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Abstract

Although a number of treatments are available for rheumatoid arthritis (RA),

each of them shows a significant nonresponse rate in patients. Therefore,

predicting a priori the likelihood of treatment response would be of great

patient benefit. Here, we conducted a comparison of a variety of statistical

methods for predicting three measures of treatment response, between baseline

and 3 or 6 months, using genome‐wide SNP data from RA patients available

from the MAximising Therapeutic Utility in Rheumatoid Arthritis (MATURA)

consortium. Two different treatments and 11 different statistical methods were

evaluated. We used 10‐fold cross validation to assess predictive performance,

with nested 10‐fold cross validation used to tune the model hyperparameters

when required. Overall, we found that SNPs added very little prediction

information to that obtained using clinical characteristics only, such as baseline

trait value. This observation can be explained by the lack of strong genetic

effects and the relatively small sample sizes available; in analysis of simulated

and real data, with larger effects and/or larger sample sizes, prediction

performance was much improved. Overall, methods that were consistent with

the genetic architecture of the trait were able to achieve better predictive ability

than methods that were not. For treatment response in RA, methods that

assumed a complex underlying genetic architecture achieved slightly better

© 2018 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.

Genet. Epidemiol. 2018;1–18. www.geneticepi.org | 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

http://orcid.org/0000-0002-1879-5572
http://creativecommons.org/licenses/by-nc/4.0/


prediction performance than methods that assumed a simplified genetic

architecture.
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cross validation, prediction, snp data, treatment response

1 | INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease that
results in chronic joint inflammation (McInnes & Schett,
2007). The first choice of treatment of RA is conventional
disease modifying anti‐rheumatic drugs (DMARDs) such
as methotrexate (MTX; Singh et al., 2016). Patients who
do not respond to DMARDs are eligible for biologic or
targeted therapies, the most commonly prescribed being
tumour necrosis factor α inhibitors (anti‐TNF) therapy
(National Institute for Health and Care Excellence
(NICE, NICE Technology Appraisal Guidance 375,
2018). Unfortunately, not only does each drug show a
significant nonresponse rate in patients (Barrera et al.,
2002; Hyrich, Watson, & Symmons, 2006; Soliman et al.,
2012), but failure of the treatment may also lead to
irreversible joint damage due to uncontrolled inflamma-
tion (Smolen et al., 2010). Therefore, it would be of great
benefit to be able to predict treatment response, so that
patients can be assigned the right treatment at an early
stage. Here, we use data from the MAximising Ther-
apeutic Utility for Rheumatoid Arthritis (MATURA)
consortium (Barton & Pitzalis, 2017) and focus on
predicting the change in C‐reactive protein score (CRP),
in 28 swollen joint count score (SJC28) and in erythrocyte
sedimentation rate (ESR)—three markers of treatment
response—using genome‐wide SNP data in RA patients
receiving two different treatments: anti‐TNF and MTX.

A variety of methods have been previously explored for
genomic prediction of complex traits. In the human
genetics literature, the field has largely been dominated
by approaches based on polygenic risk scores (Dudbridge,
2016); however, more advanced approaches derived from
either animal breeding or statistical machine learning have
also been investigated (Abraham, Kowalczyk, Zobel, &
Inouye, 2013; Bermingham et al., 2015; Spiliopoulou et al.,
2015; Warren, Casas, Hingorani, Dudbridge, & Whittaker,
2014), including penalised (and related) methods that allow
some flexibility in terms of the degree of sparsity (i.e., the
number of predictors included in the model) imposed.
Most studies have found only small differences in
prediction accuracy between sparse and nonsparse meth-
ods, although Spiliopoulou et al. (2015) did find that sparse
models predicted outcome better in unrelated individuals
for traits such as high‐density lipoprotein level (HDL),
where there exist SNP effects of moderate size.

A key (but sometimes forgotten) point is the fact that the
heritability of a trait imposes an upper limit to the
prediction performance that can be achieved using only
genetic predictors (Wray et al., 2013). Another sometimes
unappreciated point is the fact that large sample sizes are
required for building prediction models that attain the
theoretically maximum achievable prediction accuracy,
which is constrained by the true heritability of the trait
(Dudbridge, 2013; Wray et al., 2013). The sample size
requirements will be trait‐specific, as they depend on the
underlying genetic architecture in terms of the numbers of
true genetic effects, as well as on the proportion of variance
that each variant explains. For some diseases, a fairly high
predictive accuracy (as measured in terms of the area under
the curve [AUC]) has been observed with relatively small
discovery data sets (Clayton, 2009; Evans, Visscher, & Wray,
2009), but for most complex diseases it has been estimated
that discovery sample sizes will need to be in the order of
tens, if not hundreds, of thousands (Dudbridge, 2013; Wray
et al., 2013) to achieve clinically useful AUCs.

Here, we compare the prediction ability based on a
relatively small data set (a few thousand individuals) of
11 methods capable of handling cases where number of
SNPs exceeds the number of individuals: lasso, ridge,
elastic net, random forests (RF), support vector regres-
sion (SVR), sparse partial least squares (SPLS), genome‐
wide complex trait analysis (GCTA‐GREML), a Bayesian
sparse linear mixed model (BSLMM), a neural network
(SkyNet), polygenic risk scores (PRSice), and LD‐based
polygenic risk scores (LDpred). We applied each of these
methods to predict treatment response in MATURA
patients receiving either anti‐TNF or MTX.

Disease Activity Score in 28 joints (DAS28; Felson et al.,
1995; Prevoo et al., 1995) is the primary outcome measure
used for clinical assessment of disease activity in RA and
has been widely validated. It is based on a combination of
joint assessments (swelling and tenderness in 28 specified
joints) and blood acute phase inflammatory markers
including erythrocyte sedimentation rate (ESR) or
C‐reactive protein (CRP). Also included is a patient’s visual
analogue score of global well‐being (VAS). The individual
scores are combined in an algorithm but not equally
weighted. Variations of the DAS28, excluding the VAS, for
example, have also been validated as measures of treatment
response. DAS28 was introduced before the development of
imaging‐based diagnostic techniques such as synovitis
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detection with magnetic resonance imaging (MRI) and
ultrasonography (US). There is growing evidence of
disparity between the DAS28 and imaging detected
synovitis (Brown et al., 2006, 2008; Geng, Han, Deng, &
Zhang, 2014; Saleem et al., 2011; Wakefield et al., 2012;
Zufferey et al., 2014). However, individual components of
the DAS28 such as CRP, ESR, and SJC28 have been found
to be associated with imaging‐detected synovitis (Baker
et al., 2014; Hensor et al., 2018) suggesting that these
markers are the most relevant measures for treatment
response. Following this recommendation, we considered
change in CRP, SJC28, and ESR as three different measures
of treatment response in the MATURA data sets (with ESR
available for the MTX cohort only).

As a further illustrative application to a different real data
set, we considered a much larger data set available from
previous case‐control studies of Primary Biliary Cholangitis
(formerly known as Primary Biliary Cirrhosis [PBC]; Mells
et al., 2011). Although the biology of PBC does not relate to
the biology of RA, we considered this data set to provide an
illustrative example of prediction in a real data set that lacks
the handicaps of the MATURA data set (small sample sizes
and a lack of strong signals). As an additional proof of
concept, we also applied the methods to two simulated data
sets in which phenotype was simulated based on the real
MATURA genotype data: (a) under a sparse model with 22
randomly chosen true causal SNPs; (b) under a polygenic
model with 5,000 randomly chosen true causal SNPs.

The remainder of this paper is organised as follows. The
Materials section describes the real and the simulated data
sets analysed. In the Methods section, we give a brief
overview of the statistical methods used. In the Results
section, we compare the prediction performance obtained
from the different methods, with and without incorporating
covariates into the prediction. Finally, we summarise our
conclusions in the Discussion section.

2 | MATERIALS

2.1 | Anti‐TNF data set

Imputed genotype data at 9,084,265 genome‐wide SNPs
for 1,827 patients receiving anti‐TNF treatment were
available; this corresponds to essentially the same data
set described by Massey et al. (2018). We performed
quality control (QC) on the imputed SNP data using
standard procedures outlined in Anderson et al. (2010).
Individuals were excluded if the reported sex did not
match the sex assessed by genotype, and also for elevated
missingness rate, outlying heterozygosity rate, outlying
ethnicity and relatedness. SNPs were excluded if they had
a post‐imputation INFO score < 0.8. Genotype hard calls
were set to missing if the posterior probability was <0.9.

The data was filtered by minor allele frequency (MAF;
>0.01), Hardy–Weinberg disequilibrium (p> 0.000001)
and missing genotype rate (<0.05). The SNP genotypes
were encoded according to the number of copies of the
minor allele possessed. The post‐QC data set was
comprised of 1,819 individuals and 4,542,023 SNPs.

For analysing the change in CRP, we defined the
phenotype as the difference between the follow‐up CRP
measure (measured at 6 months, or 3 months if this was not
available) and the baseline CRP measure on the log scale,
that is, log(CRP ) − log(CRP )fu bl . We adjusted the pheno-
type for the log baseline measure, the drug type (Infliximab,
Etanercept, Adalimumab, Certolizumab pegol, Golimumab)
and the first 10 principal components (PCs) of the SNP
genotypes (to account for population stratification) using
linear regression. We took these standardised residuals as
our final CRP phenotype. The CRP phenotype was available
for 1,088 individuals, out of which 972 individuals had a 6
months follow‐up measure, and 116 individuals had a 3
months follow‐up measure.

For analysing the change in SJC28, the difference
between the follow‐up SCJ28 measure (SJC28fu; measured
at 6 months, or 3 months if this was not available) and the
baseline SJC28 measure (SJC28bl) was adjusted for the
baseline measure, the drug type, the first ten PCs and a
binary indication of whether or not patients received
another disease‐modifying anti‐rheumatic drug (DMARD)
in addition to the anti‐TNF treatment. (This covariate was
also considered but not found to be significant for modelling
the change in log CRP, above). The standardised residuals
were taken as the SJC28 final phenotype. The SJC28
phenotype was available for 1,782 individuals, out of which
1,638 individuals had a 6 months follow‐up measure and
144 individuals had a 3 months follow‐up measure.

For analysing the change in ESR, we defined the
phenotype similarly to CRP, that is, log(ESR ) −fu
log(ESR )bl . It was then adjusted for the baseline measure,
the drug type, the DMARD indicator, gender and the first 10
PCs, with the standardised residuals taken as the final
phenotype. (Gender was also considered but not found to be
significant for modelling the change in log CRP or SJC28,
above). The ESR phenotype was available for 1,575
individuals, out of which 1,462 individuals had a 6 months
follow‐up measure and 113 individuals had a 3 months
follow‐up measure.

2.2 | MTX data set

Imputed genotype data at 7,542,957 genome‐wide SNPs for
828 patients receiving MTX treatment (collected across a
variety of cohorts, see Taylor et al., 2018 for details) were
available; this corresponds to the MATURA‐owned data on
a subset of the patients described by Taylor et al. (2018).
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Individual and SNP QC (as described above for the
anti‐TNF data set) resulted in a data set with 657 patients
and 6,291,430 SNPs.

For analysing the change in CRP, the phenotype was
defined as log(CRP + 1) − log(CRP + 1)fu bl , and was
adjusted for log(CRP + 1)bl , the cohort effect and the
first 10 PCs. (The reason for adding 1 to the argument of
the log function was to make the argument positive for
cases where CRP= 0; this issue did not occur for the anti‐
TNF data set described above). The standardised resi-
duals were then taken as the final CRP phenotype. The
CRP phenotype was available for 618 individuals.

For analysing the change in SJC28, the phenotype was
defined as SJC28 − SJC28fu bl and was adjusted for

SJC28bl , the cohort effect and the first 10 PCs. The
motivation for taking the square root was to achieve a more
normally distributed trait value; this transformation was not
found to be required in the anti‐TNF data set described
above. The standardised residuals were taken as the final
SJC28 phenotype that was available for 629 individuals. For
both CRP and SJC28, the follow‐up measurement was taken
3–6 months after initiating the MTX treatment, although
precise duration of treatment was not available.

2.3 | PBC data set

PBC is an autoimmune liver disease for which a number
of genome‐wide significant loci have previously been
found (Cordell et al., 2015; Mells et al., 2011). Here, we
utilised post‐QC genome‐wide SNP data available from
the case‐control study of Mells et al. (2011), comprising
501,358 SNPs measured in 6,977 individuals (1,816 PBC
cases and 5,161 controls).

2.4 | Simulated data set (sparse model)

Phenotype data for a hypothetical quantitative trait were
simulated using the real genotype data from the anti‐TNF
(CRP) data set. We started by selecting 22 randomly chosen
causal SNPs (one SNP per chromosome). Simulation of the
phenotype was performed using the GCTA‐GREML soft-
ware (https://cnsgenomics.com/software/gcta/) (Yang, Lee,
Goddard, & Visscher, 2011), with SNP effects simulated
from N (0, 0.05 )2 and the overall heritability parameter set
to h = 0.82 . This relatively large value of heritability was
chosen to simulate strong signals in the data. We refer to
this data set as SimSparse.

2.5 | Simulated data set (polygenic
model)

Phenotype data for a hypothetical quantitative trait were
simulated using the real genotype data from the anti‐TNF

(CRP) data set. Here, we used 5,000 randomly chosen
causal SNPs. Simulation of the phenotype was performed
using the GCTA‐GREML software (Yang et al., 2011), with
SNP effects simulated from N (0, 0.05 )2 and the overall
heritability parameter set to h = 0.82 , similar to the
SimSparse data set. We refer to this data set as SimPoly.

3 | METHODS

We investigated 11 methods capable of handling cases
where number of SNPs exceeds the number of indivi-
duals: lasso, ridge, elastic net, random forests (RF),
support vector regression (SVR), sparse partial least
squares (SPLS), genome‐wide complex trait analysis
(GCTA‐GREML), a Bayesian sparse linear mixed model
(BSLMM), a neural network (SkyNet, polygenic risk
scores (PRSice), and LD‐based polygenic risk scores
(LDpred)). We used mean imputation (expected dosage
value) of SNP genotypes when using methods that do not
allow missing genotypes. Lasso (Tibshirani, 1996), ridge
(Cessie & Houwelingen, 1992), and elastic net (Zou &
Hastie, 2005) are penalised regression approaches that
induce different amounts of sparsity, depending on the
type of penalty used. SPLS (Chun & Keleş, 2010) is also a
sparse method that utilises latent component decomposi-
tion to reduce dimensionality. GCTA‐GREML (Yang
et al., 2011) is a nonpenalised approach that implements
linear mixed model analysis, where the effects of SNPs
are modelled as random effects, with the covariance
matrix of the cumulative genetic effect being proportional
to the genetic relationship matrix (GRM) between
individuals. BSLMM (Zhou, Carbonetto, & Stephens,
2013) is a hybrid approach of a linear mixed model and a
sparse regression, where sparsity is applied to the fixed
effects. RF (Breiman, 2001) involves generating a collec-
tion of tree‐structured predictors where each node of a
tree is split using the best among a subset of predictors
randomly chosen at that node. The final prediction is
made based on the mean prediction over the individual
trees. SVR (Vapnik, 1995) is a nonparametric kernel‐
based technique whose aim is to learn a nonlinear loss
function by mapping into high dimensional kernel
induced feature space. Here, we apply the ϵ‐SVR model
with a nonlinear kernel function (Long, Gianola, Rosa, &
Weigel, 2011), which has a sparse solution and allows
nonlinear relationships between the SNPs and the
phenotype. SkyNet (Graff, Feroz, Hobson, & Lasenby,
2014) is an implementation of artificial neural networks
which are used to represent nonlinear relationships
between a set of inputs and outputs. By learning a
mapping between the inputs and the outputs, given a set
of training data, one can make predictions of the outputs
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for new input data. PRSice (Euesden, Lewis & O’Reilly,
2015) is a polygenic risk score method that calculates the
best‐fit polygenic risk scores from a number of p‐value
thresholds. LDpred (Vilhjálmsson et al., 2015) is a
polygenic risk score method that acconts for linkage
disequilibrium (LD) between the SNPs. For a more
detailed description of each of these methods, please see
the Appendix.

We assessed the prediction accuracy of the different
methods through a variety of different measures: (a) the
Pearson correlation coefficient between observed and
predicted trait values, (b) the calibration slope (the slope
of the best fit line when plotting predicted trait values on
the x‐axis against observed values on the y‐axis; a slope of 1
suggests perfect calibration (Piñeiro, Perelman, Guersch-
man, & Paruelo, 2008; Steyerberg et al., 2010), and (c)
prediction mean squared error (PMSE), which is the
average squared difference between observed and predicted
trait values (lower values indicate better fit). We note that
although for the binary oucome (PBC data set), assessing
correlation, slope and PMSE is less natural, they are still
well defined quantities and we use them for general
comparison. Predictive perfomance was assessed through
10‐fold cross validation, with nested 10‐fold cross validation
used to tune the model hyperparameters when required. In
10‐fold cross validation, 1/10 of the data are held out to be
used as a test data set, with the other 9/10 of the data used
to fit (estimate) the prediction model. The procedure is then
repeated 10 times with different 1/10 of the data being held
out, such that all the data is ultimately used as testing data.

The first step within each fold involved reducing the
number of the SNPs using an LD‐based clumping procedure
implemented in the PLINK software (http://zzz.bwh.

harvard.edu/plink/) (Purcell et al., 2007). A similar “super-
vised feature selection” procedure (which is designed to
select a reduced number of SNPs with larger effects for input
into the main analysis, while allowing for the LD between
SNPs) was used by Bermingham et al. (2015). LD‐based
clumping (--clump command) utilises GWAS results to
clump SNPs based on their LD with the SNPs nearby and the
p‐values. Clumps are formed around SNPs with pre‐specified
p‐values (--clump-p1 and --clump-p2 parameters
specify the p‐value threshold for the index SNP and the
clumped SNPs, respectively), and the index SNPs are then
used to represent all the SNPs in a clump. Table 1 shows the
reduced number of SNPs used for each method. To reduce
the number of SNPs to approximately 40,000–42,000, we
used --clump-p1 0.05 --clump-p2 0.05; to reduce
the number of SNPs to approximately 9,000–10,000, we used
--clump-p1 0.01 --clump-p2 0.01; to reduce the
number of SNPs to approximately 340,000–370,000, we used
--clump-p1 0.5 --clump-p2 0.5. Additional para-
meters for the LD‐clumping are --clump-kb that specifies
the physical distance threshold for clumping, and
--clump-r2 that specifies the LD threshold for clumping.
In our analysis, we used --clump-kb 100 --clump-r2
0.8. For PRSice, the LD‐clumping is performed as a default
built‐in option of the software with parameters --clump-
p1 1.0 --clump-p2 1.0 --clump-kb 250 --clump-
r2 0.1, resulting in 140,000–170,000 SNPs.

To estimate heritability for the RA data sets consid-
ered here, we used the LDAK method (Speed & Cai, 2011;
Speed, Hemani, Johnson, & Balding, 2012), which uses a
modified kinship matrix in which SNPs are weighted
according to their LD with SNPs nearby, MAF and
imputation accuracy. For comparison, we also applied a

TABLE 1 The number of SNPs included in the analysis and the tuning parameters that require cross validation, for the MATURA data
sets, for the 11 methods.

Method
Number of SNPs for
anti‐TNF cohort

Number of SNPs for
MTX cohort

Tuning parameters that require cross
validation

Lasso

Elastic Net 40,000 42,000 Penalty parameter

Ridge

RF 9,000 9,000 Number of variables to split

SVR 9,000 9,000 Standard deviation for Gaussian RBF kernel

SPLS 40,000 42,000 Number of components, sparsity parameter

GCTA‐GREML 4,542,024 6,291,430 NA

PRSice*

BSLMM 40,000 42,000 NA

SkyNet 9,000 9,000 NA

LDpred 340,000 370,000 NA

Note. The prediction is based on the SNP effects only. For the PBC data set, we use SVM (Support Vector Machine) instead of SVR on account of binary
outcome.
*For PRSice, the LD‐clumping is performed within the software, resulting in ≈140,000 SNPs for the anti‐TNF cohort, and ≈170,000 SNPs for the MTX cohort.
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variety of other methods for heritability estimation
(Supporting Information Table I).

To simplify the calculations, the adjustment for
covariates was not done fold‐wise, but rather before the
division of the data sets into cross validation folds. This
“global” covariate adjustment could in theory cause a
slight contamination of the testing subsets with informa-
tion from the training subsets, resulting in an over‐
optimistic assessment of prediction performance. How-
ever, we anticipated that the amount of contamination
should be small and would not substantially change the
overall prediction results. This intuition was borne out by
our results from a limited evaluation in which covariate
adjustment was carried out within each fold rather than
globally, as demonstrated later (see Section 4.2).

We note that the methods that we investigated have
different computational requirements. The cross validation
procedures were programmed in R version 3.4.1 and were
executed fold‐wise. For all methods but BSLMM and
SkyNet, the discovery stage of the analysis of each fold
took between 5min and a couple of hours on a SLURM‐
based (Yoo et al., 2003) batch‐queuing cluster running in
an OpenStack environment (The OpenStack project,
2018). (The cluster consisted of two identical 23‐core
virtual machines with 64GB RAM and 100 GB disk).
However, BSLMM and SkyNet required longer times:
depending on the data set, SkyNet took between 1 and

6 days to construct an ANN, while BSLMM took between
10 and 15 days to generate 110,000,000 Markov chain
Monte Carlo (MCMC) iterations. Nevertheless, for some
parameters of BSLMM, the MCMC chain obtained by
generating 100,000,000 iterations with default tuning
parameters, after discarding 10,000,000 iterations and
thinning by 10,000 iterations, still showed a lack of
convergence, indicating that careful tuning and/or longer
run times are required (Supporting Information Figure 1).

4 | RESULTS

4.1 | Prediction based on SNPs alone

The values of the Pearson correlation coefficient, the
calibration slope, and the PMSE from the compared
methods are presented in Figures 1, 2, and 3. For the data
simulated under a sparse model (SimSparse), the sparse
methods such as lasso, elastic net, SPLS and BSLMM
achieve better prediction than the other methods. This
result is as expected because the data were simulated
according to a sparse model, and so models that do not
violate the assumption of the data generating mechanism
perform better than models that do. Specifically, lasso (see
Figure 4) shows the best prediction, followed by elastic net.
This is consistent with the fact that the data were simulated
using a few causal SNPs that show strong association with
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the phenotype, as illustrated by the Manhattan plot
obtained from this data set when analysing each SNP
individually via linear regression (Supporting Information
Figure 2g). SPLS and BSLMM were outperformed by lasso
and elastic net, which may be explained by the fact that the
two former methods employ sparsity mechanisms that are
unnecessarily complicated for data generated according to
a simpler sparse model. On the other hand, polygenic
models such as ridge regression and GCTA‐GREML
perform worse on the SimSparse data set, consistent with
the fact that the data were not simulated under a polygenic
model. To investigate further the reason behind the poor
prediction ability of polygenic methods on the SimSparse
data set, we reduced the genome‐wide SNP data to 22
genomic regions (±5MB around each true causal SNP; the
reduced data set was comprised of 71,835 SNPs) and
analysed the resulting data with GCTA‐GREML. Even
though the calibration slope remained unchanged (0.94),
the prediction ability greatly improved in terms of the
correlation (0.27 vs 0.02 previously) and the PMSE (0.99 vs
1.04 previously) as illustrated in Supporting Information
Figure 3. This suggests that, when the data generating
mechanism is sparse, polygenic methods such as GCTA‐
GREML can benefit from reducing the genome‐wide data
to candidate regions.

For the data simulated under a polygenic model
(SimPoly), GCTA‐GREML achieved better prediction
than the other methods, followed by ridge regression,
which is again consistent with data generating mechan-
ism. However, out of 10 cross validation folds, conver-
gence was not achieved for 4‐folds, therefore the
prediction results are based on 6‐folds only. In general,

the prediction for the SimPoly data set is worse than that
for the SimSparse data set, which can be explained by the
fact that in a polygenic architecture each individual
signal is rather weak (Supporting Information Figure 2h),
despite the large true value of the heritability.

For the real MATURA data, all methods show poor
prediction in general (small correlations, large PMSEs, and
slopes that are far from 1). Nevertheless, some methods
perform better than the others across the data sets. For
example, while SkyNet and SPLS achieve a positive but
small correlation across all MATURA data sets (the
correlation ranges from 0.07 to 0.16 for SkyNet, and from
0.04 to 0.08 for SPLS), lasso and elastic net do not show
consistency in the direction of the correlation across the
data sets. Specifically, lasso and elastic net achieve positive
correlation only for the MTX SJC28 data set. This may
reflect the fact that this trait shows one reasonably
compelling signal of association, as supported by the
Manhattan plot of the associations between the SNPs and
the phenotype (Supporting Information Figure 2e). How-
ever, this association signal was not maintained when
adding in the additional cohorts considered by Taylor et al.
(2018), and so most likely represents a statistical false
positive. As for the other traits, the Manhattan plots of the
p‐values show little in the way of significant associations
between the SNPs and the phenotype (Supporting Informa-
tion Figure 2a–d). This suggests that any genetic effects that
exist for these traits operate via a polygenic architecture,
which is not accounted for by simple sparse models. While
we might expect methods that assume a polygenic
architecture (such as Ridge, GCTA‐GREML, and BSLMM)
to better model the genetic architecture of these traits, only
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FIGURE 4 Prediction with lasso for the SimSparse data set. The black dashed line is the equality line; the red dashed line is the best fit
line [Color figure can be viewed at wileyonlinelibrary.com]
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BSLMM consistently performs better than the other
methods (with correlation ranging between 0.04 and
0.07). This suggests that the true genetic architecture of
these traits may be rather complex and so better explained
by a model that accommodates different types of effects.

We hypothesised that the existence of stronger genetic
effects and larger sample sizes should improve the prediction
performance in real data. To investigate this hypothesis, we
analysed the PBC data set which shows a number of
significant associations between the SNPs and the phenotype
based on the Manhattan plot of the p‐values (Supporting
Information Figure 2f). The results presented in Figures 1–3
indicate much better prediction performance for the PBC
data set than for the MATURA data sets. For the PBC data
set, the correlation ranges between 0.23 and 0.41 across
different methods, the slopes are close to the values achieved
for the simulated data, and the PMSEs do not exceed the
phenotypic variance (0.19) for most methods.

In spite of the positive results found with the PBC data set
and with the SimSparse data set, we note that the predictive
performance achieved even in these best‐case scenarios does
not provide very precise prediction of trait values. However,
it is arguable whether precise prediction of the trait values is
in fact the most relevant goal for clinical purposes; it would
be perhaps more useful simply to be able to predict whether
an individual will be a responder or a nonresponder. We
therefore transformed the observed and predicted outcomes
into a binary format (responder/nonresponders). Our
transformation was guided by the EULAR‐response criteria
(EULAR response criteria, 2018; van Gestel & Prevoo, 1995),
which define good responders according to the improvement
in the DAS28. We note that while the EULAR‐response
criteria define three response categories (good/moderate/
poor), we define only two response categories (responder/
nonresponder), with response corresponding to the improve-
ment of at least 0.6 units in the DAS28 score. Following the
recommendations of Hensor et al. (2018) (who found that,
out of the individual components of the DAS28, it is CRP and
SJC28 that are the most predictive of imaging‐detected
synovitis) and of Massey et al. (2018) (who found that only
ESR and SJC28 are highly heritable), we based our
transformation of CRP, SJC28, and ESR on their contribution

to the DAS28.We therefore defined individuals as responders
if log(CRP ) − log(CRP ) > 1.67bl fu for the CRP phenotype;
if SJC28 − SJC28 > 2.14bl fu for the SJC28 phenotype; if
log(ESR ) − log(ESR ) > 0.857bl fu for the ESR phenotype
(see Table 2 for the number of responders and nonrespon-
ders in the MATURA data sets). The values of the area under
the curve (AUC) presented in Figure 5 suggest that for the
MATURA data sets, the prediction ability is only rarely
slightly better than that of a random guess, with AUC
ranging from 0.43 to 0.57, consistent with the relatively poor
prediction results achieved for the original quantitative
phenotypes. In comparison, ROC curves for the PBC data
show better predictive ability, which is illustrated by AUCs
ranging from 0.65 to 0.76. Also, the SimSparse data set
achieves higher AUC values with sparse methods such as
lasso, while the SimPoly data set achieves better prediction
with polygenic methods such as GCTA‐GREML, in accord
with the prediction achieved for the quantitative phenotypes.

With respect to overall trait heritability, the heritabilities
estimated with LDAK for the phenotypes considered in the
anti‐TNF cohort (relating to change in CRP, SJC28, and ESR)
were 0.024 (SE 0.378) for CRP, 0.255 (SE 0.232) for SJC28
and 0.534 (SE 0.269) for ESR. The estimated heritabilities for
the phenotypes considered in the MTX cohort (relating to
change in CRP and SJC28) were 0.187 (SE 0.678) for CRP
and 0 (SE 0.657) for SJC28. Large standard errors of the
estimates indicate very low precision and can be explained by
small sample sizes. We obtained somewhat different results
with a variety of other methods for heritability estimation
(Supporting Information Table I), in accord with previous
studies (Mirkov et al., 2015; Speed & Cai, 2011). However, all
the methods estimated heritability with rather low precision,
consistent with suggestion (Yang, Zeng, Goddard, Wray, &
Visscher, 2017) that sample sizes in the order of tens of
thousands are needed to obtain high precision of heritability
estimates.

4.2 | Prediction based on SNPs
and covariates

To investigate the contribution of SNPs to overall
prediction, for three selected methods (lasso, BSLMM,

TABLE 2 The number of responders and nonresponders after the transformation of the phenotype to the binary format for the MATURA
data sets

Treatment Phenotype Responders Nonresponders Total

Anti‐TNF CRP 192 896 1,088

SJC28 660 1,122 1,782

ESR 513 1,062 1,575

MTX CRP 144 474 618

SJC28 161 468 629
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and SkyNet) we re‐analysed the anti‐TNF data set (CRP
and SJC28 phenotypes) while additionally considering
the contribution to prediction achieved by the covariates.
The covariates used were the baseline trait measure, the
drug type and the first 10 PCs of the SNP genotypes (for
the SJC28, the covariates also included the DMARD
indicator). Since all three methods operate by default on
standardised residuals, the standardised residuals used
for model‐building were here obtained within each cross
validation fold, after fold‐wise adjustment for the
covariates. Following model building, we then back‐
transformed the predicted standardised residuals in the
held‐out portion of the data to the original phenotype

scale (using the estimated regression coefficients for the
covariates obtained from the training portion of the data),
to generate predicted phenotypes (predicted on the basis
of both SNPs and covariates) that could be used for
comparison with the observed phenotypes.

For each data set, the correlation, the calibration slope,
the PMSE, and the AUC from the three methods are
presented in Table 3. Higher correlations and AUCs, and
slope values closer to 1, in comparison to the analysis based
on SNPs only, indicate better prediction. The PMSEs in this
analysis and in the analysis based on SNPs alone
(Figures 1–3) are not directly comparable because the final
phenotype is standardised in the analysis based on SNPs
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FIGURE 5 Area under the curve (AUC) from the prediction analyses for the 11 methods for all the data sets, after transforming the
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TABLE 3 Pearson correlation coefficient (Cor.), the calibration slope (a slope of 1 suggests perfect calibration), the prediction
mean squared error (PMSE; lower values indicate better fit), and area under the curve (AUC) for the anti‐TNF data sets, for the three
methods

Data Set Method Cor. Slope PMSE AUC

Anti‐TNF (CRP) Lasso 0.44 0.98 1.27 0.81

BSLMM 0.43 0.91 1.29 0.8

SkyNet 0.34 0.5 1.57 0.74

Anti‐TNF (SJC28) Lasso 0.77 0.99 17.63 0.73

BSLMM 0.76 0.97 18.7 0.73

SkyNet 0.7 0.81 23.45 0.71

Note. The prediction is based on the SNP effects and the covariates.
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alone and is not standardised in this analysis. However, an
improvement in the PMSEs is indicated by the fact that the
PMSE values are substantially smaller than the phenotypic
variances (which are 4.97 for the CRP data set and 141.482
for the SJC28 data set), while in the analysis based on SNPs
alone, the PMSE values are very close, and sometimes even
larger than, 1 (the variance of standardised phenotype). The
AUC values for the binary transformation (ranging from
0.71 to 0.81), also indicate reasonably good predictive ability.

To investigate the improvement in the prediction after
including the covariates in the analyses, we analysed the
anti‐TNF, CRP data set while using (a) a linear regression
model with nongenetic covariates as predictors (the baseline
trait measure and the drug type), (b) a linear regression
model with genetic (first 10 PCs of the SNP genotypes) and
nongenetic (the baseline trait measure and the drug type)
covariates as predictors, (c) lasso using SNPs and also genetic
and nongenetic covariates as predictors (the same covariates
as in (a) and (b)). All three methods achieved a (reasonable)
identical prediction accuracy as measured by the correlation
(0.44), the slope (0.98) and the PMSE (1.27; Supporting
Information Figure 4). This indicates that most of the
information about prediction comes from the nongenetic
predictors, supporting the conclusions (in relation to
prediction of change in DAS28) from a previous anti‐TNF
study (Sieberts et al., 2016).

5 | DISCUSSION

Here, we have presented a comparison of 11 methods for
predicting the treatment response in RA patients using
genome‐wide SNP data. We showed that the SNP data
contribute very little information to the prediction achieved
using clinical covariates only, in accord with previous studies
of cardiovascular disease (Morris et al., 2016) as well as of
treatment response in RA (Sieberts et al., 2016). This can be
explained by the fact that the SNPs show no strong
association signals, as is evident from the Manhattan plots
of p‐values from the tests of association between SNPs and
phenotype. However, we found that some methods did
perform slightly better than the others. In particular,
methods that assume a complex genetic architecture of the
trait such as SkyNet and SPLS achieved a small positive
correlation between the observed and predicted phenotypes.
Additionally, methods whose assumptions match the
apparent genetic architecture of the trait performed better
than methods that do not, as illustrated by the better
performance of sparse methods such as the lasso (compared
to other methods) on the MTX SJC28 data set.

A minor caveat in the analysis of the MATURA data is
that the precise duration of the treatment was not the
same for all the subjects in the study; it included 3 and

6 months measures, similar to the anti‐TNF study of
Sieberts et al. (2016). However, for the anti‐TNF data, the
6 months measures was available for most of the subjects.
Also, for subjects with both 3 and 6 months follow‐up
measures, the changes in treatment response were very
similar (Supporting Information Figure 5). In view of this
fact, and also in accord with Taylor et al. (2018) and
Massey et al. (2018), we used the 6 months follow‐up
measure, or 3 months if this was not available, noting
that for the MTX data set the precise duration of
treatment was anyway not available.

We hypothesised that having a strong signal and/or larger
sample size would improve the prediction. To investigate this
issue, we analysed three additional data sets: (a) a simulated
data set of the same size as the anti‐TNF (CRP) data set
(1,088 individuals) with a few significant SNP effects (the
SimSparse data set), (b) a data set of the same size as the anti‐
TNF (CRP) data set where the phenotype was simulated
assuming a polygenic architecture (the SimPoly data set),
and (c) a much larger real data set with a number of
significant SNP effects (the PBC data set). The simulation
study showed that the prediction methods were sensitive to
violation of the assumptions about the genetic architecture of
the trait. In particular, for the sparse data set, sparse methods
that were consistent with the data generating mechanism
performed the best among all the methods investigated,
while for the polygenic data, polygenic methods performed
better. On the other hand, methods that were inconsistent
with the data generating mechanism generally achieved poor
prediction. However, the prediction of the polygenic methods
(GCTA‐GREML) improved for the sparse data when the data
was reduced to the regions around each true causal SNP.
This suggests that prior knowledge of the genetic architecture
of the trait, if available, could help to choose the optimal
method for prediction (Warren et al., 2014). For the PBC data
set, all methods achieved reasonable prediction, although
prediction performance was slightly worse than for the
simulated data. It is interesting that all the methods
performed comparably well for the PBC data set, despite
the differences between the methods in terms of sparsity/
nonlinearity. This suggests that increasing the sample size
may help to overcome the sensitivity of the methods to
violation of the assumptions about the genetic architecture of
the trait, which is usually unknown.

Our results are relatively consistent with prior work
investigating the prediction ability of SNPs derived from
genome‐wide association studies of complex traits.
Warren et al. (2014) found that the PMSEs achieved
when predicting low‐density lipoprotein (LDL) and HDL
cholesterol in the Whitehall II and British Women’s
Health and Heart Study cohorts barely outperformed the
naive prediction method of simply assigning everyone the
mean trait value. Spiliopoulou et al. (2015) also con-
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sidered prediction of HDL (along with height and body
mass index) in two data cohorts originating from Croatia
and Scotland, and noted that the predictive signal in the
genomic data available was still too low for clinical
decision‐making at the level of the individual. Several
studies (Clayton, 2009; Cleynen et al., 2016; Hamshere
et al., 2011; Pashayan et al., 2015; Pharoah, Antoniou,
Easton, & Ponder, 2008; Sawcer, Ban, Wason, &
Dudbridge, 2010) have shown that use of a limited
number of top ranking SNPs can help discriminate
diseased cases from unaffected controls, or between
different disease sub‐phenotypes, but that the utility for
individual risk prediction generally falls far short of
clinically useful levels. In some cases this limitation can
be overcome by increased sample size at the discovery
(model‐building) stage. For example Dudbridge (2013)
showed that the disappointing AUCs reported by
Machiela et al. (2011) were entirely consistent with the
theoretical AUC values of 52–54% predicted on the basis
of their discovery set sample size, but that these values
could be increased to ≈ 80 − 90% if the samples were
infinitely large. We reiterate that the maximum achiev-
able AUC will always be limited by the trait heritability.
However, even when the combined set of SNPs explain a
large proportion of variance, much larger sample sizes
are required to achieve high prediction accuracy (Yang
et al., 2017) because the individual SNP effects are
substantially smaller than the total variance they explain.
This could explain why, in the current application, we
find genetic predictors alone to have limited predictive
value. However other clinical variables or biomarkers
(e.g., related to baseline measurements of gene expres-
sion or DNA methylation) may provide stronger pre-
dictive ability and would be worth further investigation.
One of the limitations of this study is that it uses clinical
measures of treatment response that do not capture the
biology of treatment response (Centola et al., 2013).
Clinical measures used as outcome in this study are only
moderately correlated with biological measures such as
thickness of synovial lining measured by ultrasound
scores (Hurnakova et al., 2015). Moving forwards, there is
a need for a biological measure of treatment response
that is closely reflective of synovitis. Further work that
would integrate prediction methods with biological
markers of response of synovial tissue might provide
better insight into prediction of treatment response.
However, this will require investment from partner
organisations such as industry and academic partners
with access to relevant patient samples.

Our simulation study shows that methods that match the
data generating mechanism perform better that the methods
that do not. However, for the real data the true genetic
architecture is unknown. Therefore, in this study, we applied

a variety of prediction methods that cover a wide range of
genetic architectures. We note that the list of the methods we
applied is by no means exhaustive. Numerous genome‐wide
prediction methods have been proposed in the literature
including Bayesian approaches (Fragoso, deAndrade, Pereira,
Rose, & Soler, 2016; Lee, van der Werf, Hayes, Goddard, &
Visscher, 2008; Meuwissen, Hayes, & Goddard, 2001, 2009),
dimensionality reduction approaches (Hoggart, Whittaker,
DeIorio, & Balding, 2008; Solberg, Sonesson, Woolliams, &
Meuwissen, 2009; Wang & Leng, 2016), multiple regression
approaches (Ueki & Tamiya, 2016), and others. Nevertheless,
the methods explored in this study cover a wide range of
genetic architectures in terms of the number and the size
of the assumed underlying genetic effects, as well as a variety
of methodologies such as sparse, polygenic, machine
learning, parametric and nonparametric approaches. We
acknowledge that future research may benefit from an
exhaustive comparison of the prediction methods available.
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APPENDIX

Lasso (least absolute shrinkage and selection
operator)

Lasso (Tibshirani, 1996) is a penalised regression
approach that allows shrinkage of the estimators of the
regression coefficients in a linear model towards zero
using an L1 penalty. The L1 penalised regression
minimises the residual sum of squares subject to the
sum of the absolute values of the coefficients being less
than a constant. The objective function to minimise is

∣∣ ∣∣ℓβ βλy X( − ) + ,2
1

where ∣∣ ∣∣ ∑ ∣ ∣ℓβ β p= ,i
p

i=11 is a number of the coefficients.
Lasso performs variable selection by shrinking some of
the coefficient estimates to zero such that only a subset of
the coefficients from the lasso fit is used for the
prediction. In our analysis, we applied the lasso regres-
sion implemented in the R package glmnet (https://
cran.r‐project.org/web/packages/glmnet).

Ridge regression

Ridge regression (Cessie & Houwelingen, 1992) allows
shrinkage of the estimators of the regression coeffi-
cients in a linear model using an L2 penalty. The L2
penalised regression minimises the residual sum of
squares subject to the sum of the squares of the
coefficients being less than a constant. The objective
function to minimise is

∣∣ ∣∣ℓβ βλy X( − ) + ,2
2

where ∣∣ ∣∣ ∑ℓβ β p= ,i
p

i=1
2

2 is a number of the coefficients.
Ridge does not allow the shrinkage of the coefficients to
exactly zero, and therefore does not perform variable
selection. In our analysis, we applied ridge regression
implemented in the R package glmnet (https://cran.r‐
project.org/web/packages/glmnet).

Elastic net regression

Elastic net (Zou & Hastie, 2005) is a penalised regression
that combines both L1 and L2 penalties. The objective
function to minimise is

⎜ ⎟
⎛
⎝

⎞
⎠∣∣ ∣∣ ∣∣ ∣∣ℓ ℓβ β βλ α αy X( − ) + 1

2
(1 − ) + ,2

2 1

where ∣∣ ∣∣ ∑ ∣ ∣ℓβ β= i
p

i=11 , ∣∣ ∣∣ ∑ℓβ β= i
p

i=1
2

2 , p is a number of
the coefficients, α is a penalty weight ( α0 < 1). When
α = 1, the elastic net is identical to lasso, whereas when
α = 0, it is identical to ridge (Friedman et al., 2010). We
used α = 0.5. Similarly to lasso, elastic net performs variable
selection by shrinking some of the coefficient estimates to
zero such that only a subset of the coefficients from the
elastic net fit is used for the prediction. In our analysis,
we applied elastic net regression implemented in the R
package glmnet (https://cran.r‐project.org/web/packages/
glmnet).

Sparse partial least squares (SPLS)

SPLS (Chun & Keleş, 2010) is an extension of partial least
squares (PLS) that allows for sparsity. PLS is a
dimensionality reduction approach, which is based on
latent decomposition of the prediction matrix X and the
response matrix Y: Y TQ F= +T , X TP E= +T , where
P and Q are matrices of loadings, F and E are matrices of
random errors, and T is a matrix of latent components
T XW= , where the columns of W w w w= ( , , …, )k1 2 are
direction vectors that capture the most variable directions
in the X‐space, and also relate X to Y:

w Y, Xw Xw= arg max{Cor ( ) × Var( )}.k
2

SPLS imposes sparsity at the dimensionality reduction
step by specifying the objective function as follows:

∣∣ ∣∣ ∣∣ ∣∣ℓ ℓ

k k

λ λ

w Mw c w M c w

c c

− + (1 − )( − ) ( − )

+ + ,

T T

1 21 2

where M X Y Y X= T T , c is a surrogate of the direction
vector instead of the original vector w, ∣∣ ∣∣ℓc 1 and ∣∣ ∣∣ℓc 2 are
L1 and L2 penalties. In our analysis, we applied the SPLS
algorithm implemented in the R package spls (http://
cran.r‐project.org/web/packages/spls).

Support vector regression (SVR)

In SVR (Vapnik, 1995), the objective function to
minimise is:

∑∣∣ ∣∣β C L e1
2

+ ( ),
i

n

i
2

=1

where ∣∣ ∣∣β β β= T2 , e y f x= − ( )i i , ∑f β kx x x( ) = ( , ) +i i i
b, b is the bias.
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Here, we applied the ϵ‐SVR model which has a sparse
solution. In the ϵ‐SVR model, an ϵ‐intensive loss function

⎧⎨⎩
∣ ∣

∣ ∣
L e

e
e

( ) =
0 if < ϵ

− ϵ otherwiseϵ

is used, where ϵ is a prespecified threshold. In our
analysis, we used a nonlinear kernel, specifically the
Gaussian radial basis function (RBF):

∣∣ ∣∣ ∕k σx x x x( , ) = exp(− − ),i i
2 2

which allows nonlinear relationships between the SNPs and
the phenotype. The method is implemented in the R package
mlr (https://cran.r‐project.org/web/packages/mlr).

Random forests (RF)

RF (Breiman, 2001) is a method that generates a
collection of regression or classification tree‐structured
predictors, or trees. Each tree is a representation of a
recursive partitioning of the data set into more and more
homogeneous groups, down to terminal nodes. Trees are
grown until further partitioning provides less than some
minimal amount of extra information.

A random forest is built by repeatedly selecting a number
of training data sets with replacement, and growing trees for
each data set. Each node on the tree is split using the best (in
terms of residual sum of squares) among a subset of
predictors randomly chosen for consideration at that node. In
a forest of B trees, the random forest predictor is the mean
predictor of the individual trees:

∑ Θf x
B

T xˆ ( ) = 1 ( , ),rf
B

i

B

b
=1

where Θ Θ, …, B1 are independent and identically dis-
tributed (i.i.d.) random vectors that define the parameters
of the trees in the forest, such as the structure of the trees,
which variables are split at which notes, and so on
(Hastie et al., 2009). As a nonparametric method, RF
allows for interactions and nonlinearity. In our analysis,
we used the R package ranger (https://cran.r‐project.
org/web/packages/ranger).

Genome‐wide complex trait analysis
(GCTA‐GREML)

GCTA‐GREML (Yang et al., 2011) implements linear mixed
model analysis, where the effects of the SNPs are assumed to
be random effects, with the resulting covariance matrix being

proportional to the GRM between individuals. The vector of
phenotypes y is represented as

β ϵy X Wu= + + ,

where β is a vector of the fixed effects, N σu I~ (0, )u
2 is a

vector of the SNP (random) effects, ϵ σI~N(0, )ϵ
2 is a vector of

the residuals, and W is a standardised genotype matrix.
Defining σ nσ=g u

2 2 as the variance explained by all SNPs,
and defining the matrix A as ∕nA WW= T (n is the
number of SNPs), the vector of phenotypes y can be
represented as

β ϵy X g= + + ,

where N σg A~ (0, )g
2 is a vector of random genetic effects

for the individuals and A is the GRM. This dual
formulation of y can be utilised to transform the predicted
total genetic effects g of the individuals to SNP effects u.
Predicted SNP effects can be then used to predict genetic
values in new individuals. We note that although GCTA‐
GREML and ridge regression are related methods, they are
equivalent under certain conditions only. The best linear
unbiased predictor of SNP effects in GCTA‐GREML is
equivalent to ridge regression estimator only if the ridge
penalty λ = ∕σ σβϵ

2 2 (de Vlaming & Groenen, 2015).
However, in our analysis the ridge penalty λ is chosen by
cross validation (see Table 1).

Bayesian sparse linear mixed model (BSLMM)

BSLMM (Zhou et al., 2013) is a hybrid approach that
includes both a linear mixed model and a sparse
regression model, where sparsity is applied to the fixed
effects. The vector of phenotypes y is represented as

β ϵμy 1 X u= + + + ,N

where μ is an overall phenotype mean, 1N is an N ‐vector of
1’s, β is a vector of fixed effects, σ τu K~N(0, )b

2 −1 is a vector
of random effects, ϵ τ I~N(0, )−1 is a vector of residuals,

∕XXK n= T is a GRM, n is the number of SNPs and X is a
genotype matrix. Fixed effects are assumed to be distributed
according to a point‐normal distribution (a mixture of a
normal distribution and a point mass at zero):

β π σ τ π δ~ N(0, ) + (1 − ) .i a
2 −1

0

The parameters of the model are μ, τ , π , σa, and σb, where μ
and τ−1 control the phenotypic mean and the residual
variance, π controls the proportion of the nonzero fixed
effects, σa controls the expected magnitude of the nonzero
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fixed effects, and σb controls the expected magnitude of the
random effects. In practice, the model is re‐parameterised in
terms of the expected proportion of the phenotypic variance
explained by the sparse fixed effects and the expected
proportion of the phenotypic variance explained by the
random effects. BLSMM is implemented using Markov chain
Monte Carlo (MCMC) techniques to obtain samples from the
posterior distribution of the parameters. We used the
software implementation included within the GEMMA
software package at http://stephenslab.uchicago.edu/soft-
ware.html.

SkyNet

SkyNet (Graff et al., 2014) implements an artificial neural
network (ANN). The ANN is a computational model
based on the collection of nodes that are connected in
layers, where the signal travels from the input layer to the
output layer, including possible hidden layers. The ANN
consists of interconnections between different layers of
nodes, the weights of the interconnections, and the
activation functions for converting nodes’ weighed input
to their output. Input and output layers of the ANN can
be described by neural network functions

∑{ }h g θ w x= + ( )j j
l

jl lin

and

∑{ }y g θ w h= + ( )i i
j

ij jout

respectively, where index l represents input nodes, index j
represents hidden nodes, index i represents output nodes,
w are weights, θ are biases and g is an activation function
(Bridges et al., 2011). For hidden layers, the activation
function ∕g z a z( ) = 1 ( + e ) = sig( )z− (sigmoid), and for
the output layer g h h( ) =out . The nonlinearity of the
activation function for the hidden layer allows the network

to model nonlinear relationships between SNPs and
phenotype. In our analysis, we used one hidden layer as
recommended by Graff et al. (2014). However, we could not
follow the recommendation of using n2 + 1 nodes for a
hidden layer (n is a number of the input nodes) due to
computational constraints. We therefore used seven nodes
which is a default number of nodes in the SkyNet software.
We investigated the sensitivity of the results to the various
other numbers of nodes (up to 100 nodes) and found a very
little difference in the predictive performance.

PRSice

PRSice (Euesden et al., 2015) computes polygenic risk
scores (PRS) which are sums of the SNP allele dosages
weighted by their estimated effects, with contributing
SNPs selected at different p‐value thresholds; the final
p‐value threshold chosen is that which provides the best
prediction as assessed via internal cross validation. The
PRS is given by

∑ β xPRS = ˆ ,
i

i i

where xi is the allelic count at the ith SNP, and β̂i is the
estimated effect at that SNP.

LDpred

LDpred (Vilhjálmsson et al., 2015) is a polygenic risk
score method that accounts for linkage disequilibrium
between the SNPs using an external reference panel
provided by the user. It estimates the posterior mean of
SNP effects for different proportion of true causal SNPs.
The SNP effects are assumed to have a Gaussian mixture
prior ∕β N h np~ (0, )i

2 with probability p, and β = 0i with
probability p1 − , where h2 is the heritability, n is the
total number of SNPs and p is the proportion of the
causal SNPs. The posterior mean for the SNP effects is
approximated numerically by using an approximate
MCMC Gibbs sampler.
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