Vitamin D Receptor 

Pathway (Wikipathways).  

 

Our study has helped in additional clarification of genetic variants associated with the TgAb 

and the TPOAb level. Thyroid autoimmunity is a consequence of the complex interaction of 

multiple genes and pathways, and possibly has different ethology depending on the gender. 

More GWA studies will be needed in the further enlightenment of this complex trait. 

 

There are several limitations in our study. We had a modest number of participants for 

genome-wide association analyses, a larger study should be performed in order to replicate 

our findings and discover novel associated loci. Also, our analysis was restricted to 

participants of European ancestry, thus further GWAS on populations of different ancestry 

will be required. We did not perform additional functional studies for identified variants to 

clarify biological mechanism behind our findings. 

 

Conclusion 
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We identified gender specific genetic factors associated with thyroid autoimmunity. We 

detected significantly associated locus (GRIN3A) in females with bivariate analysis, and 

likewise, the same locus was marginally associated in females with variation in TPOAb 

levels. Furthermore, we found a novel locus (DLL1) marginally associated with TgAb levels 

in females. Overall, our findings add to the knowledge of shared genetic susceptibility 

affecting thyroid antibodies, as well as of genetic factors that differently affect thyroid 

autoimmunity in males and females. 
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Tables and figures  

 

Table 1. Characteristics of study participants. 

Variables for Tg-Ab Split Korčula Vis 

Overall sample size 942 819 868 

Women, n (%) 587 (62%) 522 (64%) 487 (56%) 

Median age, (qL,qU) 52 (40,61) 57 (47,67) 57 (45,69) 

Median Tg-Ab, IU/mL (qL,qU) 6.90 (5.00,15.80) 11.90 (8.10, 32.25) 9.90 (5.10,19.20) 

Variables for TPO-Ab Split Korčula Vis 

Overall sample size 942 819 857 

Women, n (%) 587 (62%) 522 (64%) 484 (57%) 

Median age, (qL,qU) 52 (40,61) 57 (47,67) 57 (45,69) 

Median TPO-Ab, IU/mL (qL,qU) 2.5 (1.3, 7.9) 7.90 (3.85, 18.10) 4.10 (1.80, 11.50) 

N: number of individuals; qL: lower quartile, qu: upper quartile. 
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Table 2. Genotyping methods and quality control procedures. 

 Cohorts Split1 

(first 531 

individuals from 

Split sample) 

Split2 

(other 481 

individuals from 

Split sample) 

Korcula Vis 

Genome-wide 

genotyping 

N individuals 531 481 897 960 

Genotyping 

platform and 

SNP panel 

Illumina 

HumanHap 

370CNV QUAD 

Phase 1 

Illumina 

HumanOmni 

ExpressExome8v1-

2_A 

Illumina 

HumanHap 

370CNV DUO 

Phase 1 

Illumina 

Human 

Hap300v1 

BeadChip 

N SNPs 351 514 969 919 346 034 317 509 

Genotype-

calling 

algorithm 

Illumina 

BeadStudio V3 

Illumina 

BeadStudio V3 

Illumina 

BeadStudio V3 

Illumina 

BeadStudio V3 

SNP QC 

(prior to 

imputation) 

Call rate ≥98% per SNP ≥98% per SNP ≥98% per SNP ≥98% per SNP 

MAF ≥1% ≥1% ≥1% ≥1% 

HWE p < 10-7 p < 10-7 p < 10-7 p < 10-7 

Sample QC 

(prior to 

imputation) 

Call rate ≥97% ≥97% >97% >95% 

MAF: minor allele frequency; HWE: Hardy-Weinberg equilibrium. 
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Table 3. Associations between genetic variants and TgAb and TPOAb level. 

 
SNP 

Ch

r. 

Position 

GRCh37.p

13 

Gene 
Region of the 

gene 

Min

or 

allele 

MA

F 
β SE 

P 

value 

Bivariate analysis                   

Female 

         

  

  

rs44573

91 9 104760468 

GRIN

3A 

260 kb 

downstream T 0.4 

-

0.02

7 

0.00

5 

7,76x1

0-9 

Tg-Ab 

levels 
                    

Female 

         

  

  

rs47107

82 6 170582064 DLL1 9 kb upstream C 0.32 

0.21

0 

0.03

9 

6,16x1

0-8 

TPO-Ab levels                   

Female 

         

  

  

rs19353

77 9 104742291 

GRIN

3A 

241 kb 

downstream T 0.37 

-

0,20

0 

0.03

7 

8,58x1

0-8 

SNP - single nucleotide polymorphism 

Chr.- chromosome 

MAF - minor allele frequency 

β - effect size 

SE - standard error 
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Figure 1. A) Manhattan plot of SNPs for the bivariate and meta-analysis of females in three cohorts. 

The 𝑦-axis shows the −log10 P values of 5 527 232 SNPs, and the x-axis shows their chromosomal 

positions. The red line indicates the threshold for significant hits (P=5x10-8) while the blue line 

indicates the threshold for suggestive hits (P=5x10-6). Gene labels are provided for suggestive hits 

(P=5x10-6) only B) Manhattan plot of SNPs for TgAb levels in the meta-analysis of females in three 

cohorts C) Manhattan plot of SNPs for TPOAb levels in the meta-analysis of females in three cohorts. 
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Figure 2. A) Regional association plot for bivariate and meta-analysis of females in three cohorts for 

the locus rs4457391 on chromosome 9. SNPs are plotted by position against association with two 

correlated traits TgAb and TPOAb simultaneously (−log10 P values). The purple diamond highlights 

the most significant SNP in the meta-analysis, whereas the colours of other variant represent LD with 

most significant SNP. B) Regional association plot for TgAb level in the meta-analysis of females in 

three cohorts for the locus rs4710782 on chromosome 6. SNPs are plotted by position against 

association with TgAb (−log10 P values). C) Regional association plot for TPOAb level in the meta-

analysis of females in three cohorts for the locus rs1935377 on chromosome 9. SNPs are plotted by 

position against association with TPOAb (−log10 P values). 
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Supplementary data 

 

Supplementary Table 1. Associations of suggestively associated single nucleotide 

polymorphisms (P=5x10-6) with TgAb level. 

 

Supplementary Table 2. Associations of suggestively associated single nucleotide 

polymorphisms (P=5x10-6) with TPOAb level. 

 

Supplementary Table 3. Associations of suggestively associated single nucleotide 

polymorphisms (P=5x10-6) with both correlated traits. 

 

Supplementary Table 4. Enrichment results obtained from ConsensusPathDB for TgAb. 

 

Supplementary Table 5. Enrichment results obtained from ConsensusPathDB for TPOAb. 

 

Supplementary Table 6. Association values of the significant results of the previously 

published study in our data-set for the level of TPOAb. 

 

 

Supplementary Figure 1. The Manhattan and Quantile-quantile plots for the level of TgAb. 

 

Supplementary Figure 2. The Manhattan and Quantile-quantile plots for the level of TPOAb. 

 

Supplementary Figure 3. The Manhattan and Quantile-quantile plots for both correlated traits. 
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Highlights 

 GRIN3A locus was associated with thyroid antibodies levels in females 

 GRIN3A locus was marginally associated with TPOAb levels in females 

 DLL1 locus was marginally associated with TgAb levels in females 

 Gender specificity of genetic influences on thyroid antibody level was confirmed 
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