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Host–Guest chemistry of self-assembled hemi-cage systems: 

The dramatic effect of lost pre-organization 

Vicente Martí-Centelles, Fernanda Duarte* and Paul J. Lusby* 

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster 

Road, Edinburgh, Scotland EH9 3FJ. Email: Paul.Lusby@ed.ac.uk, Fernanda.Duarte@ed.ac.uk 

ABSTRACT: New hemi-cage compounds with the formula Pd2(L1)2(L2)2 (L1 = ditopic pyridine ligand, 

L2 = bpy or TMEDA) have been synthesized and characterized by spectroscopic methods, X-ray crys-

tallography and electronic structure methods. The host–guest chemistry of these new structures, with 

naphthoquinone as a guest, reveals the key role of the host shape and flexibility on competitive binding 

processes. The influence of counteranions, solvent and non-covalent interactions to binding were quanti-

fied by Density Functional Theory calculations. Together, this study provides new insights into the con-

cept of pre-organized guest binding when applied to charged, coordination-assembled hosts. 

INTRODUCTION 

Mimicking the microenvironments of natural enzymes using simple molecular capsules has fascinated supra-

molecular chemists since the pioneering work of Breslow.1 A combination of factors contributes to the remarkable 

activity and selectivity that many biological catalysts exhibit, which includes electrostatic preorganization2a of the 

active site through non-covalent interactions (hydrogen bonding and electrostatic) and complementary apolar en-

vironments. Conformational flexibility has also been postulated to play a key role in enzyme catalysis, wherein 

changes in the conformation of the enzyme or substrates result in an increase in catalytic activity.2b Inspired by 

these biological systems, a number of synthetic capsules arising from self-assembly have recently been shown to 

possess promising catalytic properties.3-6 However, the rational design of preorganized but flexible supramolecu-
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lar structures remains a challenge, not least because the introduction of rotors into the pre-assembly components 

typically produces smaller superstructures that often lack a well-defined cavity (e.g., M2L3 helicates). A deeper 

understanding of the interactions at play and their dependence on the flexibility of the host-guest complex is still 

lacking.  

For catalytic applications, the cavities of synthetic capsules must accommodate one or two substrates. With co-

ordination assemblies, reactant binding has most commonly been accomplished using the hydrophobic effect.4-6 

However, the cavities of such systems are invariably defined by large, flat aromatic surfaces and are unable to 

provide point electrostatic stabilization in the same way as an enzyme active. Consequently, coordination capsule 

catalysis has relied heavily on entropic mechanisms and/or ion-pairing effects.4-6 Recently, we have described an 

alternative host-guest approach that instead exploits convergent, secondary coordination spheres as polar recogni-

tion elements.7 The success of this method relies on minimizing competition with both the solvent and coun-

teranion; the simple Pd2L4 cage structure, C-1 (Scheme 1) binds complementary quinone guests most strongly as 

the BArF ([BArF]=B-(3,5-(CF3)2C6H3)4
−) salt in dichloromethane. This approach gave some of the highest asso-

ciation constants ever measured for a neutral guest with a coordination assembly, close to 109 M−1. This polar en-

capsulation mechanism also modulates the electronic properties of the guest, which has been further exploited for 

Diels-Alder (DA) catalysis,8 wherein acceleration can be attributed to LUMO stabilization of the bound dieno-

phile. Internal electronic activation of the dienophile selective increases reactivity compared to the bulk-phase 

such that the capsule microenvironment can influence both regio and chemo-selectivity. The shift from a co-

encapsulation approach was also found to alleviate the long-standing problem of product inhibition. 

This reaction of the bound dienophile with the incoming diene must necessarily involve some molecular re-

organization of the bound species. As C-1 is pre-organized for substrate binding, it could be anticipated that it 

must also undergo some conformational change to maintain contact with the both carbonyl groups at the transi-

tion state (TS). Interestingly, a detailed kinetic analysis of the DA reactions showed that the effective association 

constant of the TS (also referred to as catalytic proficiency) is three orders of magnitude greater than the sub-

strate. While part of this is likely attributable to the greater H-bond accepting strength of the TS (resulting from 

flow of electron density from the diene HOMO to the dienophile LUMO), the capsule must equally be able to 

accommodate the change in shape and size of the bound species during the reaction pathway. We were therefore 

keen to explore how capsule flexibility affects catalysis, targeting an evolutionary design strategy that involved 
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substituting adjacent ditopic ligands for cis-coordinating components (Scheme 1). We also anticipated that the 

new system would bind the same guests, allowing a direct comparison with the “full” cage. A further attractive 

feature of this approach is that the resultant “hemi-cage” structure should improve access of the diene to the 

bound dienophile. Herein we describe the synthesis of these new assemblies,9 and describe the dramatic affect the 

change is structure has on host-guest chemistry, providing further insight using computational modelling.  

 

Scheme 1. Cage and hemi-cage compounds. 

RESULTS AND DISCUSSION 

The hemi-cages of general formula [(cis-protecting ligand)Pd)2(ditopic ligand)2]4+ were prepared starting with 

the cis-protect palladium(II) chloride complexes (Scheme 2). Following exchange of chloride for weaker interact-

ing anions (X– = OTf–, SbF6
–), the self-assembly with ditopic ligands L1a/b took place smoothly overnight at 60 °C 

in CH3CN, giving 1 (X– = OTf–) and 2a/b (X– = SbF6
–) in moderate to good yields. Each compound has been ful-

ly characterized as single species in solution using a combination of 1H, 13C and 19F NMR spectroscopies, as well 

as HR mass spectrometry. As expected, 1H DOSY revealed an increase in size following self-assembly, with simi-

lar hydrodynamic radius of 7.8 Å, 7.6 Å, and 8.3 Å calculated for 1, 2a and 2b, respectively. In addition, the sol-

id-state X-ray crystal structures confirmed the connectivity of 1 and 2b (see below for discussion in the context of 

host-guest properties). Unfortunately, attempts to prepare the corresponding BArF salts using anion metathesis 

were unsuccessful, resulting in the formation of oils that could not be readily isolated.  



 

 

4 

 

 

Scheme 2. Synthesis of hemi-cages 1, 2a-b. Yields of isolated assemblies shown in parenthesis. 

Turning to binding studies, naphthoquinone, G-1, was selected as a guest, not least because comparable data for 

the parent cage C-1 with a range of solvent / counteranion combinations was available.7 Furthermore, it was also 

anticipated the additional favorable interactions between the inward facing C-H bonds (Hb) and the π-surface of 

G-1 could be critical considering that half the ortho-pyridyl H-bond donors would be lost compared to C-1. 

Promisingly, adding a large excess of G-1 to hemi-cage 1 produced a change in the 1H NMR spectrum of the host 

consistent with guest binding: the signals associated with the “interior” (Ha and Hb) both showed the largest 

change in chemical shift. However, a 1H NMR titration between these species in CD3CN (see supporting infor-

mation for details) revealed very weak binding (<5 M−1; Table 1, entry 1).  

Initially, the very low affinity of 1 for G-1 was partly attributed to effective competitive binding of the −OTf an-

ions and / or solvent, considering that C-1 had shown relatively modest association with the same guest under 

comparable conditions (Table 1, entry 4). When attempts to explore binding in less polar solvents were hindered 

by the poor solubility of 1, our attention turned to structural modifications. Unable to exchange to the preferred 

BArF salt (see above), we instead targeted SbF6
− counteranions, having previously found that these inhibit qui-

none binding significantly less than −OTf.7 For example, the SbF6
− salt of C-1 binds G-1 with a Ka of 22000 M−1 

in CD3NO2, just half that of the BArF cage (Table 1, entry 5). We also decided to change the cis-protecting ligand 
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from bpy (2,2’-bipyrine) to TMEDA (tetramethylethylenediamine), not only expecting improved solubility, but 

also that the N-methyl groups may provide additional weak CH···O H-bond donors, thus regaining some of the 

interactions lost with removal of two ditopic ligands. However, even with these possible additional interactions 

and less competition from anion / solvent (SbF6 / CD3NO2), the Ka of hemi-cage 2a with G-1 was similarly low 

(<5 M−1; Table 1, entry 2). It was also noted that the difference in G-1 affinity between cage and hemi-cage struc-

tures with this less competitive counteranion / solvent combination was significantly more pronounced (Table 1, 

entries 2 vs. 5).  

We also decided to investigate the CF3 substituted ditopic ligand, 1b, anticipating that these electron-

withdrawing groups would enhance the H-bond donor strength of the ortho-pyridyl sites. Indeed, Ha is deshielded 

in the 1H NMR spectrum of 1b compared to the same resonance in 1a. Similarly, a comparison of this signal in 

the analogous hemi-cage complexes 2a/b also revealed downfield shifts for the CF3 substituted variant, consistent 

with greater H-bond acidity. However, while titration of G-1 into 2b results in similar changes to the 1H NMR 

spectra (deshielding of Ha indicative of increased H-bonding; significant upfield shifting of Hb (Δδ > 0.6 ppm), 

consistent with the formation of CH···π interactions), these changes occurred only gradually with a large excess 

of guest (Figure 1). Indeed, fitting to a 1:1 binding isotherm revealed only a slight increase (compared to 1 and 

2a) in affinity, with a Ka of just 21 M-1 (Table 1, entry 3). 
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Figure 1. Partial 1H NMR spectra (500 MHz, CD3NO2, 300 K) for the titration of hemi-cage, 2b with naphtho-

quinone, G-1. 

Table 1. Comparison of association constants, Ka, for hemi-cage (1a, 2a, 2b) and cage (C-1) systems 

with naphthoquinone guest, G-1 (300 K). 

Entry Host 
Counter-

anion 
Solvent Ka (M–1) 

1 1 –OTf CD3CN <5 

2 2a SbF6
– CD3NO2 <5 

3 2b SbF6
– CD3NO2 21 

4 C-1 –OTf CD3CN 210 a 

5 C-1 SbF6
– CD3NO2 22000 a 

5 C-1 BArF CD2Cl2 3.5 × 105 a 
a From ref 7. Errors estimated to be less than 10%. 

  

Figure 2. X ray crystal structures of (a) hemi-cage 1a·4OTf; (b) hemi-cage 2b·4SbF6. (c) Comparison of confor-

mational flexibility between hemi-cage and cage systems (guest and counterions removed for clarity). In the case 

of hemi-cages, the two structures (1a·4OTf, top left; 2b·4SbF6, top right) show significantly different global con-

(a) 

(b) 

5.3 Å 

5.4 Å 

4.1 Å 

4.1 Å 

(c) 

13.8 Å 

10.2 Å 

11.9 Å 12.2 Å 

Conformational flexibility 

No flexibility on guest binding 
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formations (chair vs boat). In comparison, the two cage structures (C-1·4OTf, bottom left; pentacenedione⊂C-

1·4OTf, bottom right) exhibit very little structural change. Pd-anion and Pd-Pd distances in Å. 

 

While we were unable to co-crystalize any of the host-guest complexes, perhaps unsurprising because of their 

weak association, we obtained X-ray crystallographic quality single crystals of “free” hemi-cage systems 1a and 

2b (Figure 2). Notably, the solid-state structures reveal significant global differences—whereas 1a crystallizes in 

a transoid (“chair”) conformation, with a Pd-Pd distance of nearly 14 Å, 2b adopts a cisoid (“boat”) orientation, 

with just over 10 Å between Pd ions (Figure 2a). In the case of 1a, we find that there are –OTf anions residing 

above and below each (bipy)Pd(pyidyl)2
2+ primary coordination sphere, forming close contacts with both inward 

and outward facing ortho-pyridyl H-atoms. In the case of 2b, a single SbF6
– anion is located within the hemi-cage 

“cavity”, forming multiple short contacts with both the “upper” and “lower” inward-facing ortho-pyridyl and 

TMEDA N-Me hydrogen atoms. We should also note that the average Pd-N(L1a) bond lengths in structure 1a 

(2.02 Å) are very similar to the Pd-N(L1a) bond lengths in the parent C-1 cage (2.03 Å), suggesting there is mini-

mal electronic perturbation by the cis-protecting bpy ligand (i.e. trans-influence), which could have potentially 

affected the (C)H-bond donor strength (the average Pd-N(bpy) bond lengths are also similar, 2.01 Å). As ex-

pected, the average Pd-N(L1b) bond lengths in structure 2b are slightly longer (2.05 Å), indicative of slightly 

weaker coordination due to the electron withdrawing CF3 groups. However, the overall effect of the CF3 group on 

the host-guest chemistry appears to be favorable (Table 1, entries 2 vs. 3).  

An obvious question to arise is: Are the differing hemi-cage conformations conserved in solution? The single 

set of 1H NMR signals for 1a, 2a/b coupled to very similar hydrodynamic radii (7.6-8.3 Å) points to a dynamic 

process that is fast on the NMR timescale. A more detailed, low temperature 1H NMR investigation of 2a shows 

that this interconversion is a low-energy process – even at 213 K, the time averaged NMR spectrum remains un-

changed, except for slight broadening of the TMEDA Me signals (see Supporting Information). Considering the 

strength of Pd-pyridine interactions, it therefore seems likely that the “chair” and “boat” forms are readily inter-

changeable conformations (i.e. they interconvert through bond rotation) and not configurations. It is also likely 

that the “chair” and “boat” structures of 1a and 2b represent two likely extremes, thus we can conclude that the 

hemi-cage systems possess a large conformational flexibility. Significantly, this conformational flexibility is not 
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available to the corresponding Pd2L4 structure. Comparing the two known X-ray structures of cage C-1, they 

show little change in the associated Pd-Pd distances (11.9-12.2 Å, Figure 2a) even with quite different guests 

(−OTf vs. pentecenedione). While the connectivity of C-1 precludes a transoid arrangement, the conformational 

rigidity also prevents the “compression” necessary to maximize interactions of both H-bond donor pockets with 

the small single −OTf anion. Such an argument would at least partly explain why the binding of G-1 with both 

2a/b is significantly weaker than the SbF6
− salt of C-1. In effect, the flexibility of 2a/b allows SbF6

− to form close 

contacts with the secondary coordination sphere of both Pd ions and thus be bound tighter. The result is that SbF6
− 

displacement by G-1 is less favorable (compared to cage C-1) and thus the binding constant is significantly low-

er.   

To obtain further insights into the energetic preference and binding properties of the cage and hemi-cage sys-

tems, DFT calculations were carried out on the different host-guest structures (hosts: C-1/1a-b/2a-b; guests: –

OTf/SbF6
–/G-1). For hosts 1 and 2, both the cisoid and transoid conformations with substituents R=H, CF3 (a and 

b, respectively) were computed. Calculations were performed at the SMD-D3(BJ)-TPSS/Def2-TZVP//D3(BJ)-

TPSS/Def2-TZVP level of theory using the density fitting approximation as implemented in Gaussian 09 (version 

E.01).10 The solvents used experimentally in this study— CH3CN (ε=35.7) and CH3NO2 (ε=36.6) —were mod-

eled as a continuum using the Solvation Model based on Density (SMD).11 

In the absence of anionic guests, the calculations reveal that the cisoid (“boat”) and transoid (“chair”) forms of 

1 and 2 are very close in energy, with the latter conformation being marginally favored, as expected based on a 

simple coulombic argument (Table S9). Furthermore, significant structural differences can be observed between 

the parent cage system C-1 and even the “boat” forms of the hemi-cages 1/2—in particular much longer Pd-Pd 

distances (C-1, 12.1Å; 1/2, 14.6-14.9 Å; Figure 3 and Table S10). Upon binding of the anionic guests (–OTf and 

SbF6
–), the cisoid complexes of 1/2 become more stable than the transoid form by at least 3 kcal/mol (Table S9). 

This binding also produces a significant change in the structure of the cisoid hemi-cage systems, wherein the in-

trinsic conformational flexibility leads to a contraction along the Pd-Pd axis of at least 5 Å for all four complexes 

(Figure 3a(ii)-(iii) and b(ii)-(iii)). Binding of the quinone guest G-1 to cisoid forms of 1/ 2 leads to a much more 

subtle conformational change, with less than 1 Å reduction in the Pd-Pd distance relative to the empty cage (Fig-

ures 3a(iv), 3b(iv)). In contrast, binding of either neutral or anioninc guests to the parent cage C-1 produces very 
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small changes in the Pd-Pd distances (Figure 3c(ii)-(iv)) compared to the free cage. It is also interesting to note 

that while G-1 forms eight symmetric CH···O interactions with both the “upper” and “lower” inward-facing or-

tho- H atoms of cage C-1 (Figure 3c(iv)), the SbF6
– anion sits unsymmetrically between the two sides (Figure 

4c(iii)), as the rigid structure is unable to adopt a conformation where both pockets interact simultaneously with 

the guest. In the –OTf⊂C-1 complex, the asymmetric binding mode is even more pronounced, leading to an over-

all twisted capsule and highly asymmetric CH···O/F interactions (Figure 3c(ii) and S36). 

 

 

Figure 3. Optimized structures of (a) hemi-cage 1a·, (b) hemi-cage 2a·and (c) cage C-1·systems in (i) the ab-

sence and with (ii), OTf−, (iii) SbF6
− and (iv) G-1 guests at the D3(BJ)-TPSS/Def2-TZVP level of theory in the 

gas phase. Structures for empty hemi-cage 1a/b and 2a/bb in their cisoid (“boat”) and transoid (“chair”) forms 

are presented in Figure S35. 

9.81 Å

10.21 Å9.66 Å

9.18 Å 13.86 Å

13.58 Å

12.00 Å11.62 Å 12.46 Å

14.55 Å

14.89 Å

12.11 Å

(a) 

(b) 

(c)

(ii) (iii)(i) (iv)

(ii) (iii)(i) (iv)

(ii) (iii)(i) (iv)
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Next, we compared the binding energies of the different guest species to C-1, 1a/b and 2a/b. From an experi-

mental point of view, the previously reported BArF salt of C-1 best embodies an anion free cavity, and thus pro-

vides a useful benchmark against which in silico host-guest results can be compared. Significantly, we observe a 

good correlation between the measured value for G-1 in dichloromethane (Ka = 3.5 × 105 M−1; ΔG = −7.6 kcal 

mol−1) and the computed values in dichloromethane (ε = 8.9; ΔG = −9.9 kcal mol−1, see Table S11). In CH3CN (ε 

= 35.7) and CH3NO2 (ε = 36.6) the computed association energies decrease to −7.6 and –7.9 kcal mol−1, respec-

tively, which compare well to experimental values of −4.4 and −6.4 kcal mol−1, respectively. Even though calcula-

tions systematically overestimate the experimental values, they match well the experimentally observed trends. 

Such tendency to overbind has been previously recognized when using the TPSS-D3(BJ) functional to study the 

Kr2 and benzene‐methane complexes.12 This suggests that dispersion effects may be slightly overestimated by the 

empirical dispersion term used in combination with this functional. Moreover, our model does not explicitly take 

into account the interactions of the solvent with the host and guest, which might explain the discrepancy between 

absolute values. Further studies of this topic will be the subject of future work.  

Favorable non-covalent interactions (NCI) between the guest and the cavity can be identified by computing the 

NCI index13 (Figure 4). The NCI analysis, which is computed based on the gradient of density of each system, 

confirms the presence of attractive CH···O interactions between the host’s inward facing o-pyridyl CH groups 

and the quinone oxygens, as well as interactions from the “equatorial” CH group of the host with the π-surface of 

the G-1. This is consistent with upfield shifting of Hb observed through NMR (Δδ > 0.6 ppm, Figure 1).  

 

Figure 4: Non Covalent Interaction (NCI) isosurfaces of the optimized host-guest complex. Geometries were 

optimized at the D3(BJ)-TPSS/Def2-TZVP level of theory in gas phase. 

 

2a1a C1
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Compared to C-1, binding of G-1 to hosts 1 and 2 is less favorable. For 2a the host-guest binding free energies 

is −3.4 kcal mol−1 in CH3CN, while for 1a it is actually endothermic (+0.2 kcal mol−1 in CH3CN; −0.1 kcal mol−1 

in CH3NO2, Table S11). These results lead to the question about the origin of the differences in binding between 1 

and 2 and suggest that even in the absence of counterions these systems show intrinsically different behaviour, 

with binding of G1 to 1a being intrinsically unfavourable. Analysis of the electron distribution (Table S13) pro-

vides evidence that in C-1 the host-guest complex is much more polarised than in 1a/2a. This is due to not only 

the more acid character of the CH groups in C1 but also to the less negative net charge on the Pd centres com-

pared to 1a/2a, which will reduce the electron repulsion between the Pd and the oxygen atoms of the guest. In 

fact, NBO analysis suggests a favorable interaction between the oxygen atoms and the metal center (Table S14). 

In both cases, the addition of electron withdrawing CF3 groups gives a slightly more favourable binding, as it in-

creases the acidity of the CH groups.  

Table 2: Computed binding free energies (in kcal mol–1) at the SMD[CH3CN]-D3(BJ)-TPSS/Def2-

TZVP//D3(BJ)-TPSS/Def2-TZVP level of theory.  

 

 
1a 1b 2a 2b C-1 

Guest ΔH TΔS ΔG ΔH TΔS ΔG ΔH TΔS ΔG ΔH TΔS ΔG ΔH TΔS ΔG 

−OTf –0.1 –1.8 1.7 0.4 -3.3 3.7 –0.7 –2.2 1.5 -0.6 -3.2 2.5 2.6 2.1 0.5 

G-1 4.6 –2.9 7.6 5.7 -2.1 9.8 0.9 –1.4 2.3 2.3 -2.6 4.9 –0.9 0.3 –1.2 

 

We have also computed the competitive displacement of a bound SbF6
- anion from both hemi-cage and cage 

systems by –OTf and G-1. The binding free energies associated to this process are presented in Table 2. As can be 

seen, the displacement of the SbF6
– in 1a by –OTf is entropically unfavorable, while for G-1 both enthalpic and 
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entropic contribution are unfavorable for binding ( ΔG = +1.7 for –OTf and ΔG = +7.6 kcal mol−1 for G-1). In 2a, 

displacement is still unfavorable, however energies are very similar for both the anionic –OTf and neutral G-1 

guest. In this case, enthalpic contributions are favorable for the –OTf anion and just slightly unfavorable for G-1. 

These results reveal that, as expected, it is more difficult to remove SbF6
– from the hemi-cage system, as the con-

formational flexibility allows the structure to “bite-down” more effectively on this anion, providing more non-

covalent contacts. Finally, in C-1, binding of neutral species is enthalpically favorable relative to the anionic spe-

cie SbF6
–, and in contrast to the previous scenarios the entropic component is almost negligible. This can be relat-

ed to more favorable hydrogen bond and O-Pd interactions, which lead to a favorable enthalpic contribution.  

 

CONCLUSIONS 

The concept of utilizing rigid hosts to achieve very high binding is somewhat less favored than previously, 

however, we have shown here that this pattern is still true for self-assembled systems where there is excellent 

complementarity with the guest. While our experimental results have revealed only weak binding by these con-

formationally flexible hemi-cage systems, a likely result of competitive anion binding, a computational analysis 

has shown that these systems possess promise. We anticipate that flexible, adaptive guest binding that is difficult 

to achieve with rigid coordination assemblies could be particularly beneficial for stabilizing catalytic reaction 

pathways. 

EXPERIMENTAL SECTION 

Materials and methods. All reagents and solvents were purchased from Alfa Aesar, VWR or Sigma Aldrich 

and used without further purification unless stated otherwise. All reactions were carried out under air, unless stat-

ed otherwise. Naphthoquinone was recrystallized form hot CH2Cl2/pet ether 60-80 (1:3). All 1H, 13C and 19F NMR 

spectra were recorded on either a 500 MHz Bruker AV III equipped with a DCH cryo-probe (Ava500), a 500 

MHz Bruker AV IIIHD equipped with a Prodigy cryo-probe (Pro500), a 600 MHz Bruker AV IIIHD equipped 

with a TCI cryo-probe (Ava600) or a 400 MHz Bruker AV III equipped with BBFO+ probe (Ava400) at a con-

stant temperature of 300 K. All DOSY experiments were performed on the Ava500 using bipolar gradient pulses 

for diffusion with two spoil gradients (ledbpg2s.compensated) pulse sequence. The sequence was carried out un-
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der automated conditions where the duration of the magnetic field pulse gradient (δ) was 1.5 ms and the diffusion 

time (∆) was 100 ms. Typically in each PFG NMR experiment, a series of 16 spectra on 32 K data points were 

collected and the eddy current delay (Te) was set to 5 ms in all experiments. The pulse gradients (g) were incre-

mented from 2 to 95% of the maximum gradient strength in a linear ramp. The temperature was set and controlled 

at 300 K with an air flow of 400 L h–1 in order to avoid any temperature fluctuations due to sample heating during 

the magnetic field pulse gradients. Chemical shifts are reported in parts per million. Coupling constants (J) are 

reported uncorrected in hertz (Hz). Apparent multiplicities are reported using the following standard abbrevia-

tions: m = multiplet, q = quartet, t = triplet, d = doublet, s = singlet, bs = broad singlet. All NMR analysis was 

performed with MestReNova, Version 11. All assignments were made using a combination of COSY and HSQC 

NMR spectra (atom labeling is provided in the supporting information). MS of the cage compounds was per-

formed on a Synapt G2 (Waters, Manchester, UK) mass spectrometer, using a direct infusion electrospray ioniza-

tion source (ESI), controlled using Masslynx v4.1 software. All of the scans in the experimental are for positive 

ions. The samples were dissolved in acetonitrile at 50 µM. Prior to analysis, instruments were calibrated using a 

solution of sodium iodide (2 mg/mL) in 50:50 water:isopropanol. Capillary voltages were adjusted between 1.5 

and 2.5 kV to optimize spray quality, while the sampling cone and the extraction cone voltage were minimized to 

reduce breakdown of the assemblies. Source temperature was set at 80 °C. The data was analyzed using the 

MassLynx v4.1 software. 

For 1H NMR titration experiments initial sample volumes were 500 μL containing 0.4–1 mM concentration of 

the hemi-cages (1, 2a or 2b). Solutions of naphthoquinone or solid naphthoquinone were added. 1H NMR spectra 

(300 K) were recorded at 0–250 equivalents of quinone. Association constants were obtained by analysis of the 

resulting titration data using the 1:1 host–guest stoichiometry equation for fast exchange.14 

Synthesis 

2,2′-Bipyridine palladium(II) chloride15 and N,N,N',N'-tetramethylethylenediamine palladium(II) chloride16 and 

ligand L1a 17 were prepared as described in the literature. 

Synthesis of ligand L1b. Diethylamine (dried over KOH) (10 mL) was degassed with nitrogen for 10 min. Then 

1,3-diethynylbenzene (114 μL, 1.11 mmol), 3-bromo-5-(trifluoromethyl)pyridine (517 mg, 2.29 mmol), 

PdCl2(PPh3)2 (18 mg, 0.025 mmol) and CuI (6 mg, 0.030 mmol) were added to the reaction mixture and it was 
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degassed with nitrogen for 10 min. The reaction mixture was heated to 60 ºC overnight. Then, the reaction mix-

ture was cooled to rt, EtOAc (50 mL) was added and the reaction mixture was filtered through a pad of Celite. 

The filtrate was washed with a saturated solution of NaHCO3 (50 mL), the organic layer was dried over MgSO4 

and solvent was removed in vacuo. The solid obtained was crystallized from hot 2-propanol (40 mL), cooled to rt 

and further cooled in the freezer. The obtained material was filtered and washed with cold 2-propanol (5 mL) to 

obtain pure product as an off-white solid (305 mg, 66% yield). 1H NMR (500 MHz, CDCl3) δ 8.94 (s, 2H, Ha), 

8.84 (s, 2H, Hb), 8.06 (s, 2H, Hc), 7.77 (t, J = 1.7 Hz, 1H, Hd), 7.59 (dd, J = 7.8, 1.6 Hz, 2H, He), 7.43 (t, J = 8.1 

Hz, 1H, Hf) ppm. 13C NMR (126 MHz, CDCl3) δ 155.03, 145.37 (q, J = 3.9 Hz), 135.44 (q, J = 3.6 Hz), 134.94, 

132.40, 128.93, 122.54, 126.41 – 119.39 (m), 93.15, 85.29 ppm (1 signal missing/coincidental). 19F NMR (471 

MHz, CDCl3) δ –62.69 ppm. ESI TOF HRMS m/z: Found 417.0837 [M+H]+, calculated for [C22H10F6N2+H]+ , 

417.0821. 

Synthesis of hemi-cage 1a. A mixture of [Pd(bpy)(Cl)2] (25.0 mg, 75 μmol) and AgOTf (38.5 mg, 150 μmol) in 

CH3CN (7.5 mL) was stirred at 60 ºC for 2 h in the dark. At that time, ligand L1a (21.2 mg, 75 μmol) was added to 

the reaction mixture and the reaction was stirred at 60 ºC overnight in the dark. Then, the reaction mixture was 

cooled to rt, filtered over a celite pad and solvent partially removed in vacuo (final volume of ~2 mL). The prod-

uct was precipitated with Et2O (10 mL), filtered and washed with Et2O (10 mL) and isolated as a yellowish solid 

(45.9 mg, 73% yield). 1H NMR (500 MHz, CD3CN) δ 9.36 (d, J = 1.8 Hz, 4H, Hd), 9.08 (dd, J = 5.8, 1.5 Hz, 4H, 

He), 8.41 (d, J = 8.1 Hz, 4H, Hk), 8.33 (td, J = 7.9, 1.5 Hz, 4H, Hj), 8.24 (dt, J = 8.1, 1.6 Hz, 4H, Hf), 7.85 (t, J = 

1.7 Hz, 2H, Hc), 7.76 (dd, J = 8.1, 5.7 Hz, 4H, Hg), 7.69 (dd, J = 7.8, 1.7 Hz, 4H, Hh), 7.59 – 7.50 (m, 6H, Ha+Hi), 

7.35 (d, J = 5.3 Hz, 2H, Hb). 13C NMR (126 MHz, CD3CN) δ 157.33, 154.29, 151.42, 151.27, 144.32, 143.73, 

135.72, 134.10, 130.73, 129.29, 129.02, 125.41, 125.38, 123.09, 122.11 (q, J = 320.8 Hz, OTf–), 95.27, 85.35. 19F 

NMR (471 MHz, CD3CN): δ –79.21 ppm. 1H DOSY NMR (500 MHz, CD3CN): 7.63 × 10-10 m2/s, hydrodynamic 

radius = 7.8 Å. ESI TOF HRMS m/z: Found 271.5287 [M–4OTf]4+, calculated for [C60H40N8Pd2]4+ 271.8368. 

Synthesis of hemi-cage 2a. A mixture of [Pd(TMEDA)(Cl)2] (22.0 mg, 75 μmol) and AgSbF6 (51.5 mg, 150 

μmol) in CH3CN (7.5 mL) was stirred at 60 ºC for 2 h in the dark. At that time, ligand L1a (21.0 mg, 75 μmol) 

was added to the reaction mixture and the reaction was stirred at 60 ºC overnight in the dark. Then, the reaction 

mixture was cooled to rt, filtered over a celite pad and solvent partially removed in vacuo (final volume of ~2 

mL). The product was precipitated with Et2O (10 mL), filtered and washed with Et2O (10 mL) and isolated as a 
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yellowish solid (62.9 mg, 86% yield). 1H NMR (500 MHz, CD3NO2) δ 9.42 (s, 4H, Hd), 9.07 (d, J = 5.1 Hz, 4H, 

He), 8.32 (s, 2H, Hc), 8.17 (dt, J = 8.1, 1.4 Hz, 4H, Hf), 7.76 (dd, J = 8.0, 5.8 Hz, 4H, Hg), 7.66 (dd, J = 7.7, 1.5 

Hz, 4H, Hb), 7.53 (t, J = 7.8 Hz, 2H, Ha), 3.29 (s, 8H, CH2), 2.95 (s, 12H, CH3), 2.80 (s, 12H, CH3) ppm. 13C 

NMR (126 MHz, CD3NO2) δ 153.03, 149.61, 142.36, 136.98, 132.28, 129.37, 127.71, 124.34, 122.01, 94.27, 

83.92, 63.01, 50.37 ppm. 19F NMR (471 MHz, CD3NO2) no detected signals. 1H DOSY NMR (500 MHz, 

CD3NO2): 4.56 × 10-10 m2/s, hydrodynamic radius = 7.6 Å. ESI TOF HRMS m/z: Found 413.7179 [M–3SbF6]3+, 

calculated for [C52H56F6N8Pd2Sb]3+ 413.7223. Found 738.0335 [M–2SbF6]2+, calculated for 

[C52H56F12N8Pd2Sb2]2+ 738.0305. 

Synthesis of hemi-cage 2b. A mixture of [Pd(TMEDA)(Cl)2] (22.0 mg, 75 μmol) and AgSbF6 (51.5 mg, 150 

μmol) in CH3CN (7.5 mL) was stirred at 60 ºC for 2 h in the dark. At that time, ligand L1b (31.2 mg, 75 μmol) 

was added to the reaction mixture and the reaction was stirred at 60 ºC overnight in the dark. Then, the reaction 

mixture was cooled to rt, filtered over a celite pad and solvent partially removed in vacuo (final volume of ~2 

mL). The product was precipitated with Et2O (20 mL), filtered and washed with Et2O (10 mL) and isolated as a 

yellowish solid (39.0 mg, 47% yield). 1H NMR (500 MHz, CD3NO2) δ 9.59 (d, J = 1.4 Hz, 4H, Hd), 9.38 (s, 4H, 

He), 8.49 (s, 4H, Hf), 8.36 (s, 2H, Hc), 7.73 (dd, J = 7.7, 1.7 Hz, 4H, Hb), 7.58 (t, J = 7.5 Hz, 2H, Ha), 3.34 (s, 8H, 

CH2), 2.97 (s, 12H, CH3), 2.85 (s, 12H, CH3) ppm. 13C NMR (126 MHz, CD3NO2) δ 156.37, 145.77 (q, J = 3.7 

Hz), 139.70, 137.73, 132.95, 130.51 (q, J = 35.3 Hz), 129.58, 125.38, 121.58 (q, J = 273.2 Hz), 121.55, 96.50, 

82.94, 63.42, 50.69, 50.66. 19F NMR (471 MHz, CD3NO2) δ –64.43 ppm. 1H DOSY NMR (500 MHz, CD3NO2): 

4.17 × 10-10 m2/s, hydrodynamic radius = 8.3 Å. ESI TOF HRMS m/z: Found 504.3656 [M–3SbF6]3+, calculated 

for [C56H52F18N8Pd2Sb]3+ 504.3721. Found 874.0128 [M–2SbF6]2+, calculated for [C56H52F24N8Pd2Sb2]2+ 

874.0053. 

Single-Crystal X-ray Diffraction. Single crystals of 1 were obtained by vapour diffusion of isopropyl ether to 

a solution of 1 in CD3CN. Single crystals of 2b were obtained by vapour diffusion of CH2Cl2 to a solution of 2b 

in CH3NO2. Suitable crystals were selected and for single-crystal using a SuperNova, Dual, Cu at zero, Atlas dif-

fractometer. The crystal was kept at 120.00(10) K during data collection. Using Olex2,18 the structure was solved 

with the ShelXT19 structure solution program using Direct Methods and refined with the ShelXL19 refinement 

package using Least Squares minimisation. 
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Crystal Data for 1 (C64H40N8O12F12S4Pd2): monoclinic, space group P21/c (no. 14), a = 20.58500(13) Å, b = 

14.28779(8) Å, c = 11.56733(8) Å, β = 104.8745(7)°, V = 3288.11(4) Å3, Z = 2, T = 120.00(10) K, μ(CuKα) = 

6.512 mm-1, Dcalc = 1.699 g/cm3, 79883 reflections measured (7.618° ≤ 2Θ ≤ 152.356°), 6863 unique (Rint = 

0.0775, Rsigma = 0.0232) which were used in all calculations. The final R1 was 0.0371 (I > 2σ(I)) and wR2 was 

0.0970 (all data). CCDC 1856391 (1a·4OTf). 

Crystal Data for 2b (C60H60Cl8F36N8Pd2Sb4): monoclinic, space group P21/c (no. 14), a = 33.4070(4) Å, b = 

15.8614(2) Å, c = 16.41120(18) Å, β = 103.2985(12)°, V = 8462.80(18) Å3, Z = 4, T = 120.00(10) K, μ(MoKα) = 

2.050 mm-1, Dcalc = 2.010 g/cm3, 301741 reflections measured (5.526° ≤ 2Θ ≤ 59.504°), 23185 unique (Rint = 

0.0659, Rsigma = 0.0384) which were used in all calculations. The final R1 was 0.0819 (I > 2σ(I)) and wR2 was 

0.1825 (all data). CCDC 1856392 (2b·4SbF6). 

 

Computational details All calculations have been carried out by using the GAUSSIAN 09 E.01 package.9 The 

exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSS) functional20 in conjunction with the Def2-

TZVP basis sets as used with the density fitting procedure. The D3(BJ) (D3 with Becke–Johnson damping) dis-

persion correction21,22 was included in all calculations. Vibrational frequencies were computed at the same level 

of theory to confirm the structures correspond to a minimum and to evaluate the zero-point vibrational energy 

(ZPVE) and thermal corrections at 298 K and 1M concentration. Vibrational entropies were corrected according 

to the so-called “quasi-harmonic approach23 using a free-rotor approximation for vibrational modes below 100 

cm–1, and a rigid rotor approximation above this cutoff.24 Single-point energies in solution were performed with 

the SMD model as an implicit solvation model using acetonitrile and nitromethane as a solvent.  

Further experimental and computational details are given in the Supporting Information. Crystal data were de-

posited with the Cambridge Crystallographic Data Centre with numbers CCDC 1856391 (1a·4OTf), CCDC 

1856392 (2b·4SbF6). 
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