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Abstract

Zipf famously stated that, if natural language lexicons are structured for efficient communication, the words that
are used the most frequently should require the least effort. This observation explains the famous finding that the
most frequent words in a language tend to be short. A related prediction is that, even within words of the same length,
the most frequent word forms should be the ones that are easiest to produce and understand. Using orthographics as
a proxy for phonetics, we test this hypothesis using corpora of 96 languages from Wikipedia. We find that, across a
variety of languages and language families and controlling for length, the most frequent forms in a language tend to
be more orthographically well-formed and have more orthographic neighbors than less frequent forms. We interpret
this result as evidence that lexicons are structured by language usage pressures to facilitate efficient communication.
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Leaders Award (ES/N0174041/1) and European Research Council (ERC-2011-AdG-295810 BOOTPHON). The au-
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2 Introduction
While there is no a priori reason why a dog should be called a dog and a tarantula a tarantula in English instead of
the other way around, there is evidence that word forms are, at least partially, constrained by their usage. Recent work
suggests that pressures from communicative constraints influence the relationship between word usage and word form.
One prediction based on information theory (Shannon, 1948) is that the most frequently used words should be more
optimized. Zipf (1935) and others (Manin, 2006; Piantadosi et al., 2011a) suggest that the length distribution of words
is optimized from a language user perspective. Yet, pressures stemming from language usage may affect systematically
word forms in many other ways. Predictability is one such pressure: People selectively use shorter words (Mahowald
et al., 2013)–or omit words altogether–when the context is predictive (Frank & Jaeger, 2008; Jaeger, 2010; Levy &
Jaeger, 2007).

In this work, we examine another factor that affects word forms: their phonological properties. In particular, we
focus on two aspects of the phonological forms of words: phonotactic probability and phonological neighborhood
density.

• Phonotactic probability is a measure of the well-formedness of a string in a given language. For instance, in
English the word drop is phonotactically quite probable, dwop is less probable but still allowed, and dsop has,
essentially, zero probability.
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• Phonological neighborhood density of a word w is the number of words that differ from word w by insertion,
deletion, or substitution of a phoneme (Luce, 1986; Vitevitch & Luce, 1998). For instance, the neighbors of cat
include mat and can.

If a lexicon were structured by language usage pressures, how should word frequency be related to phonotactic
probability and neighborhood density? Zipf (1935) claimed that the Principle of Least Effort predicts that easily
articulated sounds should be used more often in language than more difficult sounds. While Zipf was referring to
individual sounds, there is compelling evidence that phonotactically probable words are easier to produce in language
use. For instance, the inventory of sounds in languages evolve to enable easy articulation and perception (Lindblom,
1983, 1990, 1992) and the patterns of sounds observed across languages reflect articulatory constraints (Kawasaki
& Ohala, 1980). Therefore, a language whose most frequent words are phonotactically probable likely requires less
production effort than a language organized such that the most frequent strings are phonotactically improbable.

But what about from the listener’s perspective? One line of thinking suggests that what’s good for the speaker
is good for the listener. Just as speakers have an easier time producing frequent sound sequences, listeners are also
more adept at perceiving these sound sequences. Phonotactically probable words are more easily recognized than less
probable words (Vitevitch, 1999). There is also a learning advantage for probable strings: probable strings are learned
more easily by infants and children (Coady & Aslin, 2004; Storkel, 2004, 2009; Storkel & Hoover, 2010) and infants
prefer high-probability sequences of sounds compared to lower probability sequences (Jusczyk & Luce, 1994; Ngon
et al., 2013). These lines of evidence suggest a functional advantage for phonotactically probable words not just in
production but in comprehension as well. From this, we expect that the most frequent words are phonotactically more
probable than the most infrequent strings.

There are conflicting accounts as to how phonological neighborhood density affects language production and com-
prehension and therefore differing predictions about how the lexicon should be organized in terms of phonological
neighborhood density. Because everyday linguistic communication takes place in adverse conditions (e.g., environ-
mental noise, errors of production and perception), words with many neighbors cause increased processing difficulty
since they are typically more confusable with other words. And indeed there is evidence that having many neighbors
can have an inhibitory effect on lexical access in perception (Luce, 1986; Vitevitch & Luce, 1998), inhibit reading
times Magnuson et al. (2007) and elicit lexical competition that slows down word learning in toddlers (Dautriche et
al., 2015; Swingley & Aslin, 2007).

But Sadat et al. (2014) find that phonological neighborhood density causes longer naming latencies in production
and therefore has an inhibitory effect. Vitevitch & Stamer (2006), like Sadat et al. (2014), argue that morphologically
rich languages like Spanish and French typically show an inhibitory effect for words with many neighbors in naming
tasks. Yet it has also been shown that phonological similarity (a) facilitates the ease with which people produce
words (Gahl et al., 2012; Stemberger, 2004; Vitevitch & Sommers, 2003); (b) supports novel word representation in
working memory (Storkel & Lee, 2011) and (c) boosts word learnability in adults (Storkel et al., 2006). Whether or
not neighborhood effects are facilitative or inhibitory in production may be task dependent Chen & Mirman (2012).
In such a case, it is difficult to predict how neighborhood density should be distributed in regards to frequency to be
optimal for language usage purposes. Following the prediction of information theoretic accounts (Shannon, 1948), the
most frequent words tend to be the most optimized for language communication. Therefore, the directionality of the
relationship between neighborhood density and frequency (assuming that it is consistent across many languages) is
informative about how neighborhood density should be optimal for language usage.

To evaluate the extent to which the phonological forms of words may be explained by word usage, we analyzed
the lexicons of 96 typologically diverse languages downloaded from Wikipedia. For each word form composing
these lexicons we calculated its orthographic probability (a proxy for phonological probability) and its orthographic
neighborhood density (a proxy for phonological neighborhood density). We investigated (a) the relationship between
frequency (by token) and orthographic probability (as measured over word types) and (b) the relationship between
frequency and neighborhood density. In all of these analyses, we compared only words of the same length so that any
resulting effects are not driven by word length. To assess significance, we used the method described in Dautriche et
al. (2017), whereby we generate “null” lexicons using an n-phone model trained over unique word forms in the real
lexicon. Thus, for each language, we generate N simulated lexicons with the same frequency distribution as the real
lexicon and ask whether we see the same correlation between the factors above in the simulated lexicons that we see
in the real lexicon.

Given previous experimental results showing an advantage for phonotactically well-formed word forms, information-
theoretic accounts predict that there should be a consistent positive correlation between frequency and orthographic



3

probability across languages. The experimental results on the influence of neighborhood density in language pro-
cessing are not clear and could go either way, yet a consistent positive or negative correlation between frequency and
neighborhood density would be informative about how neighborhood density should be optimal for language usage.
However, if we observe no consistent correlations between orthographic probability and frequency and between fre-
quency and neighborhood density, it would suggest either that languages differ in how they have evolved or that these
two variables are not optimized for language usage.

These sorts of correlations have been examined in the literature before, but only for a small number of languages.
Landauer & Streeter (1973) performed a similar analysis for English, and Frauenfelder et al. (1993) for English
and Dutch. All found that the most frequent words in the language have higher phonotactic probability and more
phonological neighbors than more infrequent words. But it is difficult to draw conclusions on the functional nature
of these correlations based on just a small number of languages. It is particularly difficult to do so given the large
differences that exist across language families. For instance, there are meaningful difference in the distribution of
word length or in the size of the phoneme inventory that may jointly influence the contribution of neighborhood
density and orthographic probability in different languages. Vitevitch & Stamer (2006) suggest that differences in
morphological complexity between Spanish and English, for instance, lead to different neighborhood effects.

Therefore, in this work we take a breadth-based approach and examine a large range of typologically different
languages using an orthographic corpus. Crucially, unlike previous studies of the relationship between word form and
frequency, these results include a very wide range of languages with a correspondingly wide range of morphological
complexity and structure. Thus, if the previously attested relationship between phonotactic probability and frequency
is simply a byproduct of, say, shared morphological processes or shared word formation processes common to the
Germanic and Latin languages most commonly studied in previous research, then we would expect to see different
results in the typologically varied languages that we consider.

3 Method
Lexicons. We used the lexicons of 96 languages extracted from Wikipedia. The details on these lexicons, including
the typological details and our corpus cleaning procedure, are explained in Appendix A. The languages analyzed
included 62 Indo-European languages and 34 non-Indo-European languages. Of the non-Indo-European languages,
12 language families are represented as well as a creole. The languages analyzed are shown in Tables 1 and 2.

Albanian: Albanian; Armenian: Armenian; Baltic: Lithuanian, Latvian; Celtic:
Breton, Irish, Scottish Gaelic, Welsh; creole: Haitian; Germanic: Afrikaans,
Alemannic, German, English, Luxembourgish, Low Saxon, Dutch, Scots, West
Frisian, Yiddish; Hellenic: Greek; Indo-Aryan: Fiji Hindi, Marathi, Urdu,
Bosnian, Croatian, Punjabi, Serbian; Iranian: Central Kurdish, Persian, Kurdish,
Mazandarani, Tajik; Italic: Latin; North Germanic: Danish, Icelandic, Nor-
wegian (Nynorsk), Norwegian (Bokmal), Swedish; Romance: Aragonese, As-
turian, Catalan, Spanish, French, Galician, Italian, Lombard, Neapolitan, Occitan,
Piedmontese, Portuguese, Romanian, Sicilian, Venetian, Walloon; Slavic: Belaru-
sian,Bulgarian, Macedonian, Czech, Polish, Russian, Serbo-Croatian, Slovene,
Slovak,Ukrainian;

Table 1: List of Indo-European languages used, language families in bold.

For this analysis, we selected the set of the 20,000 most frequent unique orthographic word forms (word types) in
a given language. From this set, we defined as a lexicon all words of length 3- to 7- for each language (in characters
for orthographic lexicons and in phonemes for phonemic lexicons).

The number of tokens in the original Wikipedia corpus for each language ranged from 118,800 tokens for the
language with the smallest Wikipedia corpus to 14.4 billion tokens for English. The median language contained 7.7
million tokens. After the restrictions described above (focusing on the top 20,000 most frequent word types and then
words of only length 3 to 7), we were left with between 6,408 word types and 18,240 word types to analyze.

To assess whether the Wikipedia corpus (which uses orthographic forms and contains morphologically complex
words) is a good proxy for a more controlled corpus that uses phonemic representations and is restricted to monomor-
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Afro-Asiatic: Arabic, Amharic, Egyptian Arabic, Hebrew; Altaic: Mongolian,
Azerbaijani, Bashkir, Chuvash, Kazakh, Kyrgyz, Turkish, Tatar, Uzbek; Aus-
tronesian: Minang, Malagasy, Indonesian, Malay, Sundanese, Cebuano, Taga-
log, Waray-Waray, Buginese, Javanese; Austroasiatic: Vietnamese; Kartvelian:
Georgian; Niger-Congo: Swahili, Yoruba; Quechuan: Quechua; Tai-Kadai:
Thai; Uralic: Estonian, Finnish, Hungarian; Vasonic: Basque;

Table 2: List of non-Indo-European languages used, language families in bold.

phemic words, we also analyzed phonemic lexicons derived from CELEX for Dutch, English and German (Baayen et
al., 1995) and Lexique for French (New et al., 2004). The lexicons were restricted to include only monomorphemic
lemmas (coded as "M" in CELEX; I.D., a French native speaker, identified mono-morphemes by hand for French).
That is, the lexicons contained neither inflectional affixes (like English plural -s) nor derivational affixes like the En-
glish -ness. In order to focus on the most used parts of the lexicon, we selected only words whose frequency is greater
than 0. (The CELEX database includes some rare words listed as having 0 frequency, which were not in the original
CELEX sample.) Since we used the surface phonemic form, when several words shared the same phonemic form
(e.g., ‘bat’) we included this form only once.

All three CELEX dictionaries were transformed to make diphthongs into 2-character strings. In each lexicon,
we removed a small set of words containing foreign characters. This resulted in a lexicon of 5459 words for Dutch,
6512 words for English, 4219 words for German and 6782 words for French. The resulting lexicons are available at
https://osf.io/rvg8d/.

Variables under consideration. For each word in each language we computed the word’s:

• Word length: for orthographic lexicons, in characters; for phonemic lexicons, in phones (so that we can compare
only words of the same length)

• Token frequency: for orthographic lexicons: across all the Wikipedia corpus of the language; for phonemic
lexicons: using the frequency in CELEX or Lexique.

• Orthographic or Phonotactic probability: for orthographic lexicons, we trained an ngram model on characters
(n= 3 with a Laplace smoothing of 0.01 and with Katz backoff in order to account for unseen but possible sound
sequences; see (Dautriche et al., 2017)) on each lexicon and used the resulting model to find the probability of
each word string under the model. Table 3 shows examples of high and low probability English words under the
English language model.

word log probability
reed -3.69
shed -3.75
mention - 4.63
comment -4.68
tsar -8.64
Iowa -9.47
kremlin -11.53
tsunami - 12.90

Table 3: Phonotactically likely and unlikely words in English with their log probabilities

For phonemic lexicons, we proceeded the same way but the ngram model was trained on phones rather than
characters.

• Orthographic or Phonological neighborhood density: for orthographic lexicons, we calculated the orthographic
neighboorhood density of words (as a proxy for phonological neighborhood density) and for phonemic lexicon
we calculated their phonological neighborhood density. Orthographic/Phonological neighborhood density is
defined for each word as the number of other words in the lexicon that are one edit (an insertion, deletion,

https://osf.io/rvg8d/
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or substitution) away in orthographic/phonological space (Luce, 1986; Luce & Pisoni, 1998). For instance,
‘cat’ and ‘bat’ are phonological neighbors, as well as minimal pairs since they have the same number of letters
and differ by 1. ‘Cat’ and ‘cast’ are neighbors but not minimal pairs. We will only focus on minimal pairs, as
opposed to neighbors, in order to avoid confounds from languages having different distributions of word lengths.

4 Results

4.1 Large-scale effects of frequency on 96 languages
Correlational analysis. Figure 1 and 2 shows correlations for each language and length (from 4 to 6 letters) sepa-
rately, between (a) orthographic probability and frequency and (b) minimal pairs and frequency for non-Indo-European
languages (Figure 1) and for Indo-European languages (Figure 2). Dots to the right of the dotted line at 0 show a pos-
itive correlation. Almost all languages show a positive correlation. 1

1In order to ensure that any observed correlations are not the product of English overlap, we ran the same analyses on the full lexicons as well
as on subsets of lexicons that exclude any word that also appears in the English Subtlex subtitles database (Brysbaert & New, 2009). This excludes
English intrusions but also excludes perfectly good words like die in German (which means “the” and is unrelated to English “die”) and French dire
(meaning “to say” and unrelated to the English adjective dire). Note that, for all lengths, the results obtained when excluding all English words are
similar in terms of overall correlation, as can be seen in Table 5. Because most of the English words excluded are actually not intrusions but are
native words that just happen to also be English forms, we include them in all subsequent analyses. Note that this method does not account for the
possibility of borrowings in other languages (and indeed many less widely spoken languages will borrow words from nearby major languages and
these borrowings may have different phonotactics). We consider this phenomenon, however, to be part of the natural evolution of language and do
not attempt to exclude it. In excluding English, we primarily seek to exclude words that appear in Wikipedia due to computer issues (HTML tags
such as <head>,<title>, chunks of English erroneously copied into the text of other languages, etc.).

<head>,<title>
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Figure 1: Correlation coefficients between a) orthographic probability and frequency and b) minimal pairs and
frequency, by language and length, with 95% confidence intervals based on Fisher transforms for words of length
4 to 6 for non-Indo-European languages. Dots to the right of the dotted line at 0 show a positive correlation.
The numbers along the y-axis are the Pearson correlations. Text and points are colored by language family. The
presence of a star on the right of the graph indicates that the correlation is significant at p < .01 compared to the
distribution of correlations obtained across 1,000 simulated lexicons.
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Figure 2: Correlation coefficients between a) orthographic probability and frequency and b) minimal pairs and
frequency, by language and length, with 95% confidence intervals based on Fisher transforms for words of length
4 to 6 for non-Indo-European languages. Dots to the right of the dotted line at 0 show a positive correlation.
The numbers along the y-axis are the Pearson correlations. Text and points are colored by language family. The
presence of a star on the right of the graph indicates that the correlation is significant at p < .01 compared to the
distribution of correlations obtained across 1,000 simulated lexicons.
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To evaluate whether the correlations between frequency and orthographic probability and between frequency and
orthographic neighborhood are driven by language usage pressures above and beyond what would be expected by
chance, we need to compare these correlations to a baseline. This baseline would reflect what these correlations
would be like in the absence of language usage pressure. We created such a baseline by following the procedure
used by Dautriche et al. (2017). We selected the orthographic model that best reproduces the orthographic processes
which are at play in each language 2 and used that resulting language models to generate words for 1,000 simulated
lexicons for each language. The number of words in each simulated lexicon was matched to the number of words
in each of the real lexicons (20,000 unique strings) and respected the word-length distribution in each language.
For each simulated lexicon, we then randomly reassigned the frequencies of the words in the real lexicon to the
words of the simulated lexicon of the same length, in order to preserve the frequency-length distribution observed
across languages. Because our simulated lexicons are generated independently of the properties we are interested in
(correlations between frequencies and neighborhood density and between frequency and orthographic probability),
they can be used as a statistical baseline with which the real lexicons can be compared. For each simulated lexicon,
we computed Pearson correlations between log frequency and orthographic probability and between log frequency
and the number of minimal pairs. We computed a z-score using the mean and standard deviation of the transformed
correlation scores estimated from the 1,000 simulated lexicons for each language. The p-value reflects the probability
that the real lexicon correlations could have arisen by chance.3

Analyzing each length separately and focusing on words of 3 to 7 letters, we found a significant correlation between
log frequency and orthographic probability in most languages (see Table 4). For instance for the 4-letter words, 94 out
of 96 languages showed a positive correlation and 92 of these correlations were significantly positive at p < .01 when
compared to the simulated baseline.

word
length

mean
correlation

proportion showing
positive correlation

proportion showing
significant correlation

3 letters .27 1.00 .88
4 letters .24 .98 .96
5 letters .23 .99 .81
6 letters .21 1.00 .97
7 letters .19 1.00 .76

Table 4: Summary of relationship between orthographic probability and frequency, across languages. Separated
by length, (a) the mean correlation across languages for the relationship between orthographic probablility and
frequency, (b) the proportion of languages that show a positive correlation between orthographic probability and
frequency, and (c) the proportion of languages for which this relationship is significantly different from chance at
p < .01, chance being the correlation obtained in 1,000 simulated lexicon.

We also found a robust correlation between log frequency and number of minimal pairs for almost all languages,
as shown in Table 5.

Additionally, we unsurprisingly find a robust correlation between orthographic probability and number of minimal
pairs (mean r = .47 when we average across the correlations found for each length 3- to 7-; r = .44 across the simulated
lexicons). This result follows trivially from the fact that a phonetically probably word like ‘set’ is more likely to have
more minimal pairs in English than the word ‘quiz’ simply because the letter sequences in ‘set’ are more common and
so, probabilistically, there are more opportunities for a word to be orthographically close to ‘set’ than to ‘quiz.’

It follows that the correlations between frequency and phonological similarity that were uncovered previously
should be (partly) due to both frequency and orthographic probability being correlated with phonological similarity.
Because languages structure the vocabulary in different ways (in particular because they have different phoneme

2For each language, we selected our model by its ability to generate candidate words that are scored to have a high probability in the language
considered. Similarly to Dautriche et al. (2017), we compared several n-gram models (with backoff and Laplace smoothing of 0.01 based on
Dautriche et al. (2017)) over letters where n varied from 1 to 10. Each model was trained on 75% of the lexicon of each language (training set), and
evaluated on the remaining 25% of the lexicon (testing set) to determine which model gives the highest sum of log-probability over all words in the
training set. This process was repeated over 50 random splits of the dataset into training and testing sets. The 7-letter model gave the best results
for 76 of the orthographic lexicons and the 9-phone model for the 20 remaining. The high degree of the best ngram model is expected given the
word-length distribution of our lexicons (highly right skewed towards longer words).

3We also tried another baseline whereby we simply permuted the real lexicon frequencies of words of the same length and then re-examined the
correlations. In the interest of space, we do not report those results here. But the findings were similar in that we again found that the real lexicon’s
correlations between frequency and probability and frequency and neighborhood density were significantly greater than in our simulated baselines.
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word
length

mean
correlation

proportion showing
positive correlation

proportion showing
significant correlation

3 letters .19 1.00 .69
4 letters .17 .98 .88
5 letters .18 .98 .78
6 letters .19 1.00 .97
7 letters .18 .99 .76

Table 5: Summary of relationship between minimal pairs and frequency, across languages. Separated by length,
(a) the mean correlation across languages for the relationship between number of minimal pairs and frequency,
(b) the proportion of languages that show a positive correlation between number of minimal pairs and frequency,
and (c) the proportion of languages for which this relationship is significantly different from chance at p < .01,
chance being the correlation obtained in 1,000 simulated lexicon.

inventories and different word length distributions), the contribution of orthographic probability vs. neighborhood
density may vary across languages. Thus, the question becomes (a) whether the correlation between frequency and
neighborhood density remains after factoring out the effect of orthographic probability and (b) whether the correlation
between frequency and orthographic probability remains after factoring out the effect of neighborhood density. If these
two correlations remain consistent across languages then this would suggest that these relationships are the product
of language usage pressures, while if languages display different correlations, this would indicate that these are most
likely the result of language specific properties on vocabulary structure.

In addition, many of the languages in this study are highly related, so we need an analysis that generalizes across
families and languages to make sure that the effect is not just lineage-specific.

Mixed effect analysis

We ran a mixed effect regression predicting (scaled) frequency for each word from orthographic probability and
number of minimal pairs, where both predictors were normalized for each language and length. We used a maxi-
mal random effect structure with random intercepts for each language, language sub-family, and language family and
slopes for orthographic probability and number of minimal pairs for each of those grouping factors. In effect, this
random effect structure allows for the possibility that some languages or language families show the predicted effect
whereas others do not (see also e.g., Atkinson, 2011; Jaeger et al., 2011, for a similar approach). It allows us to test
whether the effect exists beyond just language-specific trends. Because of the complex random effect structure and
the large number of data points, we fit each length separately and focused on words of length 3 through length 7.

For 4-letter words (a representative length), a 1 standard deviation increase in orthographic probability was pre-
dictive of a .21 standard deviation increase in frequency; a 1 standard deviation increase in number of minimal pairs
was predictive of a .05 standard deviation increase in frequency. To assess the significance of orthographic probability
above and beyond the number of minimal pairs, we performed a likelihood ratio test comparing the full model to an
identical model without a fixed effect for orthographic probability (but the same random effect structure). The full
model was significantly better by a chi-squared test for goodness of fit (χ2(1) = 30.9, p < .0001). To assess the signif-
icance of the number of minimal pairs above and beyond the effect of orthographic probability, we compared the full
model to an identical model without a fixed effect for the number of minimal pairs using a likelihood ratio test. Once
again, the full model explained the data significantly better (χ2(1) = 10.6, p < .001). Thus, both the number of mini-
mal pairs and orthographic probability appear to make independent contributions in explaining word frequency. This
effect holds above and beyond effects of language family or sub-family, which are included in the model as random
effects. Note that the effect size is larger for orthographic probability than it is for number of minimal pairs and that a
model including a fixed effect of orthographic probability but not minimal pairs has a better model fit (AIC = 520310)
than one that includes minimal pairs but not probability as a fixed effect (AIC = 520330). We find a similar pattern of
results for all other lengths examined, as summarized in Table 6. Overall, these results suggest that both the number
of minimal pairs and the orthographic probability independently predict frequency but that the effect of orthographic
probability is stronger and is likely, in part, driving the neighborhood effect.
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word
length

orthographic
probability

number of
minimal pairs

3 letters .23** .08**
4 letters .21*** .05***
5 letters .19*** .07**
6 letters .15*** .11***
7 letters .13*** .11***

Table 6: Separated by length, the model coefficient from the full model including random intercepts and slopes
for language, sub-family, and family for orthographic probability and number of minimal pairs. Two asterisks
means that by a likelihood test, the predictor significantly improves model fit at p < .01. Three asterisks means
p < .001. The coefficients can be interpreted as the following: For 4-letter words, a 1 standard deviation in-
crease in orthographic probability is predictive of a .21 standard deviation increase in frequency and a 1 standard
deviation increase in number of minimal pairs is predictive of a .05 standard deviation increase in frequency.

4.2 Testing correlation generalizability to phonemic representations
We used orthographic lexicons because they could be easily extracted for a large number of languages, but orthography
is only a proxy for phonetics. Moreover, the Wikipedia data set does not attempt to exclude morphologically complex
words. Both of these factors could add unwanted noise to our analyses.

Therefore, we also tested a subset of languages for which we had more carefully constructed lexicons with both
phonemic and morphological information. Specifically, to assess whether the correlation between frequency and
neighborhood density and between frequency and phonotactic probability hold in a set of monomorphemic words with
phonemic representations, we performed the same analysis using the four phonemic lexicons from Dutch, English,
French, and German.

As before, we calculated the Pearson correlations for each word length between token frequency and phonotactic
probability (here approximated by phonemic probability using a ngram model operating over triphones) and between
token frequency and the number of minimal pairs. We compared these correlations to thse correlations obtained across
1,000 simulated lexicons following the same methodology as for the wikipedia lexicons. As shown in Figure 3, the
Pearson correlations obtained in these four phonemic lexicons replicated previous correlations with the orthographic
lexicons for these languages: all four languages still showed positive correlations for the relationship between phono-
tactic probability and frequency and between number of minimal pairs and frequency and these correlations tended to
be significantly more positive than the correlations obtained across our simulated lexicons.

In Figure 4, we compare the correlations between frequency and number of minimal pairs and between frequency
and phonotactic probability obtained in the phonemic vs. the orthographic lexicons for Dutch, English, French, and
German.

The correlations were slightly lower in the more controlled set for the 4 languages than when using the same
measures in the larger data set: the correlation between minimal pairs and frequencies (across the 4 languages and
word lengths 3-7) is, on average, .04 lower for the correlation between minimal pairs and frequency and .11 lower for
the correlation between orthographic/phonotactic probability and frequency. This suggests that part of the effect could
be driven by morphology–which is absent in the controlled phonemic lexicons but present in the Wikipedia corpus.

5 Discussion
We found that frequent word forms are more likely to be well-formed (phonotactically or orthographically probable)
and similar to other word forms (higher neighborhood density) than infrequent ones. These correlations were robustly
present across a large number and wide variety of typologically different languages. Just as the Zipfian word frequency
distribution allows for functional optimization of word lengths (Piantadosi, 2014; Piantadosi et al., 2011a), this work
shows that the frequency profile of words of the same length is structured in a non-arbitrary way so as to maximize the
use of high-probability, high-neighborhood-density word forms.

Importantly, we do not believe that the main result of this paper is purely a result of morphological regularity since
the same analyses run on monomorphemic words in a subset of languages show the same pattern of results. Moreover,
although phonotactic constraints are an obvious and major source of regularity in the lexicon, it is important to note
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Figure 3: Correlation coefficients between a) phonotactic probability and frequency and b) minimal pairs and
frequency, by language and length, with 95% confidence intervals based on Fisher transforms for words of length
4 to 6 for Dutch, English, French and German. Dots to the right of the dotted line at 0 show a positive correlation.
The numbers along the y-axis are the Pearson correlations. The presence of a star on the right of the graph
indicates that the correlation score is significant at p < .01 compared to the distribution of correlation scores
obtained across 1,000 simulated lexicons.

Figure 4: Comparison of the correlations values obtained for the phonemic lexicons vs. orthographic lexi-
cons of Dutch, English, French and German. The left panel shows the average correlations between phono-
tactic/orthographic probability and frequency for words of length 3 to 7. The right panel shows the average
correlations between minimal pairs and frequency for words of length 3 to 7.

that these results are not likely just the result of phonotactic constraints since the results hold even after controlling for
the influence of orthographic or phonotactic probability through simulated baselines.

Furthermore, the present results suggests that word form similarity (as measured by neighborhood density) is a
desirable feature for frequent words. This echoes previous results of ours: In Dautriche et al. (2017) we provided
evidence that natural lexicons are more tightly clustered in phonological space than would be expected by chance,
over and above the constraints imposed by phonotactics. This, taken together with the present results, suggests that
languages tend to favor word form similarity in the lexicon.

In addition, while poor perceptual distinctiveness among frequently used forms may look to be disadvantageous
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during language comprehension, there are reasons to believe that this may be a simplistic story. Many studies in
phonology have shown that recurrent sound patterns in the language result from the repeated interaction of perceptual
and articulatory needs (e.g. Chomsky & Halle, 1968; Hume & Johnson, 2001; Ohala, 1993). For instance, perception
has been shown to be the main explanation for the use of CV syllables patterns cross-linguistically (Steriade, 1997),
the nasal place assimilation (Beddor & Evans-Romaine, 1992) and vowel reduction (van Bergem, 1995). This as a
whole suggests that there are well-documented influences of perception on phonetics that may interact, in the long
run, with the phonological form of words, pushing them to be more similar.

The present results are in line with information-theoretic accounts of efficient communication where commu-
nicative efficiency is achieved by trading off between ease of production and transmission accuracy (Lindblom, 1990;
Piantadosi et al., 2011b; Zipf, 1949) and even with accounts that focus only on transmission accuracy (Ferrer-i-Cancho
& Solé, 2003; Pate & Goldwater, 2015) as the same words that are easy to use by speakers may also be easy to process
by listeners (Brown, 1991; Ferreira, 2003) increasing the chances of successful transmission of a message.

In this study, we addressed the issue of whether the frequency profile of the phonological forms of words varies
systematically across languages, but we leave it to future work to investigate how it got to be that way. Indeed, while
language usage has been put forward as a powerful explanatory framework to explain the length distribution of words
in the lexicon, it is only recently that experimental studies have shown that such a relationship emerges from pressures
for communicative accuracy and efficiency that could be observed in simple language games in the lab (Kanwal et al.,
2017). A similar approach could be used to test whether the same language usage pressures shape the phonological
profile of words. One plausible mechanism for the effects described here is that generations of language users improve
on the lexicon, honing it over time by avoiding words that are too strange, complex, or that otherwise don’t fit with the
rest of the words in the lexicon (following the experimental work looking at the evolution of language showing that
language users will preferentially discard forms and structures that are disadvantageous in favor of other, fitter words
and phrases (Fedzechkina et al., 2012; Hills & Adelman, 2015; Smith et al., 2003)).
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Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency

norms and the introduction of a new and improved word frequency measure for american english. Behavior Research
Methods, 41(4), 977–990. doi: 10.3758/BRM.41.4.977

Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: toward a unified
account of facilitative and inhibitory effects of lexical neighbors. Psychological review, 119(2), 417.

Chomsky, N., & Halle, M. (1968). The sound pattern of english.
Coady, J. A., & Aslin, R. N. (2004). Young children’s sensitivity to probabilistic phonotactics in the developing

lexicon. Journal of Experimental Child Psychology, 89(3), 183–213. doi: 10.1016/j.jecp.2004.07.004
Dautriche, I., Mahowald, K., Gibson, E., Christophe, A., & Piantadosi, S. T. (2017). Words cluster phonetically

beyond phonotactic regularities. Cognition, 163, 128–145.
Dautriche, I., Swingley, D., & Christophe, A. (2015). Learning novel phonological neighbors: Syntactic category

matters. Cognition, 143, 77–86.
Fedzechkina, M., Jaeger, T. F., & Newport, E. L. (2012). Language learners restructure their input to facilitate

efficient communication. Proceedings of the National Academy of Sciences, 109(44), 17897–17902. doi: 10.1073/
pnas.1215776109

Ferreira, V. S. (2003). The persistence of optional complementizer production: Why saying ”that” is not saying ”that”
at all. Journal of Memory and Language, 48(2), 379–398.

Ferrer-i-Cancho, R., & Solé, R. (2003). Least effort and the origins of scaling in human language. Proceedings of the
National Academy of Sciences of the United States of America, 100(3), 788.



13

Frank, A., & Jaeger, T. (2008). Speaking rationally: Uniform information density as an optimal strategy for language
production. Cogsci. Washington, DC: CogSci.

Frauenfelder, U., Baayen, R., & Hellwig, F. (1993). Neighborhood density and frequency across languages and
modalities. Journal of Memory and Language, 32(6), 781–804. doi: 10.1006/jmla.1993.1039

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? phonological neighborhood density and phonetic reduction in
spontaneous speech. Journal of Memory and Language, 66(4), 789–806. doi: 10.1016/j.jml.2011.11.006

Hills, T. T., & Adelman, J. S. (2015). Recent evolution of learnability in american english from 1800 to 2000.
Cognition, 143, 87–92.

Hume, E., & Johnson, K. (2001). A model of the interplay of speech perception and phonology.
Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. Cognitive psychol-

ogy, 61(1), 23–62.
Jaeger, T. F., Graff, P., Croft, W., & Pontillo, D. (2011). Mixed effect models for genetic and areal dependencies in

linguistic typology. Linguistic Typology, 15(2), 281–319.
Jusczyk, P., & Luce, P. (1994). Infants’ sensitivity to phonotactic patterns in the native language. Journal of Memory

and Language, 33(5), 630–645. doi: 10.1006/jmla.1994.1030
Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of abbreviation and the principle of least effort:

Language users optimise a miniature lexicon for efficient communication. Cognition, 165, 45–52.
Kawasaki, H., & Ohala, J. J. (1980). Acoustic basis for universal constraints on sound sequences. The Journal of the

Acoustical Society of America, 68(S1), S33–S33.
Landauer, T., & Streeter, L. (1973, April). Structural differences between common and rare words: Failure of equiva-

lence assumptions for theories of word recognition. Journal of Verbal Learning and Verbal Behavior, 12(2), 119–
131. Retrieved 2014-07-07, from http://linkinghub.elsevier.com/retrieve/pii/S0022537173800015
doi: 10.1016/S0022-5371(73)80001-5

Levy, R., & Jaeger, T. (2007). Speakers optimize information density through syntactic reduction. In H. T. Schölkopf B
Platt J (Ed.), (pp. 849–856). Cambridge, MA: MIT Press.

Lindblom, B. (1983). Economy of speech gestures. Springer.
Lindblom, B. (1990). Explaining phonetic variation: A sketch of the h&h theory. In Speech production and speech

modelling (pp. 403–439). Springer.
Lindblom, B. (1992). Phonological units as adaptive emergents of lexical development. Phonological development:

Models, research, implications, 131–163.
Luce, P. A. (1986). Neighborhoods of words in the mental lexicon. Research on Speech Perception. Technical Report

No. 6..
Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear and

hearing, 19(1), 1.
Magnuson, J. S., Dixon, J. A., Tanenhaus, M. K., & Aslin, R. N. (2007). The dynamics of lexical competition during

spoken word recognition. Cognitive Science, 31(1), 133–156. doi: 10.1080/03640210709336987
Mahowald, K., Fedorenko, E., Piantadosi, S., & Gibson, E. (2013). Info/information theory: Speakers choose shorter

words in predictive contexts. Cognition. doi: 10.1016/j.cognition.2012.09.010
Manin, D. (2006). Experiments on predictability of word in context and information rate in natural language. J.

Information Processes, 6, 229–236.
New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new french lexical database. Behavior

Research Methods, Instruments, & Computers, 36(3), 516–524.
Ngon, C., Martin, A., Dupoux, E., Cabrol, D., Dutat, M., & Peperkamp, S. (2013). (Non)words, (non)words,

(non)words: evidence for a protolexicon during the first year of life. Developmental Science, 16(1), 24–34.
Ohala, J. J. (1993). Coarticulation and phonology. Language and speech, 36(2-3), 155–170.
Pate, J. K., & Goldwater, S. (2015). Talkers account for listener and channel characteristics to communicate efficiently.

Journal of Memory and Language, 78, 1–17.
Piantadosi, S. (2014, October). Zipf’s word frequency law in natural language: A critical review and future directions.

Psychonomic Bulletin & Review, 21(5), 1112–1130. doi: 10.3758/s13423-014-0585-6
Piantadosi, S., Tily, H., & Gibson, E. (2011a). Word lengths are optimized for efficient communication. Proceedings

of the National Academy of Sciences, 108(9), 3526.
Piantadosi, S., Tily, H., & Gibson, E. (2011b). Word lengths are optimized for efficient communication. Proceedings

of the National Academy of Sciences.

http://linkinghub.elsevier.com/retrieve/pii/S0022537173800015


14

Sadat, J., Martin, C. D., Costa, A., & Alario, F.-X. (2014). Reconciling phonological neighborhood effects in speech
production through single trial analysis. Cognitive psychology, 68, 33–58.

Shannon, C. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 623–656.
Smith, K., Kirby, S., & Brighton, H. (2003). Iterated learning: A framework for the emergence of language. Artificial

Life, 9(4), 371–386. doi: 10.1162/106454603322694825
Stemberger, J. P. (2004). Neighbourhood effects on error rates in speech production. Brain and Language, 90(1),

413–422.
Steriade, D. (1997). Phonetics in phonology: the case of laryngeal neutralization.
Storkel, H. L. (2004). Do children acquire dense neighborhoods? an investigation of similarity neighborhoods in

lexical acquisition. Applied Psycholinguistics, 25(02). doi: 10.1017/S0142716404001109
Storkel, H. L. (2009). Developmental differences in the effects of phonological, lexical and semantic variables on

word learning by infants. Journal of Child Language, 36(02), 291. doi: 10.1017/S030500090800891X
Storkel, H. L., Armbruster, J., & Hogan, T. P. (2006). Differentiating phonotactic probability and neighborhood

density in adult word learning. Journal of Speech, Language, and Hearing Research, 49(6), 1175–1192. doi:
10.1044/1092-4388(2006/085)

Storkel, H. L., & Hoover, J. R. (2010). An online calculator to compute phonotactic probability and neighborhood
density on the basis of child corpora of spoken american english. Behavior Research Methods, 42(2), 497–506. doi:
10.3758/BRM.42.2.497

Storkel, H. L., & Lee, S.-Y. (2011). The independent effects of phonotactic probability and neighbourhood density
on lexical acquisition by preschool children. Language and Cognitive Processes, 26(2), 191–211. doi: 10.1080/
01690961003787609

Swingley, D., & Aslin, R. N. (2007). Lexical competition in young children’s word learning. Cognitive psychology,
54(2), 99.

van Bergem, D. R. (1995). Perceptual and acoustic aspects of lexical vowel reduction, a sound change in progress.
Speech Communication, 16(4), 329–358.

Vitevitch, M. S. (1999). Phonotactics, neighborhood activation, and lexical access for spoken words. Brain and
Language, 68(1-2), 306–311. doi: 10.1006/brln.1999.2116

Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels of processing in perception of spoken words.
Psychological science, 9(4), 325–329.

Vitevitch, M. S., & Sommers, M. S. (2003). The facilitative influence of phonological similarity and neighborhood
frequency in speech production in younger and older adults. Memory & Cognition, 31(4), 491–504.

Vitevitch, M. S., & Stamer, M. K. (2006). The curious case of competition in spanish speech production. Language
and cognitive processes, 21(6), 760–770.

Zipf, G. (1935). The psychology of language. NY Houghton-Mifflin.
Zipf, G. (1949). Human Behavior and the Principle of Least Effort. New York: Addison-Wesley.



15

A Appendix: Dataset of 96 lexicons from Wikipedia
We started with lexicons of 115 languages from their Wikipedia databases (https://dumps.wikimedia.org). We
then excluded languages for which a spot-check for non-native (usually English) words in the top 100 most frequent
words in the lexicon between 3 and 7 characters revealed more than 80% of words were not native. In this way,
languages that used non-alphabetic scripts (like Chinese) were generally excluded since the 3-7 letter words in Chinese
Wikipedia are often English. After these exclusions, 96 languages remained.4 We analyzed the data both with and
without these exclusions, and the exclusions do not significantly affect the overall direction or magnitude of the results.
The final languages included 62 Indo-European languages and 34 non-Indo-European languages. Of the non-Indo-
European languages, there are 12 language families represented.

To get a sense of how clean these Wikipedia lexicons are, we randomly sampled 10 languages for which we then
inspected the 100 most frequent words and an additional 100 random words to look for intrusion of English words,
HTML characters, or other undesirable properties.

For the top 100 words in the lexicons of the 10 sampled languages, we found at most 3 erroneous words. For the
same languages, we also inspected a randomly selected 100 words and found that the mean number of apparently non-
intrusive words was 93.5 (with a range from 85 to 99). The most common intrusion in these languages was English
words.

4We excluded: Gujarati, Telugu, Tamil, Bishnupriya Manipuri, Cantonese, Newar, Bengali, Japanese, Hindi, Malayalam, Marathi, Burmese,
Nepali, Kannada, Korean

https://dumps.wikimedia.org
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