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Dual Purpose Fibre – SERS pH Sensing and Bacterial Analysis  

Holly Fleminga,b, Sarah McAughtriea,b, Bethany Millsb, Michael G. Tannerb,c, Angus Marksa, Colin J. 
Campbell*a 

The exploitation of fibre based Raman probes has been challenged by often complicated fabrication procedures and 

difficulties in reproducibility. Here, we have demonstrated a simple and cost-effective approach for sensing pH through an 

optical fibre, by employing a wax patterned filter paper-based substrate for surface enhanced Raman spectroscopy (SERS). 

Through this method, high reproducibilty between fibres was achieved. In addition to sensing pH, it was possible to extract 

fluid samples containing P.aeruginosa  for further analysis.  This dual purpose fibre is bronchoscope deployable, and is able 

to gather information about both the host and pathogen, which may lead to an improved treatment plan in future in vivo 

applications.

Introduction 

With the rising global challenge of antimicrobial resistance, 

there is an urgent need to reduce unnecessary antimicrobial 

prescriptions.1 Ventilator-associated pneumonia (VAP) is the 

most common infection among the critically unwell in 

intensive care units (ICUs), with Pseudomonas aeruginosa 

behind many of these infections.2 

 Studies have shown that using the standard methods to 

identify the infectious agents, often by interpreting non-

specific clinical or radiological features combined with culture 

techniques from sputum samples, was not adequate to 

diagnose lower tract respiratory infection but required 

processing of bronchoalveolar lavage fluid (BALF) samples.3 

However, even the use of these samples has a number of 

limitations. Bacterial cultures typically take up to 3 days for 

results, but specifically, these samples can suffer from a lack of 

sensitivity due to aspirated fluid being prone to contamination 

from the upper respiratory tract. Molecular sequencing 

methods such as polymerase chain reactions (PCR) can be 

overly sensitive, potentially leading to overtreatment of 

patients. Combined with poor sampling techniques, there is a 

significant impact on the treatment and management of 

patients.4–7  

The correct identification of pathogens causing respiratory 

infections and the monitoring of their antimicrobial sensitivity 

is of great importance. In addition to identification, knowing 

the physiological environment of the site of interest can also 

hold great value. pH is tightly regulated within cells and their 

microenvironments, with any deviations from the homeostasis 

indicating disease processes. Within the lung, an acidic pH can 

encourage the growth of bacteria, reduce the efficiency of 

endogenous cationic antimicrobial peptides and inactivate 

some antibiotics - all factors that contribute to antimicrobial 

resistance and worsening patient outcome.8,9  

The need for bed-side based monitoring has driven 

research efforts with a focus on robust and rapidly responding 

optical sensor devices. Fibre-based Raman spectroscopy is 

becoming a popular method for in vivo investigations due to its 

being a non-destructive and minimally invasive technique. 

Furthermore, it exhibits high spatial resolution and chemical 

sensitivity, important factors for in situ monitoring. However, 

as Raman scattering is an inherently weak phenomenon, its 

use for dynamic physiological sensing can be somewhat 

limited.  

Surface enhanced Raman spectroscopy (SERS), where a 

reporter molecule is adsorbed on to the surface of a metal 

nanoparticle (NP), can increase the signal intensity by several 

orders of magnitude over conventional Raman scattering. SERS 

has been used in many applications, from intracellular 

physiological sensing, drug delivery sensing, explosive 

detection and many more10,11.  
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SERS has been demonstrated through fibre previously, 

however, it has been challenged by difficulties in 

reproducibility from fibre to fibre, as well as generating SERS 

signal intensities great enough to overcome the intrinsic silica 

fibre background. As a result, much of the focus in this area 

has been on background suppression through complex fibre 

designs and correction methods.12–14  

Paper based substrates for SERS sensing and detection are 

gaining traction as point-of-care systems due to their low cost 

and flexible nature.15–17 One of the difficulties is directing the 

deposition of NP, due to the inherent wicking ability of filter 

paper which is both quick and uncontrolled. The use of 

patterning with a hydrophobic ink can assist with some of 

these issues, by defining a specified SERS sensing region.18,19 

Here, we demonstrate a facile and cost-effective SERS 

substrate capable of ratiometrically measuring pH using SERS, 

whilst retrieving a biological fluid sample through combining 

paper and fibre-based systems. The advantages of a wax 

patterned paper sensing substrate are two-fold, it allows 

simple controlling of particle deposition and also facilitates an 

easy way to retrieve biological fluid samples. Our method has 

been designed to be small enough to be bronchoscope 

deployable with the ability to reach alveolar regions within the 

lung, allowing for site specific information to be gathered and 

so gaining information about both host and pathogen. This 

approach has also overcome many of the outlined challenges 

by achieving an easily repeatable fabrication process and 

generating high signal to noise ratios.  

Results and Discussion 

Paper SERS Substrate Design  

The main goal of this research was to provide a simple SERS 

substrate to combine with a fibre-based approach to sensing, in 

particular pH. For this purpose, filter paper was chosen as the 

preferred substrate due to its wide availability and porous nature.  

 4-Mercaptobenzoic acid functionalised AuNPs (4-MBA; 150 nm, 

3.6x108 particles/µL) were pipetted on to filter paper substrates. 

Repeated depositions of a low volume of AuNPs (2 µL droplets) 

were applied, to a final volume of 2-8 µL, with drying stages in 

between, to avoid a loss of AuNPs through soaking and washing 

through the paper. The size of the spots that contain AuNPs was 

defined by the volume of the solution, however there is much 

variance in shape and the spread, or wicking, of the AuNPs within 

the spots (Fig. 1A, I).  

In an effort to overcome the influence of non-uniform capillary 

wicking, and therefore the low reproducibility of using a filter 

paper-based SERS substrate, a hydrophobic wax surround was 

printed onto the filter paper. Solid wax printing is a simple, 

inexpensive, and quick method, amenable to mass production. 

Patterning paper with a wax surround allows control of the wicking 

action of aqueous solutions, confining the dispersion to the 

hydrophilic areas.18–20 By limiting the solution containing the AuNPs 

Figure 1 . Differences between filter paper with waxed boundary and no boundary. (A) 

I: AuNPs deposited onto filter paper without defined wax boundaries, II: images of 

filter paper with wax boundary, III: AuNPs deposited onto paper with defined wax 

boundary. All AuNPs depositions using 2 µL drops. (B) and (C) Raman intensity maps of 

filter paper and patterned filter paper (respectively), deposited with varying volumes 

of AuNPs. (D) SERS spectra of 4-MBA, with highlighted peak at 1587 cm-1 used for 

intensity comparisons. 
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to a defined area, there is a reduction in variability in AuNP 

concentration at any point within the hydrophilic area. A substantial 

difference between applying AuNPs to filter paper with and without 

a wax barrier can be clearly seen by eye (Fig. 1A). The image shows 

both an increasing spot size, as well as an uneven spread of AuNPs 

across the filter paper where a wax barrier was not used. The 

unevenness is further revealed by SERS mapping (Fig. 1B). The 

patterned paper allows AuNPs to be deposited on the filter paper in 

a controlled manner, filling the entire hydrophilic area evenly (Fig. 

1C). SEM images from paper substrates with a printed wax barrier 

show a high density of AuNPs on the cellulose fibres, which may 

help in the formation of SERS “hot-spots”, further enhancing the 

signal intensity (Fig. S1).   

Fibre Sensing 

Translation to fibre. While pH sensing using an optical fibre has 

been demonstrated previously,12,13 the background Raman 

scattering from the fibre is strong and can overwhelm the SERS 

signal from particles deposited on the distal end. Although some of 

these issues can be alleviated using sophisticated fibre designs, 

these are often bulky and require multiple fibres or fibres with large 

bores.12,21,22 Additionally, many fibres for use with SERS sensing are 

prepared by dipping the distal end into concentrated nanoparticle 

solutions, leading to unknown and variable concentrations on the 

fibre tip.12,13,21,22 This has an impact on how reproducible, and 

therefore scalable, the production of the fibre sensors can be. 

Keeping in mind the future translation of fibre-based sensors into 

clinic, the ideal instrument would consist of a single fibre being 

bronchoscope deployable, with simple fabrication steps and 

minimal packaging requirements.  

The fabrication of the packaged ferrule end is a simple process 

(Fig. 2A), whereby a 2 mm wide strip of the wax printed AuNP paper 

was placed, facing upwards, on a ring-shaped section of rubber. The 

ferrule was pushed through the ring with the paper flush across the 

top surface. A commercially available 200 µm single core (NA 0.39), 

multi-mode fibre was then threaded through the ferrule until 

abutted against the paper, and secured in place at the base of the 

ferrule. 

Through combining the fibre with the paper-based SERS 

substrate, a controlled particle deposition is achieved, providing 

confidence that the same signal intensity can be reached in any 

location where the fibre tip is placed on the AuNP paper. This 

extends to being able to reliably reproduce a strong signal when 

moving between fibres. Three separate fibres with packaged distal 

ends were prepared and their spectra recorded in air. It can be seen 

that across the three fibres reproducibility of the paper-based 

Figure 2 (A) Process of fabrication to combine paper SERS substrate with 200 µm core optical fibre. Centre strip of AuNP paper cut and secured across a fibre ferrule, fibre threaded 

through and secured in place. (B) SERS spectra from 3 separate fibres, displaying similar signal intensities. Black spectrum represents intrinsic fibre background (which is easily 

overcome by SERS signals), 785 nm, 1 mW, 1 s integration time. (C) SERS spectra of 4-MBA, through fibre, over pH 4-10; (D) shows zoomed range of peaks of interest at 1380 cm-1 

and 1700 cm-1 changing over pH 4-10. (E) NP-MBA nanosensors, equilibrium between MBA and its deprotonated form attached to a gold NP (yellow sphere, not to scale. (F) Ratio of 

Area under Curve (AUC) between 1380 cm-1 and 1700 cm-1 plotted against pH over 3 fibres. Each measurement was taken using 785 nm, 1mW, 10 s integration time. (G) Intensity of 

1587 cm-1 reference peak (inset) obtained during each measurement of the pH calibration plotted in chronological order.  
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system is demonstrated by strong signals of similar intensities (Fig. 

2B). Moreover, the strong signal intensity generated by the paper-

based SERS sensor easily overcomes the intrinsic fibre background 

using relatively low laser power and integration time (1 mW and 1 s 

respectively). Importantly, the fibre background does not impose 

significantly on the pH sensitive peaks at 1380 cm-1 and 1700 cm-1. 

 

pH Sensing. The reporter molecule, 4-MBA, has long been known as 

sensitive to environmental pH variations, and has been previously 

demonstrated as a suitable choice for biologically and clinically 

relevant pH sensing.11,12,23,24 The peaks observed at 1380 cm-1 and 

1700 cm-1 are spectral features most dependent on pH. Under basic 

conditions (pH 9 and above), 4-MBA is known to be in the anionic 

form, affording a strong response in the 1380 cm-1 peak. 

Conversely, under acidic conditions (pH 5 and below), 4-MBA is 

mostly in the neutral form, generating a clear response in the peak 

found at 1700 cm-1 

 Aqueous pH buffers were prepared from pH 4-10 and verified 

with an electrochemical pH meter (Mettler-Toledo). The packaged 

distal end of the fibre was submerged in buffer and the spectrum 

recorded after 10 s. Between readings the AuNP-paper substrate 

was rinsed in dH2O and blotted dry. Each fibre had three replicate 

calibrations where pHs were recorded in a random order. Three 

fibres in total were measured. The spectra were analysed by first 

normalising the spectra to the magnitude of a reference peak (1070 

cm-1), followed by evaluating the area under the curve (AUC) within 

a ± 25 cm-1 window of the peaks at 1380 cm-1 and 1700 cm-1. 

Plotting pH against the AUC ratio, all fibres demonstrated 

consistent variation within the physiological range (Fig. 2F), again 

indicating the suitability of the paper SERS substrate for fibre 

sensing in future in vivo applications.  

 The loss of nanoparticles over time from the distal end of the 

fibre would be problematic, not only due to loss of signal, but also 

because loss of AuNPs is undesirable for use in in vivo applications. 

With the fibres which have been dip-coated with nanoparticles, 

typically, a porous sol-gel layer is used to protect the distal end. 

However, this coating can also suffer from variations in both coating 

depth and the porosity of the sol-gel layer, which may affect the 

speed at which measurements can be acquired. The paper SERS 

substrate showed no significant signal loss from over the course of 

the pH measurements (approximately 60 min per fibre). The 

intensity of the 1587 cm-1 peak was plotted over time, with the 

slight oscillations being attributed to the drying and wetting of the 

SERS samples. The average intensities between the first and last 

sets of pH measurements differ by less than 250 counts, less than 

10% of overall signal intensity (Fig. 2G).  

 

Extraction and culture of P. aeruginosa  

There has been a considerable increase in the number of 

infections due to antimicrobial resistant bacteria with lower 

respiratory tract infections responsible for the second highest 

burden of disease globally.25–27 Within ICUs, the development of 

pneumonia is associated with high mortality rates.28 The 

investigation of respiratory disease can involve biopsies, an invasive 

procedure, and the collection of BALF, which can become 

contaminated by bacteria found in the upper respiratory tract.  The 

ability to sample fluid at specific sites can alleviate issues related to 

contamination. This fibre has been designed keeping in mind that it 

Figure 3 (A) P. aeruginosa colonies on LB agar. Packaged fibre ferrule dipped into solutions containing ten-fold serial dilutions of bacteria and pressed into plate. Similarly, for the control 

plates, 3x 20 µL droplets pipetted on to the plates. CFUs grown from a concentration above 6 x100 in both the paper ferrule and control samples. White arrows indicate colonies formed 

at a concentration of 6 x101. Both conditions incubated overnight at 37 °C, 5% CO2. Dilutions of P. aeruginosa were between, paper substrate: 6 x105 – 6 x100 CFU/mL; control: 6 x107 – 6 

x100 CFU/mL. (B) Fluorescence images from extracted P. aeruginosa in PBS. Ferrule pressed into agar, followed by submerging in PBS, stained with UBI-based dye (5 µM). 6 x102 CFU/mL 

concentration used. Top panel, wide field view, bottom panel, zoom in of P. aeruginosa. 

A) B) 
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should be deployable through a conventional bronchoscope. In this 

way, it can be extended and retracted at specific region of interest, 

therefore minimising the contact between the distal end of the 

probe and upper respiratory tract. 

The porous nature of the filter paper not only provides a 

suitable substrate for the deposition of nanoparticles but also lends 

itself to retrieving a sample of fluid. We demonstrate that the filter 

paper is capable of sampling liquid containing bacteria which can 

then be cultured and counted. A clinical isolate of P. aeruginosa 

3284 was cultured and prepared for this study.  

Sample Retrieval Efficiency. To evaluate whether samples 

containing bacteria could be retrieved using this method, and to 

investigate the limit of detection, 10-fold serial dilutions of PA3284 

ranging from 6 x108 – 6 x100 CFUs (colony forming units)/mL were 

prepared.  The ferrule tip containing the AuNPs soaked paper 

substrate was dipped in to the bacterial containing solutions and 

gently pressed into lysogeny broth (LB) agar plates, with three 

presses per dip. This process was repeated a total of three times 

per dilution. After an overnight incubation period (37 °C, 5% CO2), 

the colonies were counted and compared to the control (consisting 

of 3x 20 µL droplets of each dilution) (Fig. 3). We observed a similar 

number of colonies between the paper and standard methods, with 

a LOD of 60 CFUs/mL in both the paper-based method and the 

Miles and Misra method, efficiently detecting below the clinical cut 

off (above 104 CFUs/mL to be considered pathogenic).4,29  

Direct Imaging. We were able to further extract bacteria from the 

paper after pressing into agar by placing the paper strip in PBS (500 

µL) and lightly vortexing. Using an in-house ubiquicidin based 

bacterial stain (5 µM),30 it was possible to image the live bacteria 

shortly after retrieval, without the need for a washing step, by 

confocal laser scanning microscopy (CLSM; fig. 3B). Using bacteria 

specific probes enables the in situ optical detection of live bacteria 

in human alveolar lung tissue .30–32  

In addition, we investigated imaging bacteria directly on the paper 

itself (Fig. 4). Due to the autofluorescence of the paper (Fig. S2), a 

far-red dye was used. The bacteria were labelled with a Syto60 (5 

µM), a fluorescent nuclear stain, before introducing the AuNP-

paper strips into the solution containing 6 x105 CFUs/mL. While this 

strategy suppressed much of the autofluorescence seen in the 

green channel, there is still some homogeneous signal observed in 

the cy5 fluorescence channel. However, despite the background 

signal, the labelled bacteria can clearly be detected by widefield 

imaging, indicating that augmenting collected samples with an 

appropriate far-red bacteria-specific stain could enable in vivo 

bacterial detection on fibre without any need for a processing step. 

This could pave the way for simultaneous measurements for 

bacteria and pH through a single fibre. 

Experimental Section 

Materials and Reagents 
Gold nanoparticles in citrate buffer (AuNPs, 150 nm, put 

concentration), poly-L-lysine (30,000 – 70,000 MW), 4-

mercaptobenzoic acid (4-MBA) were all purchased from Sigma-

Aldrich. Filter paper (Whatman, grade 114) was purchased from 

Scientific Laboratory Supplies Ltd. Lysogeny Broth was purchased 

from Thermofisher. Both the Optical fibre (200 µm core diameter, 

Figure 4 Fluorescence images showing bacteria on AuNP-Paper substrates. Bacteria were treated with Syto60 (5 µM), The top row consists of AuNP-paper containing bacteria, 

merged, transmission, and fluorescence images. The bottom row corresponds to AuNP-paper without bacteria. 



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

NA 0.39) and fibre ferrules were purchased from Thorlabs.  

Instrumentation 

Solid wax printing was carried out using a Xerox ColourQube8580. 

SERS maps were collected on a Renishaw In Via system, using a 785 

nm laser, 5x objective, at ~1.5 mW laser power with a 1.4 s 

integration time.  

The fibre-based SERS spectra were collected using a home built 

optical set up specifically for optical fibres.12 A 785 nm laser line 

(Thorlabs) was used as the excitation source, coupled to an 

OceanOpticsPro spectrometer. The output of the laser power was 

set as 1 mW, and an integration time of 10 s was used. 

Images of bacteria extracted from paper fluorescent were taken by 

confocal laser scanning microscopy (Leica SP8, 488nm excitation, 

63x oil immersion). Images were brightness and contrast enhanced 

with proprietary software. Bacteria imaged directly on waxed AuNP 

paper were taken using an EVOS® microscope with GFP and Cy5 

light cubes, images were brightness and contrast enhanced using 

ImageJ software.  

Methods 

Preparation of functionalised nanoparticles. Gold nanoparticles (5 

x 1 mL aliquots, 3.6 x109 particles/mL, ~150 nm) were prepared for 

functionalisation by centrifuged at 5500 rpm for 10 min. For 

functionalising the particles, following centrifugation, the 

supernatant (900 µL) from each aliquot was removed without 

disturbing the pellet. The pellet was resuspended in deionised 

water (800 µL) and 4-MBA (100 µL, 1 mM in EtOH) and left 

overnight. Unbound 4-MBA was removed via washing and 

centrifugation at 5500 rpm for 10 min. The supernatant (900 µL) 

was removed without disturbing the pellet, followed by 

resuspension in dH2O (900 µL). The samples were vortexed and 

sonicated to ensure the particles were forced back into suspension. 

The washing and centrifugation process was repeated a total of 3 

times.  

The functionalised nanoparticles were then concentrated and 

combined. The samples were centrifuged at 5500 rpm for 10 min, 

and the supernatant (950 µL) was removed without disturbing the 

pellet. The AuNPs were forced back into suspension in the 

remaining volume of dH2O (~50 µL) through sonication and 

vortexing. The 5 aliquots were combined, centrifuged at 5500 rpm 

for 10 min, and the appropriate amount of supernatant was 

removed to give a final volume of 50 µL.  

Fabrication of paper SERS substrate. Preparation of the filter 

paper: an array of circular stencils was designed. A Xerox 

ColourQube8580 was used to print in standard wax based ink on to 

the surface of the filter paper, leaving 3 mm diameter disks of bare 

paper. The wax printed paper was placed on a hotplate (150 °C) and 

compressed with a weight for 60s to ensure that the wax fully 

penetrated the paper.  

For fabrication of the SERS-active substrate, 2 µL droplets of the 

4-MBA functionalised AuNPs were pipetted on to the filter paper 

disk and allowed to dry at room temperature for an hour. A further 

6 µL of AuNPs was dropped on to each disk in 2 µL aliquots with 

drying in between to a total of 8 µL (2.9 x109 total particles 

deposited). 

Fibre sensing. For preparation of the fibre-based sensor: Silica 

based optical fibres (3 x 1 m length, core diameter of 200 µm, NA 

0.39) were used throughout. The filter paper disks containing 

functionalised AuNPs had a 1 mm strip cut. The “top side” (the side 

of the filter paper to which AuNPs had been applied) was placed 

facing upwards on top of a rubber ring. A fibre ferrule was pushed 

through the ring resulting in the filter paper placed flush on the top 

of the ferrule. Following the preparation of the packaged ferrule, 

the fibre tip was threaded through to meet the filter paper and 

secured in place. A total of 3 fibres were prepared for calibration. 

A SERS spectrum was obtained using the packaged distal end of 

the fibre from 7 separate pH buffers from pH 4-10. SERS spectra 

were acquired while the fibre tip was fully submerged in each 

buffer. Each of the 3 fibres were used for 3 replicate measurements 

between pH 4-10, with the order of the measurements within each 

replicate being random. 

Bacterial Culture and Extraction of P. aeruginosa 3284. An inhouse 

clinical isolate Pseudomonas aeruginosa 3284 was used. A single 

colony was inoculated in Lysogeny Broth (LB; 10 mL) and incubated 

overnight (37 °C, 250 RPM), followed by a further subculture (100 

µL of overnight culture in 10 mL LB) and incubated at the same 

conditions for 4 hours until mid-log phase growth was reached.  

The optical density at 595 nm (OD595) of the resulting culture 

was measured and adjusted to a value of 1 to give an approximate 

bacterial concentration of 6 x108 CFU/mL. Serial dilutions (6 x 108 to 

6 x 100 CFU/mL) were prepared with sterile PBS.   

For each dilution, the packaged ferrule was dipped into the 

bacteria containing solution and pressed in succession across an LB 

agar plate. To compare, 3 x 20 µL samples of each dilution was 

dropped on lysogeny broth (LB) agar plates for CFU analysis. Plates 

were incubated at 37 °C with 5% CO2 overnight, with CFUs manually 

counted. 

After the paper ferrule had been pressed into LB agar, it was 

placed in an Eppendorf containing PBS (0.5 mL) and lightly 

vortexed. The paper and ferrule were removed and the bacteria 

containing solution labelled with a ubiquicidin-based probe (5 µM), 

without a washing step. Immediately following the addition of the 

label, the solutions were placed in a confocal imaging chamber, pre-

coated with poly-D-lysine (0.1 mg/mL) and imaged by confocal laser 

scanning microscopy. 

For direct imaging of bacteria on the paper, bacteria were first 

stained with Syto60 (5 µM; Thermofisher), as per manufacturer’s 

intstructions, and washed twice with PBS by centrifugation at 13000 

rpm for 1 min. The AuNP paper was dipped into the stained 
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bacterial solution containing 6 x105 CFUs/mL and imaged using 

widefield microscopy.   

Conclusions 

In this study, a facile, inexpensive and reproducible paper-

based SERS sensor has been integrated with optical fibre 

technology for use in pH sensing across a physiological 

relevant range. Using a patterned wax printed stencil to 

control the wicking boundary of AuNPs, the distribution of 

particles can be controlled across the paper. In addition, due 

to the wicking nature of the filter paper, it was possible to 

extract the bacteria, P. aeruginosa, demonstrating the dual-

purpose ability of the paper substrate to acquire physiological 

and pathogenic information.  
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