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t(4;11) MLL-AF4 pro-B acute lymphoblastic leukemia (ALL) is an aggressive 

hematological malignancy that accounts for 50-85% of infant ALL cases.1 

Retrospective analysis of Guthrie cards and twin concordance studies both confirmed 

the pre-natal origin of this disease.2 Patients show an accumulation of immature pro-

B cells in the bone marrow, followed by a rapid and uncontrolled proliferation of 

leukemia blasts that hijack the immune system and invade peripheral organs such as 

the spleen, liver and central nervous system. The chromosomal translocation results 

in the fusion of the N-terminal part of MLL with almost the entire AF4 gene, which 

disrupts the epigenetic signature of hematopoietic cells.3 This induces a stem cell-like 

expression signature (e.g. HOXA cluster, MEIS1, RUNX1) as well as a pro-survival 

and proliferation phenotype (characterized by the upregulation of BCL2, MCL1, 

CDK6).4-8  

The molecular signature at diagnosis has been well characterized, but 

information on the initial changes during the first stages of leukemogenesis is lacking 

due to the challenge posed by the pre-natal origin of the disease. We recently 

described a pre-leukemia model of t(4;11) MLL-AF4 infant leukemia, which uses an 

Mll-AF4 invertor line and a VE-Cadherin-driven Cre recombinase to target the 

expression of Mll-AF4 to all definitive hematopoietic cells formed during embryonic 

development.9 While this model does not progress to the same rapid, acute leukemia 

phenotype observed in human patients, possibly due to species differences,10 it 

provides unique access to the prenatal pre-leukemic state in vivo. Mll-AF4 expression 

was shown to lead to increased engraftment and self-renewal potential of E14 fetal 

liver (FL) cells, as well as a high B lymphoid clonogenic potential; however, the precise 

contribution from individual cell types was not addressed in detail.  

Here, we separated the hematopoietic compartment into three stem/progenitor 

fractions, HSC/MPPs, LMPPs and LK/CLPs, with a sorting strategy adapted to the 

fetal context (Figure S1A),11 and used transplantation assays and gene expression 

analysis to further characterize the cell-of-origin of t(4;11) MLL-AF4 pro-B ALL. 

Extensive details on the material and methods can be found in the supplementary 

section.  Analysis of cell cycle distribution showed that the HSC/MPP population was 

more highly represented in the G0-G1 phase compared to LMPP and LK/CLP (Figure 

S1B), and less in the G2/M phase (Figure S1C). Mll-AF4 did not alter the cell cycle 

distribution of HSC/MPPs, LMPPs or LK/CLPs, suggesting that proliferation is not 

hijacked during early stages of leukemogenesis.  



3 
 

All three fractions were transplanted to assess their engraftment, self-renewal 

and differentiation potentials. Mll-AF4 did not affect the engraftment of HSC/MPPs or 

LK/CLPs, but led to a significantly higher engraftment of the LMPP fraction (Figure 1A-

C). We previously found that HSC/MPPs and LMPPs from E14 FL could form B-

lymphoid colonies with a pro-B phenotype when Mll-AF4 is expressed.9 We therefore 

assessed the lineage output in the peripheral blood of the primary recipients. While 

there was no difference in T (CD3+) and mature B cell (B220+CD19+IgM+) production, 

LMPPs had a lower myeloid (CD11b+Gr1+) and higher immature B cell 

(B220+CD19+IgM-) output compared with HSC/MPPs (Figure 1D). This skewing was, 

however, independent of Mll-AF4 expression and therefore represents an intrinsic 

property of LMPPs. Mll-AF4+ LMPP primary recipients had the highest white blood 

cell count one month after transplant, suggesting a faster contribution to the 

hematopoietic system (Figure 1E); however, this difference diminished over time. The 

expression of Mll-AF4 is significantly higher in E14 fetal liver LMPPs compared to 

HSC/MPPs and LK/CLPs, which may offer an explanation for their enhanced 

engraftment in primary recipients (Figure 1F, left set of graphs).  

We then assessed the self-renewal potential of HSC/MPPs and LMPPs in 

secondary transplantations. Mll-AF4 expression increased the repopulation of 

secondary recipients with HSC/MPPs compared with the Mll-AF4- control (Figure 1G), 

although engraftment levels were not significantly different from those observed with 

Mll-AF4+ HSC/MPPs in primary recipients (Figure S1D). Mll-AF4+ LMPPs, on the 

other hand, only showed limited self-renewal (Figure 1G), suggesting that Mll-AF4 can 

only enhance self-renewal in cells that already possess this property. Furthermore, we 

detected an upregulation of Mll-AF4 expression following transplantation in 

HSC/MPPs sorted from primary recipients, while it remained unchanged in LMPPs, 

which may also contribute to the higher self-renewal potential of Mll-AF4+ HSC/MPPs 

(Figure 1F, right set of graphs). Both populations displayed skewing towards the B 

lineage in the presence of Mll-AF4 in secondary recipients, which, in the case of 

LMPPs, resulted in an almost entirely B lymphoid-biased output (Figure 1H). The white 

blood cell count was significantly higher in Mll-AF4+ HSC/MPP secondary recipients 

from two months after transplantation (Figure 1I). 

We did a post-mortem analysis of HSC/MPP secondary recipients and LMPP 

primary recipients (6-15 months old). As shown above, hematopoietic progenitors 

such as LMPPs, can only engraft primary recipients, whereas HSCs can serially 
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engraft. Therefore, we compared LMPP primary recipients and HSC/MPP secondary 

recipients to assess differences in hematopoietic output established by HSCs and 

LMPPs. Mll-AF4+ HSC/MPPs and LMPPs showed a significantly higher engraftment 

in the bone marrow and liver compared to Mll-AF4- HSC/MPPs (Figure 1J). 

Furthermore, LMPP primary recipients had more donor cells in the spleen compared 

to Mll-AF4+ HSC/MPP recipients. While there were no significant differences in the 

stem/progenitor compartment in the bone marrow (Figure 1K), Mll-AF4+ LMPP 

primary recipients displayed a trend towards more pro-B cells in the spleen compared 

to Mll-AF4+ HSC/MPP secondary recipients (Figure 1L), which resulted in a higher 

proportion of mature B220+CD19+IgM+ cells (Figure 1M).  

To explain the cell type-specific effects, we assessed the expression of 14 

genes associated with t(4;11) MLL-AF4 pro-B ALL and, more specifically, linked to 

HSC signature, B-lymphoid differentiation, cell division and pro-survival phenotypes: 

Flt312, Meis14, Hoxa94, Hmga213, Lmo214, Runx15, Cdk68, 15, Il7r16, Pax516, Ikaros16, 

E2a16, Bcl-27, Mcl17 and Twist16 (Figure 2A). Flt3 is upregulated in LMPPs regardless 

of Mll-AF4 status (Figure 2B), while Meis1 is upregulated specifically in response to 

Mll-AF4 expression in LMPPs (Figure 2C). The expression of Hoxa9 in Mll-AF4+ 

LMPPs is significantly higher compared with Mll-AF4+ HSC/MPPs and/or Mll-AF4+ 

LK/CLPs (Figure 2D). Hmga2, Lmo2 and Runx1 expression in Mll-AF4+ LMPPs is 

significantly higher compared with Mll-AF4+ HSC/MPPs and/or Mll-AF4+ LK/CLPs 

(Figure 2E-G). Cdk6 expression was higher in LK/CLPs, and decreased in HSC/MPPs 

upon Mll-AF4 expression (Figure 2H). This can partly explain the enhanced self-

renewal of Mll-AF4+ HSC/MPPs compared to Mll-AF4- HSC/MPPs (Figure 1G). The 

expression of IL7r and Pax5 was generally higher in LMPPs, but was not significantly 

affected by Mll-AF4 expression, although there was a clear trend (Figure 2I,J), 

whereas Ikaros and E2a were strongly upregulated in Mll-AF4+ LMPPs compared to 

Mll-AF4- LMPPs and Mll-AF4+ HSC/MPPs and LK/CLPs (Figure 2K,L). This likely 

explains the strong B-lymphoid bias observed in the transplant recipients (Figure 1H). 

We observed a significant upregulation of Bcl-2 in Mll-AF4+ LMPPs compared to Mll-

AF4- LMPPs (Figure 2M), which is a direct transcriptional target of MLL-AF4.7 Mcl1 

expression was relatively stable (Figure 2N), but Twist1 was upregulated in Mll-AF4+ 

LMPP compared to HSC/MPP and LK/CLP Mll-AF4+ cells (Figure 2O). We assessed 

the expression of Flt3, Meis1, Hoxa9, E2a and Bcl-2 in sorted Mll-AF4+ HSC/MPPs, 

LMPPs and LK/CLPs from primary recipients to measure expression changes induced 
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by transplantation stress and a change in microenvironment: FL versus bone marrow 

(Figure 2B,C,D,L,M). The relative expression pattern amongst the three populations 

was similar in freshly sorted FL cells and sorted cells from primary recipients. 

However, there is a general upregulation of Flt3, Meis1, Hoxa9 and E2a in cells from 

primary recipients (Figure 2B,C,D,L), which may explain the shorter disease latency 

following transplantation observed previously.9 The strong upregulation of E2a also 

likely explains the strong B lymphoid bias observed in LMPP recipients (Figure 1H). 

This study suggests that the FL LMPP sets the stage for the transformation process 

of t(4;11) MLL-AF4 infant pro-B ALL through the higher expression of Flt3, Hoxa9, 

Lmo2, Runx1, Il7r, Pax5, E2a and Twist1 (Figure 2P). The activation of Mll-AF4 

increases the expression of E2a, Ikaros, Meis1 and Bcl-2, leading to a strong B 

lymphoid bias and a survival advantage. This study is a step forward in understanding 

the molecular mechanisms of infant leukemogenesis, and also further supports our 

previous proposition that the FL LMPP is the cell-of-origin of t(4;11) Mll-AF4 pro-B 

ALL. 
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Figure legends 

 

Figure 1. In the presence of Mll-AF4, E14 FL LMPPs display higher engraftment 
potential and a B-lymphoid bias. (A-C) Primary transplant of 1000 HSC/MPPs (A), 
750 LMPP (B) and 1000 LK/CLP (C). Total donor chimerism in peripheral blood is 
shown and dotted line represents 5% threshold for considering mice as being 
repopulated. Repopulated mice/total injected shown next to the curve. (D) Donor 
chimerism in individual lineages of primary recipients 4 months after transplant. (E) 
White blood cell count in the peripheral blood of primary recipients. (F) Quantitative 
PCR of Mll-AF4 in fresh fetal liver HSC/MPP, LMPP and LK/CLP and sorted cells from 
primary recipients. (G) Secondary transplant of HSC/MPP and LMPP-derived bone 
marrow cells from primary recipients. (H) Donor chimerism in individual lineages of 
secondary recipients 4 months after transplant. (I) White blood cell count in the 
peripheral blood of secondary recipients. (J) Donor chimerism in the peripheral blood, 
bone marrow, spleen and liver at end of study. (K) Donor-derived HSCs, LMPPs, CLP 
and LK in the bone marrow at end of study. (L) Donor-derived pre-pro-B and pro-B 
cells in the bone marrow and spleen at end of study. (M) Donor chimerism in individual 
lineages at end of study. A non-parametric Mann-Whitney test was used to compare 
datasets with a significance cut-off of p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) or p < 
0.0001 (****). 

 

Figure 2. The LMPP population displays an MLL-AF4 gene expression signature. 
(A) Quantitative PCR strategy in fresh fetal liver cells (n = 6-7) and cells derived from 
primary recipients (n = 3). Quantitative PCR of (B) Flt3, (C) Meis1, (D) Hoxa9, (E) 
Hmga2, (F) Lmo2, (G) Runx1 (H) Cdk6, (I) Il7r, (J) Pax5, (K) Ikaros, (L) E2a, (M) Bcl2, 
(N) Mcl1, (O) Twist1. (P) Early stages of t(4;11) MLL-AF4 infant leukemia based on 
the pre-leukemia mouse model. A non-parametric Mann-Whitney test was used to 
compare datasets with a significance cut-off of p < 0.05 (*), p < 0.01 (**), p < 0.001 
(***) or p < 0.0001 (****). 







Supplementary Material and Methods 
 
Mice 
The animal work was done under regulation of the UK Home Office. Males and 

females from the Mll-AF41 and the VEC-Cre2 line were mated to obtain Mll-AF4-

expressing embryos. The day of the plug was counted as day 0 of embryonic 

development.  

 

Cell sorting of HSC/MPP, LMPP and LK/CLP populations 
The fetal liver was dissected and dissociated in Flow Cytometry Staining Buffer 

(ThermoFisher Cat# 00-4222-26) using a 21Gx15mm needle attached to a syringe 

(BD Microlance Cat# 10472204-X, BD Cat# 3000185). Cells were stained using the 

following antibody mix in Flow Cytometry Staining Buffer: APC anti-mouse CD3ε 

antibody (clone I45-2C11, Biolegend Cat# 100312), APC anti-mouse TER-119 

antibody (clone TER119, Biolegend Cat# 116212), APC anti-mouse F4/80 antibody 

(clone BM8, Biolegend Cat# 123116), APC anti-mouse Nk1.1 antibody (clone PK136, 

Biolegend Cat# 108709), APC anti-mouse Ly-6G/Ly-6C (Gr-1) antibody (clone RB6-

8C5, Biolegend Cat# 108412), PE/Cy7 anti-mouse/human CD45R/B220 antibody 

(clone RA3-6B2, Biolegend Cat# 103222), PE/Cy7 anti-mouse CD19 antibody (clone 

6D5, Biolegend Cat# 115520), APC-eFluor 780 CD117 (ckit) antibody (clone 2B8, 

ThermoFisher Cat# 47-1171-80), Alexa Fluor® 700 anti-mouse CD45 antibody (clone 

30-F11, Biolegend Cat# 103128), Pacific Blue™ anti-mouse Ly-6A/E (Sca-1) antibody 

(Clone E13-161.7, Biolegend Cat# 122519), PE anti-mouse CD127 antibody (clone 

A7T34, ThermoFisher Cat# 12-1271-82), biotin anti-mouse CD135 (Flt3) antibody 

(clone A2F10, ThermoFisher Cat# 13-1351-81). Cells were stained for 20 minutes on 

ice and washed once with Flow Cytometry Staining Buffer. Cells were then 

resuspended in diluted Qdot 655 Streptavidin Conjugate (ThermoFisher Cat# 

Q10123MP) and incubated for 20 minutes on ice. Cells were washed once and 

resuspended in diluted SYTOXTM Green Nucleic Acid Stain (ThermoFisher Cat# 

S7020) to exclude dead cells. Sorting was done on a BD FACSAriaTM II (BD 

Biosciences). 

 

 



Transplantation of CD45.1/2 mice with HSC/MPP, LMPP and LK/CLP 
On the day of transplant, recipient mice (CD45.1/2) received two doses of 4.6 Gy at a 

3 hours interval. Donor cells (CD45.2/2) were injected through the tail vein along with 

bone marrow helper cells (CD45.1/1). For HSC/MPP transplants, we used 100 000 

helper cells and for LMPP and LK/CLP, we used 20 000 helper cells. Mice were 

administered antibiotics after transplantation through their drinking water (0.1 mg/mL 

enrofloxacin, 10% Baytril solution from Bayer). For secondary transplants, the number 

of bone marrow cells transplanted was adjusted according to the repopulation in 

primary recipient (85% repopulation in primary recipient, 2 x 106 total bone marrow 

cells injected). Mice were bled on a monthly basis, and blood counts were measured 

on a Celltac MEK-6500K (Nihon Kohden). Red blood cell lysis was achieved with BD 

Pharm Lyse™ lysing solution according to the manufacturer’s instructions (BD 

Biosciences Cat# 555899). Cells were stained in Flow Cytometry Staining Buffer using 

the following antibodies: FITC CD45.2 antibody, (clone 104, ThermoFisher Cat# 11-

0454-81), APC-eFluor 780 CD45.1 monoclonal antibody (clone A20, ThermoFisher 

Cat# 47-0453-80), eFluor450 CD11b monoclonal antibody (clone M1/70, 

ThermoFisher Cat# 48-0112-80), Alexa Fluor® 700 Ly-6G/Ly-6C (Gr-1) antibody 

(clone RB6-8C5, Biolegend Cat# 108422), PE/Cy7 CD45R/B220 antibody (clone RA3-

6B2, Biolegend, Cat# 103222), Brilliant Violet 605™ CD19 antibody (clone 6D5, 

Biolegend Cat# 115539), APC mouse IgM monoclonal antibody (clone II/41, 

ThermoFisher Cat# 17-5790-82), PE CD3e (clone 145-2C11, Biolegend Cat# 

100308). For sorting/analysis of hematopoietic stem and progenitor cells in organs 

and analysis of B cell populations in primary and secondary recipients, we used the 

following antibodies: the APC lineage cocktail from the sorted E14 FL cells, FITC 

CD45.2 antibody, (clone 104, ThermoFisher Cat# 11-0454-81), APC-eFluor 780 

CD45.1 monoclonal antibody (clone A20, ThermoFisher Cat# 47-0453-80), Brilliant 

Violet 421TM CD117 (c-Kit) antibody (clone 2B8, Biolegend Cat# 105827), APC-eFluor 

780 CD117 antibody (clone 2B8, ThermoFisher 47-1171-82), PE/Cy7 Ly6A/E (Sca-1) 

antibody (clone E13-161.7, Biolegend Cat#122513), PB Sca1 antibody (clone E13-

161.7, Biolegend, Cat# 47-1171-82), PerCP/Cy5.5 CD34 antibody (clone HM34, 

Biolegend, Cat# 128607), PE CD135 antibody (clone A2F1, Biolegend, Cat# 135306), 

biotin anti-mouse CD135 (Flt3) antibody (clone A2F10, ThermoFisher Cat# 13-1351-

81), Alexa Fluor® 700 CD48 antibody (clone HM48-1, Biolegend, Cat# 103425), 

PE/Cy7 CD150 antibody (clone TC15-12F12.2, Biolegend, Cat# 115914), Alexa 



Fluor® 700 CD45R/B220 antibody (clone RA3-6B2, Biolegend, Cat# 103232), PE/Cy7 

CD19 antibody (clone 6D5, Biolegend, Cat# 115520), PerCP CD43 antibody (clone 

1B11, Biolegend, Cat# 121222), Brilliant Violet 421TM CD24 antibody (clone M1/69, 

Biolegend, Cat# 101825), APC CD127 antibody (clone A7R34, Biolegend, Cat# 

135011). Cells were incubated on ice for 20 minutes, washed twice with Flow 

Cytometry Staining Buffer and resuspended in diluted SYTOX AADvanced 

(ThermoFisher, Cat# S10274) to exclude dead cells. Data was acquired on a BD 

LSRFortessaTM (BD Biosciences). For end of study analysis, cell types were identified 

as follows: HSCs (LSK CD34+/- FLT3- CD150+ CD48-), LMPPs (LSK CD34+/- 

FLT3+), CLP (Lin- ckitlow Sca1low IL7R+ FLT3+), LK (Lin- ckit+ Sca1-), pre-pro-B 

(CD45.2+ ckit- CD43+ CD24low B220+ CD19-) and pro-B (CD45.2+ ckit+ CD43+ 

CD24+ B220+ CD19+). 

 

Cell Cycle  
Sorted HSC/MPP, LMPP and LK/CLP cells were collected in Flow Cytometry Staining 

Buffer and an equivalent volume of 5 μg/mL DAPI 1% IGEPAL (Sigma-Aldrich D9542 

and CA-630) solution was added. Cells were incubated at room temperature for 1 

minute, in the dark. Data was acquired on a BD LSRFortessaTM (BD Biosciences). 

 

RNA extraction, reverse transcription and quantitative PCR 
RNA extraction and reverse transcription were performed using the RNeasy Micro Kit 

(QIAGEN Cat# 74004) and iScript Ready-to-Use cDNA Supermix (Bio-Rad 

Laboratories Ltd Cat# 1708841) according to the manufacturer’s instructions. Primer 

sequences are: Flt3.F/R (gccagttcagcccgccta/agattccctcggactggtgc), Meis1.F/R 

(attcacactgctggagacgc/cgtcgtacctttgcgccatc), Cdk6.F/R 

(ccaacgtggtcaggttgttt/gccgggctctggaactttat), Mcl1.F/R 

(agaggctgggatgggtttgt/ccctattgcactcacaaggc), Twist1.F/R 

(gccggagacctagatgtcatt/ccacgccctgattcttgtga), Runx1.F/R 

(ttcgcagagcggtgaaagaa/tgctgtctgaagccatcgtt), Hoxa9.F/R 

(ccacgcttgacactcacact/cagccgggttattgggatcg), Hmga2.F/R 

(gcctgctcaggagactgaag/ggaagtagaaagaccgtggca), Bcl2.F/R 

(ggaggctgggatctttgt/acttgtggcaggtatgc), Lmo2.F/R 

(ctggacccgtctgaggaac/gacacccacagaggtcacag), Ikaros.F/R 

(ccctgaggacctgtccactac/acgcccattctcttcatcac), Il7r.F/R 



(cgaaactccagaacccaaga/aatggtgacacttggcaagac), E2a.F/R 

(aagaggacaagaaggacctgaa/ttattggccatacgcctctc), Pax5.F/R 

(accatcaggacaggacatgg/gcggactacatctgggagtg), Mll-AF4 F/R 

(agtgggcatgtagagggatc/atggctcagctgtactaggc) and beta-actin F/R 

(tcctgtcctcactgtcca/gtccgcctagaagcacttgc). Quantitative PCR was carried out with 

Brilliant III Ultra-Fast SYBR QPCR (Agilent Technologies Cat#600883) according to 

the manufacturer’s instructions. Data was acquired on a QuantStudioTM 7 Flex Real-

Time PCR System (ThermoFisher). 
 

 

Data analysis, statistics and graphs 
Analysis of flow cytometry data was performed with FlowJo (version 10) and graphs 

were generated with GraphPad Prism (version 6). Statistical analysis was performed 

with GraphPad using a non-parametric t test (Mann-Whitney) with a bi-lateral p-value. 

Data are presented as Mean ± SEM. 
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Supplementary Figure 1 
 

 
 
 
 
Figure S1. Sorting strategy and cell cycle analysis of E14FL HSC/MPP, LMPP 
and LK/CLP cells (A) Sorting strategy of E14 FL HSC/MPP (Lin- B220- CD19- CD45+ 
ckit+ Sca1high IL7R- Flt3-), LMPP (Lin- B220- CD19- CD45+ ckit+ Sca1high Flt3+) 
and LK/CLP (Lin- B220- CD19- CD45+ ckit+ Sca1low/-). (B,C) Cell cycle analysis (n 
= 5-7). HSC – hematopoietic stem cell, MPP – multipotent progenitor, LMPP - 
lymphoid-primed multipotent progenitor, LK – Lin- ckit+, CLP – common lymphoid 
progenitor. (D) Repopulation of Mll-AF4+ VEC-Cre+ E14 FL HSC/MPPs in primary 
and secondary recipients. 
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