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Abstract

Chemotherapy treatment is a mainstay of anticancer regimens, significantly contributing to the recent increase in childhood cancer 
survival rates. Conventional cancer therapy targets not only malignant but also healthy cells resulting in side effects including 
infertility. For prepubertal boys, there are currently no fertility preservation strategies in use, although several potential methods are 
under investigation. Most of the current knowledge in relation to prepubertal gonadotoxicity has been deduced from adult studies; 
however, the prepubertal testis is relatively quiescent in comparison to the adult. This review provides an overview of research to date 
in humans and animals describing chemotherapy-induced prepubertal gonadotoxicity, focusing on direct gonadal damage. Testicular 
damage is dependent upon the agent, dosage, administration schedule and age/pubertal status at time of treatment. The 
chemotherapy agents investigated so far target the germ cell population activating apoptotic pathways and may also impair Sertoli 
cell function. Due to use of combined chemotherapy agents for patients, the impact of individual drugs is hard to define, however, 
use of in vivo and in vitro animal models can overcome this problem. Furthering our understanding of how chemotherapy agents 
target the prepubertal testis will provide clarity to patients on the gonadotoxicity of different drugs and aid in the development of 
cytoprotective agents.
Reproduction (2018) 156 R209–R233

Introduction

The overall childhood cancer survival rate has increased 
substantially in recent decades, with the current 5-year 
survival rate at around 80%, compared to about 58% 
in the late 1970s (Miller et  al. 2016). This marked 
advance, due in large part to improved chemotherapy 
treatments, has led to a growing population of long-term 
childhood cancer survivors. However, chemotherapy 
drugs do not exclusively target malignant cells, also 
eliciting side effects due to off-target damage to healthy 
tissues. Given this situation, research is increasingly 
focusing on preventing damage to healthy organs, 
to improve the quality of life for childhood cancer 
survivors. For younger patients, detrimental effects of 
treatment on fertility can be a major concern (Zebrack 
et  al. 2004). This is particularly problematic for male 
survivors of childhood cancer, given the current lack 
of available fertility preservation treatments, since, 
unlike adult patients, these prepubertal patients do 
not yet produce mature spermatozoa that can be used 
for routine sperm cryopreservation (Wyns et  al. 2010, 
Wallace 2011, Mitchell et al. 2017). Recently, centres 
have started to cryopreserve immature testicular tissue 
from prepubertal boys before the commencement of 
chemotherapy treatment. In 2015, there were seven 

centres in Europe collecting such tissues with more 
than 260 prepubertal samples stored, with biopsies 
undertaken only when treatment is deemed at high 
risk for later fertility complications (Picton et al. 2015, 
Mitchell et al. 2017). At this point, however, it is not yet 
certain if such cryopreserved tissue can be successfully 
used later to restore fertility in humans, as production 
of viable sperm from such tissue is yet to be shown. A 
recent report has described the generation of sperm-like 
cells after 3D culture of isolated spermatogonial cells 
obtained from testis biopsies taken from prepubertal boys 
undergoing chemotherapy treatment (Abofoul-Azab 
et al. 2018). This is encouraging for the future, but in this 
preliminary study, the technique was successful in only 
one out of six patient biopsies, and the functionality of 
the sperm-like cells remains to be established. Research 
in animal models has been more successful in showing 
the potential of fertility preservation techniques, which 
could be developed for clinical use (reviewed in Picton 
et  al. 2015, Giudice et  al. 2017). Transplantation of 
spermatogonial stem cells (SSCs) or frozen-thawed 
immature testicular tissue grafted back into the adult 
has been successful in producing functional gametes in 
animal models including the non-human primate and 
murine (Brinster & Zimmermann 1994, Mitchell et  al. 
2010, Hermann et al. 2012, Jahnukainen et al. 2012). 
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Healthy offspring have been produced through IVF/
ICSI using sperm derived from xenografted non-human 
primate immature testicular tissue demonstrating the 
potential of this technique for clinical application (Liu 
et al. 2016). There are concerns, however, for non-solid 
tumours that malignant cells could be reintroduced back 
into the patient, particularly with tissue transplantation 
as shown in the Hou et al. (2007) study where leukaemic 
infiltration was noted within the xenografted testicular 
tissue. In addition to in vivo techniques, sperm has 
been grown in culture from immature testis through 
in vitro spermatogenesis, and these sperm have been 
used for IVF/ICSI to produce viable embryos in a mouse 
model system (Sato et al. 2011). There have also been 
recent reports of in vitro culture of human prepubertal 
testicular tissue, although without completion of 
spermatogenesis (de Michele et  al. 2017, 2018). For 
all such potential fertility preservation techniques, 
further research is needed to allow the methods to be 
successfully transformed for use with human tissue, after 
which further validation will be required to ensure that 
such methodologies are efficient and safe for clinical 
use. An alternative strategy, rather than the subsequent 
restoration of fertility after chemotherapy-induced 
infertility, would be the development of interventions 
administered before and/or during chemotherapy 
treatment to prevent the damage from occurring in 
the first instance, thus protecting the fertility potential 
of the patient. Cytoprotective agents that specifically 
protect the prepubertal testis against chemotherapy-
induced damage, without interfering with the toxicity 
to cancer cells, could potentially be employed as part 
of the chemotherapy treatment regimen. However, 
further research is required to fully understand how 
chemotherapy drugs target the prepubertal testis 
and which compounds could potentially prevent 
such damage.

This review provides an overview of research to date 
that has focused upon the direct, chemotherapy drug-
induced damage to the prepubertal testis: such studies 
often rely on histological analysis. Damage can also be 
conferred from studies examining hormonal changes 
after cancer treatment. For example, AMH and inhibin 
B can be used as markers of Sertoli cell function, 
although the use of such markers during prepuberty is 
yet to be investigated (Dere et al. 2013, Stukenborg et al. 
2018a). The use of hormonal indicators to determine 
chemotherapy-induced damage is not discussed further 
in this review. The review discusses papers only where 
they investigate effects on the prepubertal testicular 
tissue/cells, either from human or animal models. 
Determining which cell types within the prepubertal 
testis are directly targeted by chemotherapy drugs, 
along with the potential mechanism of action of the 
different drugs, will provide vital information enhancing 
our knowledge on the gonadotoxicity of chemotherapy 

agents and the development of cytoprotective agents 
against chemotherapy-induced damage.

Methodology

A literature search was conducted to identify relevant 
papers to query our research question; how does 
chemotherapy treatment damage the prepubertal testis? 
A review of the literature was performed using PRISMA 
guidelines (Moher et  al. 2009). Relevant papers were 
identified using PubMed to search for appropriate 
references, searching key words including prepubertal/
immature, testes, chemotherapy (including classes of 
drugs) and fertility preservation. Additional references 
were found by searching reference lists of such papers. 
The abstracts of identified papers were screened for 
relevance in relation to chemotherapy treatment during 
prepuberty and impact on the testis. The eligibility of 
relevant studies was assessed by reading the screened 
papers in full to ensure that all those included in this 
review are all concerning prepubertal tissues, whether 
from human patients or animal models. Clinical studies 
are included where the histology of the testis of human 
patients following prepubertal cancer treatment is 
examined during or at the end of the treatment period 
or during adulthood. In vivo studies in animal models 
where drug exposure occurred prior to the onset of 
puberty as well as in vitro studies of cultured cells 
and tissues obtained from prepubertal animals were 
also analysed. Potential fertility cytoprotectants were 
included where research was performed on prepubertal/
immature subjects. Of the papers that were excluded, 
the majority were due to chemotherapy treatment taking 
place during/after puberty, analysis of chemotherapy-
induced damage through hormonal changes or failure to 
report the dose of the chemotherapy agents. Overview 
of our research strategy is shown in Fig. 1.

Childhood cancer and treatment

Incidence of childhood cancer

Each year around 1800 children are diagnosed with 
neoplastic disease, accounting for 1% of new cancer 
diagnoses in the United Kingdom (Wallace 2011, 
Cancer Research UK 2015). Cancer is the second 
most common cause of death in children. The nature 
of cancers that develop at this young age differs from 
those of adult malignant tumours. In infants, tumours of 
embryonal origin such as neuroblastomas are the most 
frequent cause, whereas in older children, leukaemia 
(particularly acute lymphoblastic leukaemia) as well as 
central nervous system tumours and lymphomas (non-
Hodgkins and Hodgkins) are more often diagnosed. 
There is also a sex difference in incidence, with boys 
1.2 times more likely to be diagnosed with cancer, 
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particularly lymphomas and central nervous system 
tumours (Kaatsch 2010, Kelly 2017).

Chemotherapy treatment

Chemotherapy and radiotherapy are a mainstay 
of treatment for childhood malignancies. For 
chemotherapy drugs, the refinement and use of 
combined drug treatments have contributed greatly to 
the dramatic increase in childhood cancer survival rates 
over recent decades (Anderson et al. 2015, Miller et al. 
2016). Multiple different drugs have been established 
in treatment regimens; these kill cancer cells through 
various mechanisms, often targeting proliferating cells 
(Table  1) (Malhotra & Perry 2003, Lind 2011). The 
gonadotoxic impact and relative risk of later infertility of 
individual chemotherapy agents included in treatment 
regimens against childhood malignancies can at present 
only be estimated, since the risk is dependent on multiple 
factors including dosage, treatment length, age at time 
of treatment and the sensitivity of individual patients 
to chemotherapy treatment. The current classification 
of chemotherapy drugs and the dosages considered 
to result in infertility are outlined in Table 1; however, 
these classifications/dosages are debated. Given that 
clinicians use this knowledge to determine whether or 
not to offer cryopreservation of testicular tissue before 
commencement of treatment, further elucidation on 
relative risk/gonadotoxicity is urgently required. At 
present, alkylating and alkylating-like agents such as 
cyclophosphamide and cisplatin are considered to be 
highly gonadotoxic with these agents intercalating into 
DNA, disrupting basic cellular processes. These agents 

are commonly included in treatment regimens to treat 
a wide range of childhood malignancies and are known 
to result in subsequent infertility in adulthood (Chow 
et al. 2016). Agents from alternative drug classes which 
have different mechanisms of action are considered 
low or moderate risk of later infertility and include; 
antimetabolites such as cytarabine, vinca alkaloids 
e.g. vincristine and topoisomerase inhibitors including 
etoposide. There are also some chemotherapy agents, 
including taxanes, where infertility risk/gonadotoxicity 
is at present unknown. Further details are included in 
Table 1.

For the vast majority of paediatric cancers, combined 
chemotherapy with multiple agents is required to 
effectively treat the disease, with commonly used 
combinations including MOPP (nitrogen mustard, 
vincristine, procarbazine and prednisolone) or ABVD 
(doxorubicin, bleomycin, vinblastine and dacarbazine) 
for treatment of Hodgkins lymphoma and CHOP 
(cyclophosphamide, doxorubicin, vincristine and 
prednisolone) for non-Hodgkins lymphoma (Corrie 
2011). The administration of several agents in a treatment 
regimen could potentially result in additive or even 
multiplicative side effects on healthy tissues.

Testis development

The testis is responsible for producing mature 
spermatozoa along with the main male reproductive 
hormone, testosterone. During prepuberty, the testis 
was originally thought to be relatively inactive based 
on studies demonstrating few morphological changes 
and a lack of hormone production during this period 
(Rey 1999). However, further detailed analysis has 
shown that the prepubertal testis undergoes important 
developmental processes, which are required for normal 
adult functioning (Fig.  2A). This section will outline 
what is currently known regarding testis development, 
focusing primarily upon human development. Many 
studies, however, have relied upon animal models 
to observe prepubertal changes due to the challenges 
of studying the human testis; information about non-
human species will be specified where relevant.

Foetal life

The testis forms during early foetal life from an 
undifferentiated bipotential gonad. The primordial 
germ cells, originally located outside the embryo 
within the yolk sac, migrate and populate the gonadal 
ridge (Stukenborg et  al. 2014). Under the action of 
the SRY (sex-determining region Y) gene, which drives 
production of the SOX9 (SRY-box 9) protein, Sertoli cells 
differentiate from precursors cells within the gonadal 
ridge and engulf the primordial germ cells which are now 
classified as gonocytes. This configuration results in the 
formation of seminiferous cords, which predominantly 

Figure 1 PRISMA flow diagram of literature search. PRISMA flow 
diagram of search results, study screening, and study inclusion, 
following a review of the literature carried out using PRISMA 
guidelines (Moher et al. 2009).
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Figure 2 Comparison of testicular development in humans and rodents. (A) Relative timeframe of important developmental processes taking 
place between foetal development and puberty in humans (Chemes 2001) and the mouse model (Vergouwen et al. 1993). Solid line indicates 
no activity of the cells at the relevant time points and dashed line represents the unknown nature of Leydig cell development during this 
timeframe. (B) Comparison of the histology of the testis throughout development in the human, from foetal development through to the adult 
testis. dpc, days post coitum; GW, gestational week; pnd, postnatal day.
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contain Sertoli cells with centrally located gonocytes. 
The Sertoli cells are key drivers in the differentiation 
and function of other cellular components of the testis 
including the Leydig cells and peritubular myoid cells 
(reviewed in Svingen & Koopman 2013) (Fig. 2B). The 
hypothalamic–pituitary–gonadal axis (HPG) is active 
during foetal life, producing the gonadotrophins follicle-
stimulating hormone (FSH) and luteinizing hormone, 
which are essential for the formation, maturation and 
function of key somatic cells including the Sertoli and 
Leydig cells (Stukenborg et al. 2018a).

During foetal development, the gonocytes actively 
proliferate into early neonatal life, and differentiation 
of the gonocytes into pre-spermatogonia occurs 
asynchronously during foetal and early postnatal life, 
with the gonocytes having greater proliferative activity 
than the pre-spermatogonia. In the rodent model, 
however, the proliferation of the gonocytes ceases during 
late foetal life and resumes during the early postnatal 
period (Ferrara et  al. 2006, Mitchell et  al. 2008, Wu 
et al. 2009). Sertoli cells actively proliferate during foetal 
development under the control of multiple hormones, 
particularly FSH. This period of proliferation is very 
important in determining adult numbers of Sertoli cells 
(Sharpe et al. 2003). Peritubular myoid cells develop from 
interstitial cells, when multiple layers of these cells along 
with extracellular matrix proteins surround and form the 
wall of the seminiferous cords. These cells contribute to 
the basement membrane providing structural support 
during testis development and will function in the adult 
to aid movement of mature sperm towards the lumen 
(Mayerhofer 2013, Svingen & Koopman 2013). The 
endocrine somatic Leydig cells are situated within the 
interstitial compartment between seminiferous cords and 
are composed of different cell populations throughout 
an individual’s lifespan. The foetal Leydig cells (FLCs) 
produce testosterone throughout foetal life, which is 
essential for masculinization of the male reproductive 
system. These cells ultimately regress after birth and are 
replaced by adult Leydig cells (ALCs) during puberty 
(Habert et al. 2001, Chen et al. 2009, Svechnikov et al. 
2010), however, the presence and/or function of the 
FLCs have recently been shown to be important in the 
formation and function of the ALCs in a rodent model 
(Su et  al. 2018). Whether FLCs and ALCs are distinct 
populations of cells or share a common stem/progenitor 
cell lineage is at present unknown; however, stem ALCs 
have been observed in the human foetal testis (Kilcoyne 
et al. 2014, Teerds & Huhtaniemi 2015).

Neonatal life

During the first 3  months of neonatal life, the 
reproductive system undergoes a short period of activity 
known as ‘mini-puberty’, where the HPG axis is active 
(Kuiri-Hänninen et  al. 2014). The origin of the Leydig 
cells that produce testosterone during ‘mini-puberty’ is 

unknown, possibly forming from precursor cells or from 
the FLCs (Svechnikov et al. 2010). The function of ‘mini-
puberty’ is yet to be clarified, but is thought to be linked 
to later reproductive function in the adult (Copeland 
& Chernausek 2016). This short neonatal activity has 
also been observed in the primate animal model during 
neonatal development but does not appear to occur 
in rodents, where infancy overlaps with early stages of 
pubertal development (Chemes 2001, Kelnar 2002).

The volume of the testis increases six-fold during 
neonatal development due to proliferation of Sertoli 
cells stimulated by FSH secretion; 93–95% of the 
seminiferous cord mass is attributed to the Sertoli cells at 
this stage (Müller & Skakkebaek 1983, Rey et al. 1993; 
reviewed in Petersen & Söder 2006). This increase in cell 
number results in an overall increase in seminiferous 
cord length but not diameter, as each Sertoli cell 
maintains contact with the basement membrane, the 
cells spreading lengthwise (Chemes 2001). Therefore, in 
a cross-sectional area of the seminiferous cord, it may 
appear as though the cell density remains stable or even 
decreases during this period of development, which can 
be misleading. The resulting number of Sertoli cells will 
ultimately determine sperm production in the adult, 
with each Sertoli cell able to support a species-specific 
number of germ cells (Sharpe 2001).

During the foetal and early postnatal period of 
development, centrally located gonocytes within 
the seminiferous cords differentiate and lose their 
pluripotency. At around 2–3  months of age, the 
differentiating cells migrate towards the basement 
membrane, developing into the SSCs (Culty 2009). 
The SSCs are now located within the stem cell niche 
in the basal compartment of the seminiferous cords, 
outside of the blood–testis barrier (BTB), which will 
later form during puberty to protect post-meiotic germ 
cells (Stanton 2016, Li et  al. 2017). The maintenance 
of the SSC niche is dependent on factors produced by 
somatic cells (Stukenborg et al. 2018a). In rodents, there 
is a relatively rapid and synchronous differentiation of 
gonocytes to pre-spermatogonia and migration to the 
basal membrane occurring by postnatal day (pnd) six 
(Mitchell et al. 2008, Wu et al. 2009).

Prepuberty

Prepuberty lasts for around 11 years until the HPG axis 
is once again reactivated and the child enters puberty. 
During prepuberty, perceived reduced cellular activity 
in the testis was thought to confer protection against 
insult (Rivkees & Crawford 1988) (Fig.  2A). However, 
this does not appear to be the case as shown in studies 
demonstrating infertility in adults following childhood 
chemotherapy treatment (Chow et al. 2016).

During prepuberty, the proliferative rate of the 
germ cell population is reduced in comparison with 
foetal development; nevertheless, there is a three-fold 
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increase in the overall germ cell population during 
this time period (Müller & Skakkebaek 1983). At this 
point, the SSC pool is represented by undifferentiated 
A spermatogonia composed of two populations of 
cells with a dark (Adark) or pale (Apale) appearance. Adark 
spermatogonia are believed to represent the reserve 
stem cells with low mitotic activity, whilst the Apale cells 
are actively proliferating. Upon differentiation, the Apale 
spermatogonia differentiate to B spermatogonia, which 
can be observed from 4 to 5 years of age (Paniagua & Nistal 
1984). Type B spermatogonia will enter meiosis to form 
spermatozoa in the adult (Ehmcke et al. 2006, Stukenborg 
et al. 2014). In rodents, Asingle (As) spermatogonia actively 
proliferate to form two conjoined daughter cells known 
as Apaired (Apr) cells which continuously divide forming 
Aaligned (Aal) chains (reviewed in de Rooij & Russell 2000, 
Ehmcke et  al. 2006). Occasionally, spermatogonia 
enter meiosis, leading to the infrequent observation of 
primary spermatocytes during prepuberty; however, 
these cells quickly degenerate since the somatic cells 
are not mature enough to support full spermatogenesis 
at this stage (Chemes 2001). The diameter of the tubules 
is unaltered during prepubertal development, with the 
lumen expanding only later during puberty due to intense 
germ cell proliferation that results in the expansion in 
tubule width (Chemes 2001). Reference values based 
upon a systematic review and meta-analysis performed 
by Masliukaite et al. (2016) indicates that spermatogonia 
number per tubular cross-section and density per area 
(cm3) decrease during the first 3 years of life followed by 
a gradual increase up to 6 to 7 years of age, plateauing 
up to age 11 when boys begin to enter puberty and 
numbers increase dramatically. The initial decrease may 
be a result of programmed cell death of the gonocytes 
that failed to migrate to the basement membrane earlier 
in development (Masliukaite et al. 2016).

The Sertoli cells in the prepubertal testis appear 
morphologically immature, with little cytoplasm and 
with the nuclei arranged in palisade formation with 
small nucleoli (Chemes 2001). These somatic cells 
differentiate and undergo functional maturation during 
prepuberty, with increased expression of androgen 
receptors and connexin 43, as well as expression of 
vimentin and inhibin β markers (Brehm et al. 2006, de 
Michele et  al. 2018). In addition, Sertoli cells display 
aromatase activity and produce oestrogen during 
prepuberty (Chemes 2001). AMH, in particular, is 
secreted in large amounts in prepubertal boys and can be 
used as an indicator of Sertoli cell number and function; 
however, levels will decline during puberty and will 
be low throughout adulthood (Rey 1999). As in the 
foetus, Sertoli cell factors are involved in controlling the 
development/proliferation of other testicular cell types. 
The peritubular myoid cells proliferate and develop 
during early postnatal development in the rodent, under 
the control of FSH, with Sertoli cells having an important 

role in maintaining their differentiated state (Chemes 
2001, Nurmio et  al. 2012, Rebourcet et  al. 2014). 
However, this dependency is lost when the peritubular 
myoid cells terminally differentiate during prepuberty, 
as shown in the rodent model (Rebourcet et al. 2014). 
These cells gain the ability to contract during puberty, 
with testosterone stimulating the expression of smooth 
muscle actin in the primate model (Mayerhofer 2013). 
The development of the Leydig cell population during 
the prepubertal period is less well understood with much 
of our knowledge based on rodent studies (Chen et al. 
2009). In the rodent, Sertoli cells have an important role 
in stimulating ALC differentiation and will ultimately 
determine the number of ALCs in the adult (Rebourcet 
et al. 2014). The ALC population forms during puberty 
following reactivation of the HPG axis from stem/
progenitor cells, which proliferate during early postnatal 
life (Chen et al. 2009).

Evidence of chemotherapy-induced direct damage 
to the prepubertal testis

Understanding the specific mechanisms by which 
different classes of chemotherapy drugs directly target 
and damage the prepubertal testis is essential to aid 
development of protective strategies. Damage induced 
by chemotherapy treatment can have a major impact 
on the patient’s reproductive outcome in later life, with 
impaired development of sexual characteristics and 
potential fertility consequences (Frederick et al. 2016). 
Long-term fertility depends on continued survival of 
male germ cells, specifically SSCs, and of functional 
supporting somatic cells (Zohni et al. 2012, Yoon et al. 
2017, Stukenborg et  al. 2018a). However, research 
focusing on direct damage to the testis is lacking within 
a clinical setting since testis tissue biopsy is not routinely 
performed before or after chemotherapy treatment. 
With recent focus on cryopreserving prepubertal testis 
samples before the onset of cytotoxic treatment for 
potential fertility preservation in the future, more tissue 
is becoming available for research and therefore studies 
using such tissue should be more common in the future. 
Indeed, a recent report by Stukenborg et al. (2018b) has 
histologically examined testis biopsies from prepubertal 
patients who were selected for cryopreservation of 
tissue due to the cytotoxic nature of their cancer 
treatment regimens. Research from animal studies has 
the potential to aid in understanding gonadal toxicity of 
individual drugs and their mechanism of action, as well 
as to examine the impact of clinically relevant combined 
treatments; however, to date, there have been few such 
studies. The human and animal studies discussed in 
this review focus on chemotherapy treatment delivered 
during the prepubertal period, where the damage can 
be assessed after treatment or implied from subsequent 
analysis of the adult testis.
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Human studies

Studies examining the direct testicular damage induced 
following chemotherapy treatment of prepubertal human 
patients are few and far between, with most of these 
linking the damage to cyclophosphamide treatment, 
although in almost all cases there is co-administration 
of other chemotherapy drugs (Table  2). Methods of 
analysis are descriptive in nature following histological 
analysis of testicular biopsies, for example, describing 
the general appearance of tubules and density of 
germ and somatic cells present. Additional analyses 
include calculation of the tubular fertility index, which 
represents the percentage of seminiferous tubules that 
contain spermatogonia (Ise et al. 1986). To the best of our 
knowledge, there are no papers where chemotherapy 
agents were tested for cytotoxicity through in vitro 
culture of testicular cells or tissues from human patients 
to include in this review. Many of the included studies 
present limitations such as small patient cohorts, lack of 
universal methods for defining pubertal status and lack 
of adequate control groups for comparison.

Assessment of immediate testicular damage in 
prepubertal patients

Following on from initial histological observations 
published in early case reports (Arneil 1972, Berry 
et  al. 1972, Hyman & Gilbert 1972), larger studies 
indicate a relationship between use of alkylating 
agents in treatment regimens and testicular tissue 
damage (Poganitsch-Korhonen et al. 2017, Stukenborg 
et  al. 2018b). In particular, the inclusion of the drug 
cyclophosphamide for cancer treatment during the 
prepubertal period has been linked to resulting testicular 
damage (Table  2). The studies included here under 
‘immediate assessment’ varied in the timeframe of 
analysis with the testicular damage examined at different 
time points including during, just before the cessation 
or at the end of the treatment period as well as up to 
a year after the end of treatment. These investigations 
have indicated that cyclophosphamide treatment is 
associated with testicular damage in a dose- and time-
dependent manner. Treatment can reduce the overall 
size of the testis where there is depletion of the germ 
cell population, resulting in Sertoli cell-only tubules, 
as well as interstitial fibrosis and basement membrane 
thickening (Hyman & Gilbert 1972, Hensle et al. 1984, 
Uderzo et  al. 1984). A cut-off dose at which such 
damage is evident is hard to define, since comparison 
between the few available studies is challenging due 
to the limitations previously described, as well as the 
variability of treatment regimens. The length of the 
treatment regimens may also determine the severity of 
the impairment, with higher cumulative doses over a 
shorter period of time reducing chemotherapy-induced 
damage (Ise et al. 1986). In many of the studies listed in C
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Table  2 and discussed further in subsequent sections, 
only a subset of the patients exhibit severe damage to 
the testis following cyclophosphamide treatment. This 
indicates a degree of variability/susceptibility to damage 
which could be due to several factors, including age and 
genetic predisposition.

The testis itself is composed of somatic and germ 
cells, which could potentially each have different 
sensitivities to chemotherapeutic drugs. Damage 
to the somatic cells during chemotherapy treatment 
could negatively impact on the germ cells and vice 
versa (Stukenborg et al. 2018a). Nurmio et al. (2009a) 
have reported that cyclophosphamide targets both 
SSCs and more differentiated spermatogonia in the 
prepubertal testes, as indicated by changes in gene 
expression of specific spermatogonial markers (MAGE 
A4 and CD9). This is in agreement with most papers 
that reported effects on germ cells, with one study 
describing the appearance of immature Leydig and 
Sertoli cells following cyclophosphamide treatment 
(Ise et al. 1986).

Assessment of the effect of prepubertal drug exposure 
damage in the adult

Insult to the prepubertal testes following chemotherapy 
treatment can be inferred from examination of pubertal/
adult patients who were treated as children and can also 
determine the potential for the testes to recover and later 
undergo active spermatogenesis. Short-term analysis 
(1 to 5  years) and long-term analysis (6 to 10  years) 
following the cessation of cyclophosphamide treatment 
have shown that damage is often still observable in a 
dose- and time-dependent manner (Table  3). Patients 
receiving relatively high doses of cyclophosphamide 
have exhibited severe testicular damage with Sertoli cell-
only tubules present up to 9 years after treatment (Penso 
et al. 1974, Aubier et al. 1989). The length of treatment 
regimen may also influence the disruption caused to the 
prepubertal testes, as shown in Etteldorf et  al. (1976) 
(Table 3). However, such differences may ultimately be 
the result of higher cumulative doses or the age of the 
patient when treated, with younger patients potentially 
more at risk of reduced tubular fertility index and poor 
development of Sertoli and Leydig cells, as has been 
shown in Ise et  al. (1986). Nonetheless, due to small 
numbers of participants, individual studies such as this 
can only lead to definitive conclusions when part of a 
larger meta-analysis. A case report has described somatic 
cell damage in the testis following chemotherapy during 
prepuberty, with the presence of immature Sertoli 
cells (identified by cytokeratin 18 and D2-40 markers) 
in a 31-year-old man treated during childhood with 
a regimen containing cyclophosphamide; however, 
causation cannot be determined from a case report  
(Bar-Shira Maymon et al. 2004).

Summary of human studies

The studies discussed above suggest that alkylating agents, 
in particular cyclophosphamide, can be detrimental to 
the prepubertal testis in a manner that can persist at least 
up to 10  years after the cessation of treatment. Since 
patients had received a combination of chemotherapy 
drugs, it is hard to determine the relative contributions of 
individual chemotherapeutic drugs to gonadal toxicity; 
in addition, results may have been influenced by the 
age/stage of pubertal development and each patient’s 
own sensitivity to chemotherapy treatments.

Animal studies

The use of animal models has the potential to provide a 
clearer picture of chemotherapy drug-induced gonadal 
toxicity in the prepubertal context, in comparison to our 
very limited ability to investigate this directly in humans. 
Research on animal models enables researchers to 
administer drugs through more regulated regimens and to 
compare results using animals, tissues or cells. The use of 
animal models also opens the possibility of determining 
which period of development is more sensitive to 
chemotherapy treatment, for example by comparing 
infancy to prepuberty. Additionally, such studies are 
likely to be invaluable in determining the underlying 
mechanisms by which the different chemotherapy drugs 
damage the prepubertal testis, information which should 
help in the subsequent development of protective 
strategies designed to directly block such damage. 
Despite their great potential, relatively few studies have 
been conducted in vivo or in vitro with the majority of 
studies focusing on germ cell effects. Work to date has 
looked specifically at alkylating agents, anthracyclines, 
topoisomerase inhibitors, vinca alkaloids and  
non-anthracycline antibiotic chemotherapy treatments.

Germ cell effects

Alkylating and alkylating-like agents  As in human 
studies, research to date using prepubertal testis of 
rodents points to alkylating and alkylating-like agents 
targeting the germ cell population in a dose- and time-
dependent manner (Table  4). SSCs have been shown 
to be particularly sensitive to cyclophosphamide and 
cisplatin, with treatment inducing DNA damage in vitro, 
which could ultimately activate cell death pathways if not 
repaired by internal DNA repair systems (Marcon et al. 
2010, Liu et al. 2014). DNA damage was noted following 
short-term (24 h) exposure to chemotherapeutics using 
an in vitro culture system of prepubertal (pnd 5) mouse 
testis (Smart et  al. 2018). Activation of the apoptotic 
pathway was shown by enhanced cleaved caspase 
(CC) 3 expression following cyclophosphamide and 
cisplatin treatment with the timings differing between 
the agents, followed by loss of germ cells hours later. 
Increased numbers of apoptotic spermatogonia and 
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primary spermatocytes have also been observed in 
vivo immediately following cisplatin treatment during 
early puberty (pnd 30–45) in the rat and after a 45-day 
recovery period (Lirdi et al. 2008, Favareto et al. 2011). 
The length of the treatment rather than the cumulative 
doses appears to be involved in determining the degree 
of testicular damage (Velez de la Calle et  al. 1989). 
Shorter treatment regimens reduce time of exposure of 
the testis to the chemotherapeutic agent, which could be 
more important than overall cumulative dose received.

Anthracyclines  Of the anthracycline class of 
drugs, work to date has focused on doxorubicin, 
and it is clear that this drug targets the pre-mitotic 
dividing spermatogonia and the pre-meiotic primary 
spermatocytes in the prepubertal testis (Table 4). These 
germ cells are undergoing DNA synthesis and therefore 
contain high levels of the enzyme topoisomerase II, 
which is a target of the drug (Parvinen & Parvinen 1978). 
During early prepubertal development, the testis is 
especially vulnerable to doxorubicin-induced damage, 
depleting the seminiferous epithelium in comparison to 
later stages shown in the rat model (Bechter et al. 1987). 
This study found using an immature in vivo rat model, 
that a relatively low dose of doxorubicin (3 mg/kg) was 
not sufficient to kill all the SSCs, as some recovery was 
apparent. In addition to inhibition of topoisomerase II 
activity, doxorubicin has been shown to induce DNA 
damage in spermatogonia in vitro, which can result in 
cell death (Beaud et al. 2017). Interestingly, the Beaud 
et al. (2017) work indicated that cell death was induced 
independent of apoptosis, since externalization of 
phosphotidylerine was not apparent following treatment. 
In agreement with these findings, DNA damage was 
observed despite the absence of a significant increase 
in CC3 expression prior to loss of germ cells following 
short-term exposure of prepubertal mouse testis tissue 
to doxorubicin (Smart et al. 2018). The cell death that 
occurs following doxorubicin may result from a non-
apoptotic mechanism for example through necrosis or 
autophagy (Beaud et al. 2017, Smart et al. 2018). This 
hypothesis would be consistent with studies analysing 
cardiotoxicity following doxorubicin treatment where 
the cell death induced is through autophagy (Dirks-
Naylor 2013). However, increased levels of CC8 and 
p53 48 h after treatment in an in vivo model has also 
been reported (Hou et al. 2005). Oxidative stress has also 
been proposed as a mechanism of doxorubicin-induced 
damage to germ cells, however, work in an in vitro model 
culturing a cell line with rat SSC/spermatogonia type A 
characteristics (GC-6spg) has shown no such increase in 
levels of reactive oxygen species (ROS) before the onset 
of cytotoxicity (Tremblay & Delbes 2018).

Topoisomerase inhibitors  Topoisomerase inhibitors, 
such as etoposide and irinotecan, have been investigated 

to determine prepubertal gonadal toxicity and have been 
found to target the pre-mitotic and pre-meiotic germ cells 
(Table 4). These drugs inhibit the activity of the enzyme 
topoisomerase I and II and ultimately induce cell death 
through activation of apoptotic pathways (Freitas et al. 
2002, Stumpp et al. 2004, Ortiz et al. 2009). Etoposide 
damages the prepubertal testis depleting the germ cell 
pool, with little recovery from treatment at low doses 
(2 mg/kg; Freitas et  al. 2002). SSCs are particularly 
vulnerable to etoposide treatment, with a lower half 
maximal inhibitory dose in comparison to cisplatin and 
bleomycin. With etoposide targeting the SSC population, 
this reduction could account for the reduction in later 
stages of spermatogenesis observed in the adult rat 
(Stumpp et al. 2004, Marcon et al. 2010). Exposure of 
the prepubertal mouse testis in vitro to concentrations 
of SN38 (the metabolite of irinotecan) that reflect 
patient serum levels shows that this drug targets the 
proliferating germ cell population (Lopes et  al. 2016). 
Involvement of the apoptotic pathway in cell death has 
been observed following etoposide treatment in an in 
vivo prepubertal rat model, with increased numbers of 
apoptotic intermediary and type B spermatogonia, as 
well as primary spermatocytes, immediately following 
treatment (Stumpp et  al. 2004). In addition, increased 
activity of CC9, CC3 and CC8 as well as enhanced 
levels of protein and mRNA of p53 and Bcl-2 have been 
observed in the prepubertal rat following etoposide 
treatment (Ortiz et al. 2009). However, from this study 
it is not possible to determine which cell types within 
the testis the observed changes occurred in, since results 
were obtained from homogenised tissue.

Vinca alkaloids and non-anthracycline antibiotics   
In vitro studies indicate that vincristine may target the 
germ cell population and bleomycin has the potential 
to damage the testis (Table 4). Vincristine reduces cell 
viability and increases cell death of the GC-6spg cell 
line in a dose- and time-dependent manner. However, 
this was not a result of DNA damage, as this class of 
drugs inhibits polymerization of microtubules, involving 
activation of apoptotic pathways (Beaud et  al. 2017). 
Bleomycin targets SSCs in vitro in a dose-dependent 
fashion, with cytotoxicity (seen at 0.1 µM) inducing 
DNA damage that extends into telomere regions of 
chromosomes (Marcon et  al. 2010, Liu et  al. 2014). 
These initial studies indicate that such drugs have the 
potential to impact the testis negatively and should be 
further investigated in vivo.

Combination treatments  In a clinical setting, cancer is 
treated with a combination of chemotherapeutic agents. 
Different classes of drugs target cells through differing 
mechanisms which may have synergistic effects. The 
combined treatments reduce the chance of resistance 
and survival of cancerous cells, but have the possibility 
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of leading to multiplicative off-target side effects on 
healthy cells. Relatively few animal studies have focused 
on combinations of drugs (Table 4). Using the GC-6spg 
cell line, Beaud et al. (2017) showed that a combination 
of vincristine and doxorubicin enhanced levels of cell 
death in a dose-dependent manner in comparison 
to treatment with each drug individually. In contrast, 
exposure to a combination of bleomycin, cisplatin and 
etoposide had no additional impact on cluster size/area 
of mouse SSCs in culture (Marcon et al. 2010). Further 
investigations into common combinations are required 
to determine the relative gonadotoxicity, and whether 
the effects are synergistic and/or multiplicative.

Somatic cell effects

Studies relating to impacts of chemotherapy treatment 
upon the somatic cells have mainly been limited to the 
Sertoli cell and include studies which have focused on 
cyclophosphamide, cisplatin, doxorubicin and etoposide 
chemotherapy agents (Table  4). Treatment results in 
morphological damage including vacuolation of the 
cells and adluminal positioning (Velez de la Calle et al. 
1988, 1989, Stumpp et al. 2006, 2008, Favareto et al. 
2011, Brilhante et  al. 2012). However, these cells do 
survive exposure as shown in Smart et al. (2018) where 
there was no overall change in cell numbers following 
cyclophosphamide, cisplatin or doxorubicin treatment in 
an in vitro model of prepubertal mouse testicular tissue. 
Damage to the Sertoli cells resulting in dysfunction could 
be the primary effect of such treatment, which would 
have a significant impact on testis function. Indeed, 
decreased production of androgen-binding protein 
following treatment with alkylating and alkylating-like 
agents has been reported in prepubertal rats (Velez de 
la Calle et al. 1988, 1989, Favareto et al. 2011). In vitro 
studies using primary cultures of rat Sertoli cells have 
also shown reduced transferrin production following 
cisplatin, doxorubicin and vincristine treatment (Nambu 
et al. 1995). Transferrin stimulates germ cell proliferation/
differentiation by transferring iron to these cells (Sylvester 
& Griswold 1994). A potential mechanism by which 
cyclophosphamide and doxorubicin induce damage 
specifically to the Sertoli cell has been proposed by in 
vitro studies of cultured immature Sertoli cells where 
enhanced levels of oxidative stress have been reported 
(Liu et  al. 2012, Tremblay & Delbes 2018) as well as 
damage to the cytoskeleton following cyclophosphamide 
treatment (Liu et al. 2012).

Impairment of Sertoli cell functionality, however, may 
be secondary and a result of primary injury to the germ 
cell population. An in vivo study looking at doxorubicin-
induced damage has shown that the alterations in the 
morphology and function of these cells was more 
pronounced in early adulthood in comparison to time 
of treatment just before puberty (pnd 22). This suggests 
that the germ cells were the primary cells targeted 
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by doxorubicin, with loss/damage to the germ cells 
ultimately impacting Sertoli cells as a secondary effect 
(Brilhante et al. 2012). For etoposide, functional deficits 
were also more apparent in adulthood, suggesting 
damage was secondary to germ cell death. However, 
upon recovery of the seminiferous epithelium, Sertoli 
cell dysfunction was still apparent with reduced 
transferrin production and altered morphology; this 
may suggest a degree of primary damage on the Sertoli 
cells (Stumpp et al. 2006). How to distinguish between 
primary and secondary damage to the Sertoli cells is 
difficult due to the dependence of Sertoli cells on germ 
cells and vice versa. Isolation of Sertoli cells from the 
germ cell population, as with the primary cell culture or 
established cell line culture experiments, has been used 
to look specifically at Sertoli cell damage. These isolated 
Sertoli cells, however, may not be representative of 
the ‘true’ in vivo Sertoli cell as often these cells do not 
maintain Sertoli cell identity once removed from their 
true environment, a limitation that needs to be borne in 
mind for all cell line studies.

To date, few studies have focused on the other 
somatic cell types within testis, the Leydig cells or 
peritubular myoid cells. An in vivo study reported 
reduced steroidogenic activity of Leydig cells following 
treatment of immature rats with mitomycin C (Deb et al. 
1980). More recent in vitro studies have shown there was 
no change in Leydig cells numbers reported by Smart 
et al. (2018) after in vitro exposure of mouse prepubertal 
testis fragments to cisplatin, cyclophosphamide and 
doxorubicin. The proliferative ability of the peritubular 
myoid cells and steroidogenic activity of the Leydig cells 
were also unaltered after doxorubicin treatment of rat 
testis tissue in vitro (Nurmio et  al. 2009b). Additional 
studies looking specifically at these cell types within the 
testis are required before any conclusion can be drawn 
on chemotherapy-induced damage.

Summary of animal studies

To conclude, in the prepubertal testes chemotherapy 
agents have been shown to specifically target and 
deplete the germ cell pool, in some cases specifically 
the SSC population, with DNA damage noted after 
cyclophosphamide, cisplatin and doxorubicin exposure. 
Apoptosis is the main cell death pathway activated by 
cyclophosphamide, cisplatin, etoposide and vincristine 
exposure, whereas doxorubicin-induced testicular 
damage may be the result of an alternative cell death 
pathway such as necrosis or autophagy. Cancer therapy 
may also affect the Sertoli cell population resulting 
in morphological damage and/or dysfunction, as 
shown by cyclophosphamide, procarbazine, cisplatin, 
doxorubicin and etoposide treatment. However, somatic 
cell impairment may either be the result of primary 
cellular damage to the Sertoli cells themselves and/or 
a secondary consequence of targeted loss of the germ 

cell population. Whether combined chemotherapy 
treatment regimens modify the toxicity of individual 
drugs needs further clarification, as few such in vitro 
studies have been performed to date.

Effects on future generations

The clinical impact of prepubertal chemotherapy 
treatment on later fertility has been discussed in several 
reviews (Hudson 2010, Lee & Shin 2013); for survivors 
who are able to conceive there could be potential effects 
upon future generations due to unrepaired damage to 
the male germline. The impact on future generations 
is not yet clear. A Danish study of 472 survivors of 
childhood cancer found no significant association 
between alkylating chemotherapy treatment and later 
genetic diseases of the progeny of these survivors 
(Winther et al. 2012). Nonetheless, a study by Liu et al. 
(2014) has shown a potential mechanism by which 
alkylating agents can impact on future generations by 
targeting the telomeres of mouse spermatogonial cells. 
Telomerase function was reduced at concentrations of a 
drug precursor of cyclophosphamide (4OOH-CPA) and 
cisplatin which induced significant spermatogonial cell 
death resulting in reduced telomere length and activity 
of telomerase. A reduction in the length or function of 
telomeres of the male germ cell can adversely affect early 
development of the offspring, increasing the rate of pre- 
and/or post-implantation loss, congenital malformation 
and miscarriage (Liu et  al. 2002). Whether additional 
classes of drugs also impact on future generations is 
unknown and therefore further research into this area is 
urgently required.

Protective strategies

The development of chemotherapeutic treatment 
regimens has increased greatly in the past decade resulting 
in a greater number of childhood cancer survivors 
reaching adulthood and facing long-term consequences 
of treatment, such as infertility. There is therefore an 
increasing focus on preserving the fertility of children 
undergoing cancer treatment. At the time of writing, 
though, fertility preservation strategies for prepubertal 
boys have yet to be established clinically. Testicular 
tissue from boys undergoing ‘high’ risk chemotherapy 
treatment is being collected in a limited number of 
centres, with tissue cryopreserved and stored for potential 
fertility restoration when the boys reach adulthood. The 
proposed techniques to restore fertility, however, are 
still in the experimental phase of development with 
success to date only in rodent models (Picton et  al. 
2015, Giudice et al. 2017). Studies with human tissues 
have been conducted in relation to transplantation of 
cryopreserved testicular tissue and SSCs as well as in 
vitro maturation of immature testicular tissue, paving 
the way for the development of a fertility restoration 
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method clinically (reviewed Giudice et  al. 2017). 
Xenotransplantation of prepubertal human testicular 
tissue for up to 9 months has been performed with nude 
mice where initiation of spermatogenesis was observed 
within the grafted tissue, however spermatogenesis did 
not reach meiotic differentiation (Wyns et  al. 2007, 
2008, Goossens et al. 2008, Van Saen et al. 2011, 2013). 
SSCs isolated from prepubertal patients have been 
propagated in vitro, but results are preliminary (Sadri-
Arekani et al. 2011). Human prepubertal testicular tissue 
has been successfully cultured in vitro with survival of 
the spermatogonial germ cell population, maturation 
of the somatic cells and formation of the blood–testis 
barrier reported (de Michele et al. 2017, 2018). Initiation 
of spermatogenesis from such tissue has yet to be 
demonstrated. Alternatively, the prepubertal testis could 
be protected against injury caused by the treatment 
through use of cytoprotective agents that would be 
added to the cancer treatment regimen. Several studies 
have shown the gonadoprotective potential of agents 
in animal studies focusing on adult males, mainly 
investigating the morphology and motility of sperm. For 
example, Carmely et al. (2009) has shown in a mouse 
model the cytoprotective effect of the immunomodulator 
AS101 compound against cyclophosphamide-induced 
testicular damage. In contrast, so far only a limited 
number of compounds have been analysed to determine 
their ability to protect the prepubertal testis in an animal 
model (Table 5).

Amifostine

Amifostine is an organic thiophosphate that acts 
as a cytoprotective agent, protecting cells against 
chemotherapeutic damage whilst having no antitumor 
activity (Çetingül et  al. 2009). The active metabolite 
acts as a ROS scavenger and binds and stabilizes DNA 
(Spencer & Goa 1995). This drug has a limited half-life of 
eight minutes, therefore in vivo studies have focused on 
pre-treatment of amifostine 15 min before chemotherapy 
treatment. Pre-treatment partially protected the 
prepubertal rat testis against cisplatin- and doxorubicin-
induced testicular damage; this effect may be dependent 
on the age and schedule of treatment, as a lower dose of 
amifostine in earlier stages of prepubertal development 
in rats had no protective effects against doxorubicin-
induced damage when tissues were analysed 24 and 
48 h after treatment (Jahnukainen et al. 2001, Hou et al. 
2005). However, prepubertal amifostine pre-treatment 
before doxorubicin treatment did not maintain fertility 
in the adult, as DNA damage was found in the sperm of 
treated animals when analysed 64 days after treatment, 
which increased the number of arrested embryos in 
a mating study of adults (100  days old) (Vendramini 
et  al. 2012). An in vitro study has also indicated that 
amifostine has no protective effects against doxorubicin-
induced damage in a spermatogonial cell line and an 

immature Sertoli cell line (Tremblay & Delbes 2018). 
Therefore, amifostine may not be a suitable fertility 
preservation strategy.

Carnitine

Carnitine is a quaternary amine found at high 
concentrations within the epididymis of the male 
reproductive tract and in spermatozoa. It is acquired 
through dietary meat and milk and is also produced by 
the liver through methylation of lysine and methionine 
amino acids. This compound has essential roles 
in determining male fertility, producing energy by 
transferring long-chain fatty acids into mitochondria, 
a process required for germ cell maturation, sperm 
motility and sperm count; it has been shown to have 
cytoprotective properties whilst having no impact 
on anticancer treatment efficacy (Chiu et  al. 2004, 
Sayed-Ahmed 2010). Partial protection from etoposide 
and doxorubicin-induced morphological damage 
and apoptotic germ cell death was shown when 
prepubertal rats were pre-treated with carnitine one 
hour before chemotherapy treatment in vivo (Okada 
et  al. 2009, Cabral et  al. 2014). The mechanism 
underlying such cytoprotective action is unknown, but 
may be the result of enhanced DNA repair activity, 
inhibition of ceramide production and/or reduction in 
oxidative stress-induced damage as shown in a range 
of different cell types (Andrieu-Abadie et  al. 1999, 
Palmero et al. 2000, Alshabanah et al. 2010). Indeed, 
a study by Cabral et  al. (2018) has shown improved 
oxidative stress status of the adult testis following 
prepubertal pre-treatment with cartinine one hour 
before doxorubicin treatment in a rodent model. An in 
vitro model, however, has found no protective effects 
against doxorubicin-induced damage when cartinine is 
administered in spermatogonial or immature Sertoli cell 
lines (Tremblay & Delbes 2018). Sertoli cell function 
may be improved upon carnitine administration, as 
these cells express carnitine/organic cation transport 2 
receptors, with carnitine important in the maintenance 
of the BTB (Palmero et al. 2000).

Ginseng intestinal metabolite I (GIM-I)

The herbal root, Ginseng has been used in East Asian 
countries as a traditional Chinese medicine and the 
intestinal metabolite, known as ginseng intestinal 
metabolite I (GIM-I), is thought to have multiple 
pharmacological effects through its antioxidant activity 
(Zhang et  al. 1996). The protective effect against 
doxorubicin-induced damage has been analysed 
by Kang et  al. (2002) in prepubertal mice in vivo, 
where GIM-I was found to partially protect against 
doxorubicin-induced germ cell damage resulting in 
testicular morphology comparable to controls that may 
be the result of enhanced antioxidant activity. GIM-I 
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increases the levels of testis-specific antioxidants which 
were reduced following doxorubicin treatment. This 
compound has great potential as a cytoprotective agent 
against doxorubicin-induced damage and appears to 

have anti-metastatic activity and could therefore be 
added to chemotherapeutic regimens to provide benefit 
as both a cytotoxic and cytoprotective agent (Hasegawa 
et al. 1997).

Table 5  Potential cytoprotective agents to protect the prepubertal testis against chemotherapy-induced damage.

Compound Dose Chemotherapy drug/doses Animal model/age
In vivo or 
in vitro Effect Reference

Amifostine 0.2 g/kg Doxorubicin 0.003 g/kg Prepubertal rat (pnd 6) In vivo No protective effects Jahnukainen 
et al. (2001), 
Hou et al. 
(2005)

Amifostine 0.4 g/kg Cisplatin 0.005 g/kg Prepubertal rat  
(pnd 30)

In vivo Partial protection, ↓ 
seminiferous tubule 
area and ↑ apoptotic 
spermatogonia and 
primary 
spermatocytes

Lirdi et al. (2008)

Amifostine 0.4 g/kg Doxorubicin 0.005 g/kg Prepubertal rat  
(pnd 30)

In vivo Partially protects. Did 
not protect against 
DNA damage and 
negatively impacted 
on embryo 
development and 
pregnancy outcome

Vendramini et al. 
(2010, 2012)

Amifostine 1 µM Doxorubicin 0.01–1 µM (24 h) GC-6 spermatogonial 
and Ser-W3 immature 
SC cell line (rat) 

In vitro Pre-treatment for 24 h 
or co-treatment had 
no impact on 
cytotoxicity in the 
Ser-W3 cell line

Tremblay & 
Delbes (2018)

Cartinine 0.25 g/kg Etoposide 0.04 g/kg Prepubertal rat (pnd25) In vivo Analysed pnd 30, 64 
and 100. Partial 
protection, reduction 
in TUNEL+ cells

Okada et al. 
(2009)

Cartinine 0.25 g/kg/day Doxorubicin 0.005 g/kg Prepubertal rat (pnd30) In vivo Analysed pnd 64 and 
100. Partial 
protection, ↓ TUNEL+ 
cells and sperm DNA 
damage. ↑ Acrosome 
integrity pre-
treatment, no impact 
on sperm motility and 
mitochondrial 
activity. ↓ Lipid 
peroxidation and 
nitric oxide. ↑ Fertility 
index and 
implantation rate 
improved

Cabral et al. 
(2014, 2018)

Cartinine 10 mM Doxorubicin 0.01–1 µM (24 h) GC-6 spermatogonial 
and Ser-W3 immature 
SC cell line (rat)

In vitro Pre-treatment for 24 h 
or co-treatment had 
no impact on 
cytotoxicity in the 
Ser-W3 cell line

Tremblay & 
Delbes (2018)

Curcumin 5 µM Doxorubicin 0.01–1 µM (24 h) GC-6 spermatogonial 
and Ser-W3 immature 
SC cell line (rat)

In vitro Pre-treatment for 24 h 
or co-treatment had 
no impact on 
cytotoxicity in the 
Ser-W3 cell line

Tremblay & 
Delbes (2018)

Ginseng 
intestinal 
metabolite I 
(GIM-I)

0.05 g/kg/day Doxorubicin 0.05 g/kg/day Prepubertal rat (pnd28) In vivo Partially protects Kang et al. (2002)

Vitamin C 40 µg/mL Doxorubicin 0.01–1 µM (24 h) GC-6 spermatogonial 
and Ser-W3 
immature SC cell line 
(rat)

In vitro Pre-treatment for 24 h 
or co-treatment had 
no impact on cytotox-
icity in the Ser-W3 
cell line

Tremblay & 
Delbes (2018)
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Vitamin C and curcumin

A study by Tremblay and Delbes (2018) has investigated 
the potential of compounds as cytoprotectants based 
upon their antioxidant activity, including vitamin 
C and curcumin. Vitamin C can also function by 
inhibiting apoptosis, whilst curcumin has additional 
anti-inflammatory properties. However, in both cases 
treatment did not reduce the cytotoxic activity of 
doxorubicin in either spermatogonial or immature 
Sertoli cell lines. This study therefore indicates that these 
compounds may not be suitable cytoprotectants against 
doxorubicin-induced prepubertal testicular damage.

Summary of protective strategies

Cytoprotective agents could play a major role in the 
future of fertility preservation strategies, however, 
research in this area to date is very limited, and has only 
shown partial protection against chemotherapy-induced 
damage with pre-treatment with amifostine, cartinine 
and GIM-I. Moreover, prepubertal amifostine treatment 
alone compromised later fertility and is therefore not 
suitable for purpose. In contrast, GIM-I might have more 
potential as a cytoprotective agent, in part due to its 
anti-metastatic activity. Overall, despite the promising 
results outlined, the level of evidence established so far 
in animal studies in not sufficient for transfer to clinical 
practise and needs further investigation.

Conclusion

This review has provided an overview of what is currently 
known in relation to chemotherapy-induced prepubertal 
testicular toxicity from studies in human patients and 
animal models, focusing primarily upon direct damage 
following chemotherapy exposure. Cancer therapy with 
a range of chemotherapy agents from different drug 
classes during childhood have been found to negatively 
impact upon the prepubertal testis. The resulting damage 
depends on the compounds used, cumulative dose, 
administration regimen and age/pubertal status during 
treatment. Such conclusions have been drawn from both 
clinical investigations and animal models, including in 
vivo as well as in vitro studies, with testicular fragments 
or primary cell cultures/cell lines representatives of the 
cell types in the prepubertal testis. However, as this 
review has discussed, the evidence for chemotherapy-
induced damage to the prepubertal testis is at present 
incomplete and needs further investigation.

Further research into chemotherapy-induced 
prepubertal testicular toxicity is essential as the number 
of childhood cancer survivors is set to increase steadily 
over the coming years. Enhancing our knowledge 
of the gonadotoxicity of chemotherapeutic agents is 
essential for clinicians to determine which patients to 
offer cryopreservation of immature testicular tissue for 

potential fertility restoration strategies, which are at 
present experimental for human patients. Understanding 
how chemotherapy agents target and damage the testis 
of young boys will provide much clarity to the future 
quality of life of these patients and aid in the development 
of protective strategies for preservation of fertility.
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