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Abstract 17 

Volcanologists often use terrestrial tephra layers to reconstruct volcanic eruptions. 18 

However, the conversion of fresh tephra deposits into tephra layers is poorly 19 

understood. To address this knowledge gap, we surveyed tephra layers emplaced by 20 

the 1980 eruption of Mount St Helens, USA (MSH1980) and the 1947 eruption of Hekla, 21 

Iceland (H1947). We compared our measurements with observations made shortly after 22 

the 1947 and 1980 eruptions, to calibrate the subsequent transformation of the tephra 23 

deposit. We expected the tephra layers to retain the broad characteristics of the original 24 

deposits, but hypothesized a) changes in thickness and mass loading due to re-working, 25 

and b) positive correlations between thickness and vegetation density. We observed 26 

some systematic changes in tephra layer properties with distance from the vent and the 27 

main plume axis. However, the preservation of the layers varied both between and 28 

within our survey locations. Closed coniferous forest appeared to provide good 29 

conditions for the preservation of the MSH1980 tephra, as expected; preservation of the 30 

H1947 deposit in sparsely vegetated parts of Iceland was much more variable. 31 

However, preservation of the MSH1980 deposit in sparsely vegetated areas of eastern 32 

Washington State was also excellent, possibly due to biocrust formation. We concluded 33 

that the preservation of tephra layers is sensitive to surface conditions at the time of the 34 

eruption. These findings have implications for the reconstruction of past eruptions where 35 

eruption plumes span regions of variable surface cover. 36 

 37 

Key words: Hekla; Mount St Helens; mass loading; biocrusts; kriging; volcanological 38 

reconstruction; biophysical feedbacks  39 
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Introduction 40 

Layers of tephra preserved in soils are frequently used in the reconstruction of past 41 

volcanic eruptions and the evaluation of volcanic hazards (Houghton and Carey 2015). 42 

For example, tephra layers may be used to estimate the total volume of pyroclastic 43 

material erupted, eruption intensity, column height and the spatial distribution of 44 

pyroclastic deposits (Bonadonna and Houghton 2005; Pyle 1989). Inferences based on 45 

terrestrial tephra layers have greatly extended the short and rather patchy record of 46 

volcanic eruptions based on historical accounts, and made a major contribution to our 47 

understanding of volcanism (Lowe 2011). However, they rely on the assumption that the 48 

preserved tephra layer is representative of the initial deposit. A great deal can happen 49 

to tephra after deposition and the ways in which tephra layers are preserved (or not) are 50 

poorly understood (Fig. 1). The formation of tephra layers is difficult to observe directly, 51 

as it can be lengthy (unfolding over years to decades) and spatially variable. 52 

Furthermore, tephra deposited on land is vulnerable to post-depositional re-working by 53 

wind, water and slope processes: in the worst-case scenario, all of the deposited tephra 54 

can be lost to erosion (Blong et al. 2017; Pyle 2016). Surface characteristics, notably 55 

vegetation cover, can also influence preservation (Cutler et al. 2016a; Cutler et al. 56 

2016b; Dugmore et al. 2018). These factors impose a limit on the information that a 57 

tephra layer can provide. Clearly, a deposit that has been extensively re-worked is an 58 

unreliable indicator of eruption parameters, but it is often unclear how representative 59 

ancient, apparently unmodified, tephra layers are. 60 

 61 

[Fig. 1: tephra preservation] 62 
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 63 

One way to address the knowledge gap surrounding tephra layer preservation is to 64 

record the physical characteristics (typically layer thickness, mass per unit area (mass 65 

loading), and internal stratigraphy) of a tephra layer and to compare this record with 66 

similar measurements made shortly after an eruption. In this way, it should be possible 67 

to calibrate the degree of physical transformation that a tephra deposit undergoes 68 

during preservation, i.e., the process by which it is incorporated into the sedimentary 69 

record over a timescale of decades or longer (it is possible that buried layers may still 70 

undergo modification). If the tephra deposit crosses ectones (the transitional regions 71 

between distinctive vegetation types, e.g., the boundary between forest and savanna), it 72 

should also be possible to investigate the influence of vegetation cover on tephra 73 

preservation. To do this, we compared relatively thin (<10 cm) preserved tephra layers 74 

from two twentieth century volcanic events – the eruptions of Hekla in 1947 (H1947) 75 

and Mount St Helens in 1980 (MSH1980) - with measurements of the tephra deposits 76 

taken shortly after the eruptions (i.e., prior to incorporation into the stratigraphic record). 77 

Relatively thin tephra layers may be lost in some depositional environments (e.g., due to 78 

chemical weathering), but persist in many settings to form an important record of past 79 

eruptions. 80 

 81 

We expected the tephra layers to capture the overall features of the original deposit. For 82 

example, we anticipated that layer thickness and mass loading would, on the whole, 83 

decrease with a) distance from the vent and b) distance from the main axis of the 84 

eruption plume (Houghton and Carey 2015). With MSH1980 we expected to find an 85 
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area of distal secondary thickening described in contemporary reports (Sarna-Wojcicki 86 

et al. 1981). However, we also expected transformation of the deposit to varying 87 

degrees. We used our results to test two hypotheses: 88 

 89 

H1:  The preserved tephra layer would be thinner than the initial deposit due to 90 

compaction and/or the loss of material due to reworking by wind, water and slope 91 

processes; mass/unit area would only be lower due to losses. 92 

H2: Tephra layer thickness would vary according to vegetation cover, with the highest 93 

levels of tephra retention (relative to the original deposit) in the areas of densest 94 

vegetation (e.g., closed forest) and the lowest in areas of sparse vegetation cover. 95 

 96 

 97 

Methods 98 

 99 

The study areas 100 

We chose the MSH1980 and H1947 tephra layers because the eruptions that produced 101 

them were the subject of detailed, contemporaneous studies (refer to Online Resource 102 

1 for details of the historical datasets we used in this study). Both were plinian eruptions 103 

that distributed tephra over 1000s of km2 (Table 1, Figs 2, 3). Crucially, records of initial 104 

tephra depth and mass loading, each based on dozens of measurements taken shortly 105 

after the eruptions, have been published (Thorarinsson 1954; Waitt and Dzurisin 1981). 106 

In the case of MSH1980, some of the researchers who monitored the eruption were still 107 

active when we were carrying out the study, and we were able to conduct fieldwork in 108 
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collaboration with one of them (Dr Richard Waitt of the USGS). The eruptions are 109 

sufficiently recent that vegetation cover in the fallout zones has not changed 110 

dramatically (based on photographic evidence). Conversely, the time that has elapsed 111 

between the original surveys and our measurements (H1947: 70 years, MSH1980: 35 112 

years) is sufficient to ensure the burial of the layers. 113 

 114 

[Table 1: characteristics of the MSH1980 and H1947 eruptions] 115 

 116 

We focused our study on areas > 15 km from the vent that received relatively thin initial 117 

deposits (~10 cm or less). These areas were spatially extensive and we reasoned that 118 

records of the fallout would be numerous and comparatively reliable (as the accurate 119 

recording of very thin (sub-mm) and very thick (multiple metre) deposits in the field is 120 

challenging: Yang and Bursik 2016). We collected data on tephra thickness and mass 121 

loading, two variables used in reconstructions of volcanic eruptions. In the case of the 122 

MSH1980 layer, we also recorded the internal stratigraphy in locations within 50 km of 123 

the vent. Grain size distribution is another important characteristic of tephra layers. 124 

However, a sparsity of tabulated data and major differences between the methodologies 125 

and statistics reported in the literature meant it was not possible to make meaningful 126 

comparisons between original and recent grain size distributions. 127 

 128 

[Fig. 2: Fallout map: MSH1980] 129 

[Fig. 3: Fallout map: H1947] 130 

[Fig. 4: Illustrative photos of the three different environments] 131 
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 132 

We screened the original datasets and removed the following data points: 133 

 All zero values, because our study focused on log10 thickness and we were not 134 

concerned with establishing the edge of the fallout zone; 135 

 Values from locations close to the vent (within a few km), as these are often highly 136 

variable, due to partial column collapse and uneven topography (Yang and Bursik 137 

2016); 138 

 Values we judged to be unreliable due to uncertain provenance (H1947 dataset 139 

only: refer to Online Resource 1). 140 

This left samples sizes of n = 163 for MSH1980 and n= 62 for H1947. 141 

 142 

Clearly, there is likely to be a small degree of uncertainty in the measurements 143 

themselves: Engwell et al. (2013) estimated observational error in the measurement of 144 

centimeter-scale tephra layers at ~10%; similar estimates have been made by others 145 

(Bonadonna et al. 2015). However, the estimated error varies according to tephra 146 

thickness and it is difficult to quantify this uncertainty for historical measurements made 147 

by several different people under varying conditions. Given the relatively small 148 

observational error described in the literature, we have assumed that the historical 149 

measurements in the literature are accurate to the nearest mm for the purposes of this 150 

study. 151 

 152 
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Interpolation of initial tephra thickness 153 

Ideally, the location of our measurements would have exactly replicated those used in 154 

the original surveys, as recent research has demonstrated that tephra layers can be 155 

highly variable over small spatial scales (Cutler et al. 2016b). Unfortunately, this was not 156 

possible for the following reasons: 157 

a) The original survey locations were not permanently marked. We had 158 

coordinates for the MSH1980 sample points, but not H1947. 159 

b) Many of the original measurements came from substrates that do not preserve 160 

tephra layers (e.g., road surfaces, the roofs of cars and buildings, etc.) 161 

c) Some of the original locations no longer exist (including measurements made 162 

on ships that passed under the H1947 eruption plume, or sites subsequently 163 

destroyed by anthropogenic activity and/or geomorphological processes). 164 

d) Some deposits occurred on heavily managed landscapes, including ploughed 165 

fields (eastern Washington State), and field systems dedicated to 166 

grazing/fodder production where tephra was removed manually (southern 167 

Iceland). 168 

Terrestrial tephra layers are prone to disturbance, and these kinds of problems will face 169 

any researcher seeking to compare extant tephra layers with measurements made 170 

shortly after the eruption. 171 

 172 

Given the near impossibility of replicating survey locations exactly, we had to take 173 

measurements as close as possible to the original coordinates and use interpolation 174 

techniques to estimate initial deposit thicknesses in our sample locations (due to the 175 
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relative sparsity of mass loading data, we decided not to interpolate this property). Many 176 

previous studies have attempted to interpolate tephra thickness from a few points, 177 

usually during the drafting of isopach maps. Our goal was slightly different: we wanted 178 

to interpolate initial tephra thickness (with known variance) at arbitrary locations 179 

downwind from the eruption. This goal meant we were not concerned with many of the 180 

issues that have preoccupied previous researchers, such as calculating the total volume 181 

of the deposit or inferring the edge of the fallout zone (Burden et al. 2013; Engwell et al. 182 

2015; Yang and Bursik 2016). 183 

 184 

Initial tephra thicknesses in our sampling locations were estimated from contemporary 185 

records using the method developed by Yang & Bursik (2016). Briefly, this statistical 186 

approach assumes that tephra thickness at an arbitrary location comprises: 1) a trend 187 

component and 2) a random local component. Hence, when the data are log-188 

transformed, tephra thickness may be expressed as: 189 

 190 

Th(s) = T(s) + Res(s)  [eqn 1] 191 

 192 

where Th(s) is the thickness at location s, T(s) is the trend thickness and Res(s) the local, 193 

or residual, variation. The only data required to interpolate deposit thickness in the 194 

model are a) the dominant wind direction during the eruption and b) some known values 195 

of tephra thickness (in this case, the original values). 196 

 197 
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The trend component is largely a function of distance from the source vent and the 198 

prevailing wind at the time of the eruption (which is assumed to be stable in strength 199 

and direction). The local component is the result of numerous, small-scale processes 200 

(e.g., turbulence structures in the plume) and is assumed to be spatially stochastic. 201 

Yang and Bursik’s (2016) approach models the two components separately and can 202 

therefore accommodate phenomena such as the secondary thickening of the MSH1980 203 

deposit observed by Sarna-Wojcicki et al. (1981). Following Yang and Bursik (2016), we 204 

modelled the trend component using standard regression techniques, using radial 205 

distance (R(s)) and downwind distance (Dd(s)) as explanatory variables (Online 206 

Resource 2). 207 

 208 

The local component was modelled using ordinary kriging on the residuals from the 209 

multiple regression model. Kriging is an established interpolation technique that 210 

provides a minimum variance estimate of a value at unmeasured locations, using a 211 

model of autocorrelation structure (the theoretical variogram). Detailed descriptions of 212 

kriging are available elsewhere (e.g., Isaaks and Srivastava 1989). Briefly, we produced 213 

sample variograms from the residuals of the linear (trend) model. The sample 214 

variograms described the relationship between semi-variance (a measure of 215 

autocorrelation) in log10(Th) and the distance between sampled locations. The sample 216 

variograms were fitted with commonly used mathematical models by a process of trial-217 

and-error, using the ‘gstat’ package running in R (Pebesma 2004). We fitted spherical, 218 

exponential and Gaussian models and selected the best fit by means of visual 219 

inspection and a comparison of the weighted sum of squared errors for each model 220 
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(Bivand et al. 2013). The theoretical variogram that resulted was used during kriging, 221 

carried out using the ‘gstat’ package after checking the residuals for normality. 222 

 223 

Yang and Bursik’s (2016) approach necessarily presents a much-simplified version of 224 

reality: it is unable to accommodate factors such as changes in wind direction or 225 

eruption dynamics, and complex processes in the atmosphere are reduced to simple 226 

distance relationships. However, it does provide a robust, pragmatic and conceptually 227 

straightforward method of inferring parameters such as tephra thickness at unmeasured 228 

locations. It is particularly useful when details of eruption parameters are unavailable. 229 

 230 

Field sampling of extant tephra layers 231 

 232 

MSH1980 233 

We conducted our surveys in the Gifford Pinchot National Forest (GPNF), 15 – 50 km 234 

from Mt St Helens (hereafter, proximal locations), and at distal locations close to 235 

Ritzville, WA (approx. 300 km from the eruption source: Fig. 2) in August 2015. We 236 

chose sampling locations where the initial deposit thickness was moderate (~5 - 10 cm), 237 

i.e., places where the tephra-fall would not have obliterated vegetation. The two 238 

sampling areas have different climates: the GPNF has a moist, temperate climate; in 239 

contrast, the Ritzville location has an arid, continental climate and frequently 240 

experiences high winds (Online Resource 3). The vegetation cover in the two locations 241 

also varies. The proximal location (~15 – 50 km from the vent) was characterized by 242 

closed coniferous forest, composed primarily of hemlock (Tsuga sp.) and Douglas fir 243 
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(Pseudotsuga menziesii) (Fig. 4a). We surveyed old growth forest sites where the trees 244 

on the sampling locations would have been mature at the time of the 1980 eruption. The 245 

distal location was characterized by shrub/grassland dominated by sagebrush 246 

(Artemisia sp.), a vegetation type known as sagebrush steppe (Fig. 4b). The sagebrush 247 

locations we sampled had patchy vegetation cover: the areas between sagebrush/grass 248 

patches often lacked vascular plants. Instead, these apparently bare areas were 249 

covered by a thin (< 2.5 cm) biological soil crust (biocrust) composed of mosses, lichens 250 

and, presumably, microorganisms such as fungi and cyanobacteria (Johansen 1993). 251 

 252 

In the GPNF, we surveyed tephra layers along two transects established in 1980 253 

(designated B-B’ and C-C’ in Waitt & Dzurisin (1981): see Fig. 2b). The transects ran 254 

approximately north-south, perpendicular to the main axis of the 18 May eruption plume. 255 

We surveyed 20 locations in total. The mean separation distance between our locations 256 

and the original samples was 1.5 ± 0.4 km, with the majority of locations (10 of the 18 257 

we used in our analysis) < 1 km from the 1980 survey locations. We recorded a) total 258 

tephra layer thickness; b) the thickness of each unit within the tephra layer (where it was 259 

possible to distinguish such features) following the nomenclature outlined in Waitt and 260 

Dzurisin (1981) (refer to Online Resource 1 for details); c) the characteristics of the 261 

understory vegetation cover and d) the thickness of soil/litter cover. We also collected 262 

tephra samples from nine locations (refer to Online Resource 4). We used loss on 263 

ignition (LOI) analysis to establish the proportion of organic material in the tephra layer. 264 

The samples were homogenized before removing representative sub-samples. The 265 
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sub-samples were dried at 105 °C for a minimum of eight hours, then heated to 550 °C 266 

for four hours to drive off organic material. 267 

 268 

In the sagebrush steppe vegetation around Ritzville, we identified seven sampling 269 

locations on an east-west transect (Fig. 2c). The survey of tephra layer thickness was 270 

similar to that implemented in the GPNF (Online Resource 4). We collected a tephra 271 

sample from one of the sampling locations, using the same methods deployed in the 272 

GPNF, and backfilled the excavations. 273 

 274 

H1947 275 

We carried out surveys of the H1947 layer in southern Iceland in August 2017. We 276 

targeted areas that were a) close to Thorarinsson’s original (1954) sampling points 277 

(mean separation distance 0.3 ± 0.1 km) and b) in the zone where the original tephra 278 

deposit was of moderate thickness (< 10 cm). The region has a cold, moist maritime 279 

climate and experiences frequent frosts (Online Resource 3). Our sampling locations 280 

varied in character and the original points were imprecisely located, so we applied case-281 

by-case reasoning to locate suitable survey areas (refer to Online Resource 4 for details 282 

of our approach). We sampled 12 locations in total. 283 

 284 

 285 

Results 286 

 287 

Interpolation of original tephra thickness 288 



14 
 

Our analysis of the original thickness measurements showed that both layers exhibited 289 

exponential thinning with distance. The most parsimonious trend models were linear in 290 

all cases; as the linear models were effective for our purposes (i.e., interpolating tephra 291 

thickness 10s of km from the vent) we did not explore more complex non-linear models. 292 

The introduction of breaks of slope can improve estimates of overall fallout volume, 293 

because they capture variations in thickness close to the vent (Bonadonna and 294 

Houghton 2005). However, this refinement was not relevant to our models, as the slope 295 

for the whole deposit adequately captures the variation at the scale of interest. As the 296 

plots of log10(thickness) vs absolute and downwind distance provided no compelling 297 

evidence for introducing breaks in the trend models (Online Resource 5), we applied 298 

multiple linear regression to model the trend in tephra thickness for both tephra layers. 299 

The regressions were highly significant (MSH1980: F2,160 = 116.2, p < 0.001; H1947: 300 

F2,59 = 45.7, p < 0.001), with adjusted R2 values of ~0.6 in both cases. 301 

 302 

The residuals of the trend models were approximately normal and therefore suitable for 303 

ordinary kriging. The experimental variograms exhibited predictable increases in 304 

semivariance with distance and we fitted spherical models to these variograms to 305 

characterize local variations in tephra thickness (Online Resources 6, 7). 306 

 307 

Field surveys 308 

The MSH1980 tephra layer was found in all the sampling locations we visited in the 309 

GPNF and in many cases the deposits could be divided into distinct stratigraphic sub-310 

units based on grain size and/or colour. The tephra layers were close to the surface: 311 
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most were covered by a thin (1 – 5 cm) layer of organic material (Figs 5, 6a). The 312 

contacts between the tephra and the layers above and below were generally sharp. In 313 

many sections, decayed timber (presumably from the 1980 forest floor) was clearly 314 

visible at the base of the tephra deposit. Based on visual inspection, the stratigraphies 315 

within each of the sample layers were consistent with the descriptions in Waitt & 316 

Dzurisin’s (1981) study. Within-site variability, expressed as a coefficient of variation 317 

(CV; i.e., the sample standard deviation at each sampling location divided by the 318 

sample mean) ranged from 0 – 33%, with most locations having a CV between 10 and 319 

25% (Table 2). There was a thick layer of re-worked tephra in GP03 and this data point 320 

was omitted from our analysis. Stratigraphic Unit B was missing (or not spotted) in 321 

GP04. LOI analysis indicated that the tephra samples from the GPNF contained an 322 

appreciable quantity of organic material/moisture (mean = 10.8 ± 1%). 323 

 324 

Tephra layers were also found in all of the locations we selected around Ritzville. In 325 

undisturbed areas, the MSH1980 tephra layer was found just below a thin (3 – 25 mm) 326 

biocrust. The layer was uniformly fine and pale grey (Fig. 6b). In most cases, both the 327 

top and bottom surfaces of the layer were sharply defined. Within-site variability was 328 

generally low: although a CV figure of 33% was observed at R06, the remaining six 329 

locations had values below 16% (Table 2). LOI analysis of a single sample from the 330 

Ritzville area indicated that the proportion of organic material/moisture was 7.7%. 331 

 332 

Areas with an intact H1947 layer were hard to locate. We eventually identified 12 333 

locations that satisfied our criteria (Fig. 3, Table 2). All but one of the sampling locations 334 
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was within 500 m of Thorarinsson’s (assumed) original measurement; the greatest 335 

separation distance was 1.16 km. The H1947 layer was more variable than MSH1980 in 336 

terms of thickness: the CV figures ranged from 21-65%, with most of our sampling 337 

locations displaying a CV around 30% (Table 2). The layer was also buried more 338 

deeply, with ~4 – 10 cm of overlying sediment (Fig. 6c), and appeared to be unstratified. 339 

LOI analysis indicated that the H1947 tephra samples had consistently low organic 340 

content (0.4 – 3.9%; mean = 2.3 ± 0.4%). 341 

 342 

[Table 2: Summary of tephra measurements] 343 

[Fig. 5: MSH1980 stratigraphy] 344 

 345 

Tephra layer thickness and mass loading 346 

In the GPNF, tephra thickness varied predictably along transect C-C’, i.e., the values 347 

were lowest toward the margins of the fallout zone (where the layer became 348 

increasingly patchy) and thickest towards the axis of the eruption plume (Fig. 5). The 349 

layer was thicker along transect B-B’, but did not exhibit a systematic thickening towards 350 

the axis of the fallout zone. Mass loadings for the GPNF sampling locations ranged from 351 

1.6-10.3 g cm-2 (Fig. 7). The highest mass loading was recorded close to the main axis 352 

of the eruption plume (i.e., where Waitt & Dzurisin’s transect AA’ intersects CC’: Fig. 353 

7b). Mass loadings decreased with distance from the plume axis. There was no 354 

systematic variation in layer thickness along the east-west transect line established 355 

outside Ritzville (within an area of secondary thickening). The tephra sample taken from 356 

this location had a mass loading of 2.3 g cm-2 (Fig. 7a). 357 
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 358 

[Fig. 6: Field images of tephra layers] 359 

[Fig. 7: MSH mass loadings]  360 

 361 

The thickness and mass loading of the H1947 layer did not vary predictably with 362 

distance from the vent and main axis of the plume. The most distal sampling location 363 

(Hk12) had the thinnest tephra layer (1.5 cm). However, the layer was a similar 364 

thickness (1.9 cm) at the most proximal sampling location (Hk01) (Table 2). The 365 

sampling location with the thickest layer (Hk08: 5.9 cm) was an intermediate distance 366 

from the vent, and away from the main axis of the plume. Most sampling locations had a 367 

thickness of 2 -3 cm, regardless of location. The mass loading figures were similarly 368 

unpredictable, with most sampling locations between 2 – 3 g cm-2 (Table 2). Sampling 369 

location Hk08 was an outlier: the mass loading here (4.2 g cm-2) was the highest 370 

recorded and twice that of adjacent locations. 371 

 372 

[Fig. 8: Hekla mass loading results] 373 

 374 

Comparison of findings with original measurements 375 

Thickness measurements from the MSH1980 layer were positively correlated with 376 

interpolated initial thicknesses (Fig. 9). However, there was a difference between the 377 

GPNF and Ritzville samples. The Ritzville measurements were close to, or slightly 378 

below, the interpolated values (Fig. 9a, blue points). The tephra layer here had a mean 379 

thickness of 3.4 ± 0.2 cm. An initial thickness of 4.2 cm was recorded at a nearby 380 



18 
 

location in 1980 (IAVCEI 2010), i.e., the thickness of the preserved layer was around 381 

80% of the initial deposit. In contrast, the layer in the GPNF appeared to be thicker than 382 

the interpolated values (Fig. 9a, red points), in some cases by up to 200% (GP01). Our 383 

measurements fell below the interpolated values on just two sampling locations. 384 

 385 

The mass loading data from MSH1980 followed a similar pattern. Transect CC’ (along 386 

which we collected our GPNF mass loading samples) is about 32 km from MSH, 387 

measured along the plume axis. Reading from a plot of mass loading vs distance in 388 

Sarna-Wojcicki et al. (1981: their figure 339), the estimated mass loading at the 389 

intersection of the plume axis with CC’ was 8 g cm-2. We recorded a figure of 10.3 g cm-390 

2 for approximately the same location (i.e., slightly higher than the original figure). The 391 

samples from Ritzville told a similar story. The isomass map in Sarna-Wojcicki et al. 392 

(their figure 338) suggests mass loadings between 2.0 and 2.5 g cm-2 around Ritzville. 393 

Our recorded value of 2.3 g cm-2 fitted neatly in this range. 394 

 395 

The correlation between initial and preserved thickness was much weaker for the 396 

H1947 layer (Fig. 9b). The measured thicknesses were consistently lower than the 397 

interpolated initial values (10 of the 12 sampling locations). In many cases, the 398 

preserved layer was >50% thinner than the initial deposit. The pattern of the mass 399 

loading values was similar: most were much lower than those observed in 1947 (Fig. 8). 400 

Two locations departed from this: the mass loading at Hk08 was similar to the initial 401 

value; the value recorded for Hk05 (2.7 g cm-2) greatly exceeded Thorarinsson’s 402 

measurement (0.9 g cm-2). 403 
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 404 

[Fig. 9: Comparison of measured and interpolated values] 405 

 406 

 407 

Discussion 408 

The preservation of the tephra layers varied both within and between the two eruptions. 409 

Preservation of the MSH1980 layer in areas of light anthropogenic disturbance was 410 

good. Broad trends in thickness and mass loading apparent in the initial deposit were 411 

retained in the tephra layer (i.e., both metrics decreased with distance from the vent and 412 

the main axis of the plume). This was particularly clear on transect C-C’ (the sampling 413 

locations on B-B’ were probably too close to the plume axis to show a marked pattern). 414 

Small-scale stratigraphy was also preserved (GPNF sampling location) and within-site 415 

variability was low: small- (metre-) scale factors had not obscured the volcanic signal. 416 

The same could not be said of the H1947 layer, which exhibited considerable variability 417 

at all scales and disrupted stratigraphy. 418 

 419 

We anticipated that the tephra layers would undergo a degree of post-depositional 420 

transformation, particularly the H1947 layer (deposited on a snow-covered, managed 421 

landscape). A degree of bioturbation would be expected in moist, productive habitats 422 

like the GPNF (Blong et al. 2017). Even if no tephra were lost through the action of wind 423 

and water, thinning due to compaction is likely. Very little research has been conducted 424 

on the rate/magnitude of tephra compaction. Some researchers have applied ‘rule of 425 

thumb’ adjustments to allow for compaction: for example, Sarna-Wojcicki et al. (1981) 426 
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increased their estimate of initial layer thickness in the Ritzville area by a factor of two 427 

after a rainfall event, based on mass loading figures. Placing constraints on the rate of 428 

tephra compaction, either by direct measurement of fresh deposits, or experimental 429 

manipulation, would clearly be a useful goal for future research. 430 

 431 

Given these factors, the level of preservation we observed in the MSH1980 layer was 432 

unexpected. Our surveys revealed little or no evidence of bioturbation. We did not find 433 

litter in the samples during collection, average organic content (in the form of fine roots, 434 

soil organic matter (SOM) and soil microbes) was comparatively low and contacts with 435 

the surrounding soil were usually sharp. These observations are consistent with limited 436 

mixing, and, whilst it is probable that some tephra grains have been lost to other soil 437 

horizons, the thickness and mass loading figures suggest such losses were limited. 438 

Major re-working of the layer by slope processes was only observed in one sampling 439 

location in the GPNF (GP03, subsequently omitted from our analysis). 440 

 441 

Our previous work in Iceland suggests that biophysical feedbacks, specifically 442 

vegetation structure (and its likely impact on surface wind conditions), plays an 443 

important role in tephra retention (Cutler et al. 2016a; Cutler et al. 2016b; Dugmore et 444 

al. 2018). Closed forest (such as that found in the GPNF) should, in principle, be a good 445 

environment for the stabilization of tephra, because the forest canopy reduces surface 446 

wind speed (Online Resource 3) and intercepts a significant proportion of the 447 

precipitation. The degree of ground disturbance by large herbivores is also limited, 448 

when compared to pasture land. The coniferous forests of the Pacific North West are 449 
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highly productive, and the rapid accumulation of an organic layer on top of the tephra 450 

could assist in preservation, as could the formation/persistence of a thick ground layer 451 

of vegetation. 452 

 453 

Even allowing for favourable conditions, the fact that most of the GPNF measurements 454 

exceeded the interpolated initial thicknesses is a puzzle. The apparent discrepancy 455 

could be due to the input of allochthonous (non-volcanogenic) sediment post-deposition. 456 

We assumed that the inorganic component of the samples was mainly tephra, but it is 457 

possible that a small component of fine, non-volcanogenic sediment (i.e., produced by 458 

rock weathering) may have been included (particularly in the samples from the semi-459 

arid sagebrush steppe), compensating for losses of tephra. However, the fine-scale 460 

stratigraphy of the layers suggests that additions of this type were limited. Uncertainty in 461 

the interpolation process might have also contributed towards the seemingly anomalous 462 

result. The trend model included unexplained variance; furthermore, we were not able to 463 

replicate the original sampling locations and kriging variance increases with distance 464 

from the points used to generate the sample variogram (Bivand et al. 2013). However, 465 

we believe the pattern observed in the GPNF was real because: 466 

a) It was persistent (all but one of our measurements exceeded the interpolated 467 

values, sometimes by a factor of two); 468 

b) The trend model was effective in explaining variance in tephra depth; local 469 

variance made a relatively minor contribution to tephra thickness (typically < 20% 470 

in the case of the GPNF measurements); 471 
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c) None of our GPNF sampling locations were more than 7.4 km from a USGS 472 

survey location (typically much closer), so the kriging variance was low (Online 473 

Resource 7); 474 

d) Where our sampling locations were close to the 1980 sites (< 1 km separation, in 475 

some instances) the pattern was preserved (i.e., it is unlikely to be an artefact of 476 

the interpolation). 477 

In addition, the mass loading figure for GP16, close to the main axis of the plume, 478 

exceeded the value estimated Sarna-Wojcicki et al.’s (1981) survey. 479 

 480 

If the tephra layer in the GPNF is, indeed, thicker and heavier than the deposit 481 

measured shortly after the eruption, this suggests a) rapid and near-complete 482 

stabilization of the tephra, with little compaction and b) the addition of further tephra 483 

after first measurements were made. Further tephra may have been added to the 1980 484 

layer after the 18 May eruption, as there were subsequent tephra-producing eruptions. 485 

The plume from one of these eruptions (22 July) was blown eastwards and may have 486 

added a few millimetres of tephra to the 18 May deposit (Waitt et al. 1981). 487 

Furthermore, it is possible that tephra from the 18 May eruption was deposited after 488 

measurement. Zobel and Antos (1991) noted that coniferous trees trapped tephra 489 

during the initial air-fall event, and that this material reached the ground sometime after 490 

the eruption. Measurement techniques may also account for some apparent 491 

discrepancies. Sarna-Wojcicki et al. (1981) noted that other observers reported greater 492 

thicknesses of tephra, but suggested that these reports were due to earlier observations 493 

(i.e., they were made before compaction had occurred) or the reporting of maximum, 494 
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rather than average, thicknesses. The incorporation of organic material (typically around 495 

11% by mass in GPNF) may also have enhanced the thickness of the layer. Whatever 496 

the reasons, it seems that preservation of the tephra layer under close coniferous forest 497 

has been unusually good. 498 

 499 

We observed very little site-to-site variation in the thickness of the distal MSH1980 500 

layer. This was unsurprising as the sampling locations lie parallel with the main axis of 501 

the plume in a region where the rate of change in thickness with distance was low. As in 502 

the GPNF, the degree of tephra retention on undisturbed land around Ritzville was 503 

remarkable, particularly given how susceptible this fine-grained material must have 504 

been to erosion by wind (Online Resource 3). In order to retain so much fine material, 505 

stabilization of the tephra must have been rapid, particularly as the patchy vegetation of 506 

the sagebrush steppe would seem to be a much less favourable environment for 507 

preservation than the closed canopy forest. The retention of the tephra layer in open 508 

areas (i.e. between sagebrush/grass patches) was particularly surprising, as the ground 509 

surface was relatively smooth and exposed to the elements. The lack of variation in 510 

tephra thickness between vegetated and non-vegetated areas around Ritzville was also 511 

unexpected. In Iceland, the thickness of tephra layers is positively correlated with 512 

vegetation height/density (Cutler et al. 2016a), so we expected that the layer would be 513 

thicker under sagebrush clumps. 514 

 515 

The lack of variation in the Ritzville locations implies that the mechanisms for stabilizing 516 

tephra in open areas were just as effective as those operating beneath vegetation. 517 
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Again, it is possible that biophysical processes have influenced tephra preservation: we 518 

suspect that the stabilization of tephra in open areas was due to biocrust formation. A 519 

thin crust was present in all the locations we sampled and was clearly capable of 520 

capping-off the underlying deposit. Cyanobacteria can colonize suitable substrates in a 521 

matter of days to initiate biocrust formation. Thereafter, biological succession can occur, 522 

with increasing cover of bryophytes and lichens being particularly important. Rozenstein 523 

et al. (2014) note that in certain conditions a biocrust can form within weeks, and that 524 

biocrust formation on fine substrates is much faster, and more homogeneous, than it is 525 

on coarse grains. An investigation of the biocrust composition and rate of formation 526 

would be a useful focus of future study. 527 

 528 

In contrast to the MSH1980 layer, preservation of the H1947 layer was spatially 529 

variable, even in areas where presumed human interference was low. The mass loading 530 

observed at Hk08, which initially appeared to be an outlier, was actually closest to the 531 

1947 value. This area differs from the other sampling locations, in that it sits in the 532 

bottom of a shallow, semi-enclosed basin. It is therefore possible that tephra re-533 

mobilized from adjacent, unvegetated slopes supplemented the initial deposit. Most 534 

other sampling locations had experienced losses of tephra, but one (Hk05) appeared to 535 

have gained material. Southern Iceland is a wet and windy locality (Online Resource 3) 536 

subject to significant cryoturbation (evidenced by patterned ground and frost hummocks 537 

(thufur), on our field sites). Vegetation is low-growing and often sparse. However, we 538 

know that tephra from recent eruptions in southern Iceland has been extensively 539 

mobilized in the months following the eruption, even when the eruption was in spring 540 
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(Arnalds et al. 2013). Similar remobilization has been observed following other 541 

eruptions, both in Iceland (Liu et al. 2014) and South America (Panebianco et al. 2017; 542 

Wilson et al. 2011). During the 1947 eruption, the surface vegetation would have been 543 

suffering from winter dieback. It is therefore likely that a significant proportion of the 544 

initial H1947 deposit was re-mobilized after its initial deposition. Fine-scale variation in 545 

surface roughness would have led to the local differences in tephra thickness and mass 546 

loading that we observed. For example, on Hk11 we noted that the H1947 layer was 547 

absent from the ‘crests’ of small hummocks. Furthermore, the tephra fell during winter 548 

when there was patchy snow cover and extensive ground ice formation. Tephra falling 549 

on snow patches would have been re-worked when the snow melted. Any remaining 550 

stratigraphy would have been disrupted by the formation of ground (needle) ice. 551 

Geomorphological processes have clearly been important in the preservation of the 552 

H1947 layer. In this setting, accurate reconstruction of the fallout from the preserved 553 

layer would be extremely challenging. Had the tephra fallen on equivalent vegetation in 554 

a less geomorphologically active setting, the preservation of the layer might have been 555 

much better. 556 

 557 

Tephrostratigraphy relies on the use of isochronous layers, which, ideally, represent 558 

only the primary fallout. However, we suspect that terrestrial tephra deposits are 559 

routinely transformed by processes operating over a range of (frequently overlapping) 560 

timescales. The operation of these processes may make it hard to separate unmodified 561 

and transformed deposits reliably. When tephra is exposed at the surface, it is subject 562 

to both erosion and the stabilizing effect of vegetation. Compaction and disruption by ice 563 
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growth and decay can occur both above and below ground. Once interred, it is affected 564 

by both biological and abiotic processes such as root growth, bioturbation, through-flow 565 

and solifluction. Some transformations, such as those resulting from earthquakes and 566 

land sliding, may occur through the full depth of the soil/regolith. We do not know the 567 

duration of the processes that physically transform tephra layers; they may operate for 568 

as long as the tephra layer exists. We suspect that the rate of change is highest just 569 

after deposition and decreases with time as the tephra layer is progressively buried. 570 

Transformation of the tephra may be continuous or episodic; the rate of change may 571 

alter abruptly as different factors come into play (e.g., the rate of transformation could 572 

reduce sharply on first burial as the tephra is no longer affected by surface processes). 573 

We suspect that the genesis of terrestrial tephra layers varies on a site-by-site basis 574 

according to climate, vegetation cover, topographic location, time and the properties of 575 

both the soil/regolith and the tephra layer itself. However, the trajectory of change can 576 

only be established by longitudinal studies. Regardless of how the transformation 577 

proceeds, it appears that terrestrial tephra deposits can undergo modification without 578 

showing obvious signs of re-working (e.g., diffuse contacts with the soil, disrupted 579 

stratigraphy, etc.) and this process can operate without markedly increasing spatial 580 

patchiness (i.e., all of the deposit in a given area can be transformed in the same way). 581 

Indeed, our experience with the H1947 layer suggests that tephra layers can become 582 

more spatially homogeneous over time. Hence, terrestrial tephra layers have to be 583 

carefully assessed for transformations before they are used to infer volcanological 584 

parameters and processes. 585 

 586 
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 587 

Conclusions 588 

We hypothesized that the MSH1980 and H1947 tephra layers would capture the overall 589 

characteristics of the fallout that created them (i.e., systematic thinning and reduction in 590 

mass loading). However, we expected the transformation of both their physical 591 

properties and internal structure (H1). We also anticipated that vegetation cover would 592 

mediate this transformation, e.g., the degree of preservation of the MSH1980 layer in 593 

GPNF would be higher than that in the sagebrush steppe (H2). We found that the 594 

MSH1980 tephra layer captured the overall characteristics of the original deposit. 595 

However, the degree of preservation varied markedly between Washington State and 596 

Iceland – the MSH1980 layer had a higher level of preservation - and the layers did not 597 

thin predictably during preservation. It was difficult to calibrate the preservation of the 598 

MSH1980 layer in the GPNF, because there is strong evidence that contemporary 599 

measurements underestimated the original deposit. If the original measurements had 600 

captured the whole deposit, we may well have seen the thinning/mass loss we 601 

anticipated. In Iceland, the H1947 layer did not retain the overall characteristics of the 602 

initial deposit, due to the operation of local-scale biophysical feedbacks which resulted 603 

in variable preservation. The collection of more samples, spread over a wider area, 604 

might have given a clearer picture, but it was clear that the signal from the initial deposit 605 

was largely scrambled. Hence, the support for our first hypothesis was qualified, at best. 606 

 607 

It appeared that vegetation cover played a role in tephra preservation. The Icelandic 608 

sampling locations, characterized by low-growing and sometimes sparse vegetation, 609 
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had variable (often poor) preservation. In contrast, the closed tree cover of the GPNF 610 

was associated with a high level of tephra preservation. However, against expectations, 611 

we also found good preservation in the sparse vegetation of the sagebrush steppe, 612 

hinting at the previously unsuspected significance of biocrusts (a cover type 613 

characteristic of ~70% by area of global drylands: Ferrenberg et al. 2015). Hence, whilst 614 

we found evidence consistent with H2, we also revealed a more nuanced relationship 615 

between ground cover, geomorphological processes and tephra preservation. These 616 

findings reinforce our belief that reconstructions of past eruption histories based on 617 

terrestrial tephra records are sensitive to surface conditions (specifically vegetation 618 

cover) at the time of the eruption. Hence, inferred volcanological parameters based on 619 

these deposits should be treated with due caution. The effect of surface conditions on 620 

tephra preservation (and, by extension, volcanological inferences) will be particularly 621 

marked when a tephra deposit crosses regions of contrasting vegetation cover. 622 

 623 
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Table captions 719 

 720 

Table 1 Characteristics of the MSH1980 and H1947 eruptions; the estimated fallout 721 

area from MSH1980 is based on the area of the 1 mm isopach given in Engwell et al. 722 

(2015) 723 

 724 

Table 2 Summary of survey data (T = thickness; CV = coefficient of variation in 725 

thickness measurement; SE = standard error). Site codes: GP = Gifford Pinchot 726 

National Forest; R = Ritzville; Hk = Hekla  727 
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Figure captions 728 

 729 

Fig. 1 Conceptual diagram illustrating the post-depositional transformation of tephra 730 

layers 731 

 732 

Fig. 2 MSH1980 sampling locations; our sampling points are indicated by the numbered 733 

red circles; the original sampling points are indicated with open circles and the isopachs 734 

of 1980 fallout with orange lines; the State boundary is shown with a continuous black 735 

line; a) location plan, showing the proximal (GPNF) and distal (Ritzville) sampling areas; 736 

the location of Mount St Helens is indicated by a black triangle; b) detail of the GPNF 737 

sample locations; the blue lines indicate transects established in the original survey of 738 

the tephra deposit; black parallel lines indicate major roads; c) detail of the Ritzville 739 

sample locations (the location of Ritzville is indicated by a black square). Isopachs and 740 

sampling points from Sarna-Wojcicki et al. (1981); tephra thicknesses are in mm 741 

 742 

Fig. 3 H1947 sampling locations (red circles), with the original sample locations 743 

indicated by open circles; isopachs (orange lines) from Thorarinsson (1954); 744 

settlements are indicated by black square; icecaps are outlined in black; tephra 745 

thicknesses are in mm 746 

 747 

Fig. 4 The three different environments that we surveyed; a) the closed coniferous 748 

forest that characterizes the GPNF sample locations (for scale, the trees in the middle 749 
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ground are approximately 50 cm in diameter); b) sagebrush steppe around Ritzville; c) 750 

heathland in southern Iceland (note the eroded slopes in the middle ground) 751 

 752 

Fig. 5 The average thickness of the MSH1980 layer in the GPNF (sampling location 753 

reference numbers are given below each section). Data from our sampling locations 754 

have been arranged along Waitt & Dzurisin’s B-B’ and C-C’ section lines and the 755 

designation of the tephra units follows their nomenclature (Waitt and Dzurisin 1981). 756 

The position of section A-A’ (which approximates the main axis of the plume) is shown 757 

in each case 758 

 759 

Fig. 6 Representative images of the tephra layers showing a) the MSH1980 layer in the 760 

GPNF; b) the MSH1980 layer at a distal location outside Ritzville and c) the H1947 761 

layer. Note the more recent Eyjafjalajökull 2010 tephra layer above the H1947 deposit, 762 

and the older Katla 1918 layer below 763 

 764 

Fig. 7 MSH1980 mass loading data; a) Waitt and Dzurisin’s (1981) mass loading data, 765 

showing their isomass lines (blue, with mass in g cm-2) and our sampling locations (red 766 

circles); our observed mass loading for the Ritzille area is in bold red text; b) our mass 767 

loading figures for the GPNF sampling locations (in g cm-2), compared to the isomass 768 

lines from the original survey; Waitt and Dzurisin’s transect lines are shown for 769 

reference; c) our mass loading figures arranged along Waitt and Dzurisin’s (1981) 770 

transect C-C’ in the GPNF; the red vertical line indicates the intersection with transect 771 

A-A’, which coincides with the plume axis 772 

 773 
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Fig. 8 H1947 mass loading data; Thorarinsson’s (1954) original measurements are 774 

shown as green circles, scaled according to his measurements (the green figures in g 775 

cm-2); our measurements represented by red circles on the same scale (the red figures, 776 

also in g cm-2); the orange line indicates Thorarinsson’s 1 mm isopach line; open circles 777 

indicate Thorarinsson’s original sampling points and black squares settlements; icecaps 778 

are outlined in black 779 

 780 

Fig. 9 Comparison of measured and interpolated values from MSH1980 (top) and 781 

H1947 (bottom) 782 

 783 
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Table 1 

Eruption Date VEI

Tephra vol.

(km
3
 DRE)

Area of fallout 

(km
2
)

Thickness half 

distance (km) Main source

Hekla 1947 (H1947) 29 March 1947 4 0.045 3130 21.2 Thorarinsson (1954)

Mt St Helens1980 

(MSH1980)

18 May 1980 5 0.250 ~140,000 34.4 Sarna-Wojcicki et al . 

(1981)
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Table 2 

Site ID WGS84 °N WGS84 °E

distance 

from vent 

(km)

mean 

thickness, 

T (mm)

T SE

(±, mm)

CV in 

thickness 

(%)

mass 

loading

(g cm-2)

GP01 46.23954 -121.97872 17.5 181.7 30.9 29 NA

GP02 46.27365 -121.96663 19.8 163.3 10.9 12 NA

GP04 46.30986 -122.05902 16.8 133.3 16.9 22 NA

GP05 46.33316 -121.97138 23.3 101.7 7.3 12 NA

GP06 46.24216 -121.61931 44.7 20.0 2.9 25 NA

GP07 46.27471 -121.60789 46.2 30.0 0.0 0 NA

GP08 46.27495 -121.60868 46.1 33.3 1.7 9 1.6

GP09 46.28448 -121.64542 43.6 36.7 1.7 8 2.8

GP10 46.29844 -121.68956 40.7 46.7 4.4 16 NA

GP11 46.29767 -121.71782 38.6 56.7 8.8 27 5.3

GP12 46.32348 -121.72968 38.7 63.3 6.0 16 7.4

GP13 46.35586 -121.72059 40.8 63.3 9.3 25 7.3

GP14 46.36508 -121.72563 41.0 71.7 6.7 16 6.0

GP15 46.37405 -121.72748 41.3 93.3 8.8 16 11.2

GP16 46.39465 -121.73271 42.1 103.3 4.4 7 9.5

GP17 46.42008 -121.75088 42.6 56.7 6.7 20 NA

GP18 46.43559 -121.76901 42.5 43.3 3.3 13 2.5

GP19 46.44701 -121.79836 41.7 15.0 0.0 0 NA

GP20 46.45489 -121.86100 39.0 13.3 4.4 57 NA

R01 47.09090 -118.66449 288.2 32.3 3.0 16 NA

R02 47.09590 -118.62557 291.2 43.7 0.9 3 NA

R03 47.10487 -118.58917 294.1 39.3 1.2 5 NA

R04 47.10965 -118.55353 296.8 35.7 1.2 6 NA

R05 47.07618 -118.76224 280.6 33.7 1.2 6 2.3

R06 47.07300 -118.80140 277.7 20.7 3.9 33 NA

R07 47.08041 -118.85823 273.9 31.0 1.7 10 NA

Hk01 61.81116 -19.89899 21.5 19.4 2.3 44 2.5

Hk02 63.80656 -19.86562 21.3 36.3 1.7 21 2.6

Hk03 63.68988 -19.51749 33.9 24.0 2.0 37 2.6

Hk04 63.65824 -19.88710 37.3 31.0 1.5 22 2.8

Hk05 63.63962 -19.95975 40.4 23.0 1.2 23 2.7

Hk06 63.72763 -19.95592 31.1 23.0 5.1 65 NA

Hk07 63.72218 -19.87866 30.4 27.5 1.9 35 NA

Hk08 63.72272 -19.64339 29.6 58.9 4.2 35 4.1

Hk09 63.71741 -19.71861 29.6 37.1 1.9 25 2.0

Hk10 63.71984 -19.79180 29.7 28.8 1.6 28 2.5

Hk11 63.71721 -19.76161 29.8 31.2 1.9 27 2.1

Hk12 63.56869 -19.79022 46.4 15.9 1.0 30 NA
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