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Abstract 

This paper presents a numerical model that simulates the nearshore circulation and the propagation of 

waves in two horizontal dimensions (2DH) across the coastal zone, from intermediate depth to zero 

depth. Pre-breaking, wave propagation is calculated using a Boussinesq equation set with enhanced 

dispersion characteristics, discretised using second-order central differences and solved using the 

conjugate gradient method with fourth order Runge-Kutta time integration. In the breaker zone, the 

Boussinesq dispersive terms are gradually switched off, and the resulting non-linear shallow water 

equations solved using a finite volume MUSCL-Hancock scheme with an HLLC approximate Riemann 

solver. Broken waves are treated as hydraulic bores. A wetting and drying algorithm models the moving 

wet/dry front at the shore. Waves are generated by a line of independently moving piston paddles which 

are represented through a linear mapping, stretching and compressing the grid in the region of the 

paddles. Model verification tests include wave sloshing in a frictionless basin, seiching in a parabolic 

basin with bed friction, solitary wave propagation over a horizontal bed, and the interaction of a solitary 

wave with a conical island. After calibration, the model simulates the generation of wave-induced 

currents by regular waves as they interact with sinusoidal and tricuspate beaches, and the propagation of 

a uni-directional focused wave group over a plane beach. Results are compared against previously 

published laboratory data. The validation tests confirm that the 2DH model reproduces several important 

coastal hydrodynamic phenomena including wave-induced currents and multi-component wave packets. 

The model can thus be used to replicate wave basin experiments, and could be extended to multi-

directional waves, leading to a better understanding of hydrodynamic processes in shallow coastal 

waters. 

Keywords: Boussinesq; shallow water; finite differences; finite volume; nearshore circulation; focused 

wave group. 

1 Introduction 

The Boussinesq equations (originally formulated by Boussinesq in 1872 [1]) represent an inviscid 

depth-averaged approximation of the Navier-Stokes equations. Over the past 50 years, Boussinesq-

type models have become increasingly popular, due to their ability to represent adequately the main 

physical processes at the shore, while remaining relatively computationally efficient, compared to 

Navier-Stokes CFD solvers. 

Early Boussinesq models based on the classical equations derived by Peregrine [2] were limited to 

modelling very long waves, because of the weakly nonlinear, weakly dispersive nature of the 

governing equations, i.e. 
2 1O O , where the dispersion parameter μ is the ratio of mean 

water depth to wavelength and the nonlinearity parameter ϵ is the ratio of the wave amplitude to mean 

water depth. Madsen and Sørensen [3] improved the dispersive properties of the classical equations by 

applying a linear operator to the momentum equation that resulted in higher-order dispersive 

contributions, while retaining only third-order derivatives. This led to an equation set valid for relative 

water depth up to 0.5 . Nwogu [4] also achieved improved dispersion characteristics without 

increasing the order of the governing equations, by formulating the equations in terms of a chosen 
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reference velocity (evaluated at a specific depth) rather than a depth-averaged velocity. Wei et al. [5], 

Madsen and Schäffer [6], and Gobbi et al. [7] among others, further extended the validity of 

Boussinesq-type equations by developing fully nonlinear models where 1O . Agnon et al. [8] 

were the first to achieve the same accuracy in nonlinear properties as in dispersion properties. The 

model was further enhanced by Madsen et al. [9] who achieved a more accurate vertical velocity 

profile for a mildly sloping bed. The later model of Madsen et al. [10] is valid for both fully nonlinear 

and highly dispersive waves propagating over rapidly changing bathymetry. 

As most Boussinesq-type models are based on the assumption of irrotational flow, they cannot model 

wave breaking, and must be modified to account for the associated energy dissipation. The main 

approaches to this are the surface roller model and the eddy-viscosity model. The surface roller 

concept, stemming from the work of Svendsen [11], forms the basis of models proposed by Schäffer 

et al. [12] and Madsen et al. [13]. The eddy-viscosity approach to wave breaking introduces a 

diffusive-type term in the momentum equation and has been implemented in one-dimension by 

Karambas et al. [14] and in two-dimensions by Chen et al. [15]. Briganti et al. [16] apply a rotational 

flow approach to a fully nonlinear Boussinesq-type model, in which the eddy viscosity varies over the 

water column. This requires the numerical solution of the vorticity transport equation. The semi-

integrated model of Antuono et al. [17] [18] follows a similar approach. An alternative approach to 

wave breaking is to use a hybrid model based on Boussinesq-type equations pre-breaking and the 

shallow water equations post-breaking. This approach is adopted in the present research study, and 

builds on previous research by Borthwick et al. [19], Orszaghova [20], and Orszaghova et al. [21]. 

Hybrid Boussinesq-NSWE numerical models have also been proposed by Tonelli et al. [22] [23], Shi 

et al. [24], and McCabe et al. [25]. 

Before computer technology advanced to the stage where Boussinesq modelling of the surf-zone 

became possible, most models of wave-induced circulation in the nearshore zone were based on 

period-averaged, depth-integrated conservation laws of mass and momentum. Early work on 

modelling wave-current interaction using Boussinesq-type equations was carried out by Yoon et al. 

[26]. Chen et al. [15] developed a two-dimensional model of wave-induced nearshore circulation 

based on the fully nonlinear Boussinesq equations and achieved satisfactory results for waves 

breaking over rapidly changing bathymetry. Chen et al. [27] applied the model to a rip current system. 

Focused wave groups represent an efficient means for coastal engineers to model realistic large wave 

events at the coast, either numerically or in the laboratory, and estimate run-up and overtopping. 

Other alternatives are regular waves, which being regular sinusoids do not properly model a realistic 

sea state, or irregular (random) wave simulations. The major drawback of the latter is the length of 

simulation required to produce an extreme event, which leads to problems of repeated wave 

reflections in laboratory experiments and a heavy computational load for numerical models. 

NewWave is a methodology that ensures the focused wave group corresponds to the average shape of 

the largest wave event in a Gaussian sea state, which is imperative for accurate calculations of run-up 

and overtopping. The theory behind NewWave was first developed by Lindgren [28] and 

independently by Boccotti [29]. Tromans et al. [30] applied the concept to deep water applications. 

Jonathan and Taylor [31] verified NewWave against large waves in deep water whereas Taylor and 

Williams [32] undertook a similar exercise for waves in intermediate depth. Whittaker et al. [33] 

confirm the validity of NewWave in relatively shallow coastal waters. 

The one-dimensional hybrid numerical solver developed by Orszaghova [20] has proved to be a 

computationally efficient and accurate tool for modelling nearshore wave propagation, run-up and 

overtopping [21] [34]. This paper extends Orszaghova’s solver to two horizontal dimensions (2DH) 

and facilitates the investigation of more complicated wave-wave and wave-shoreline interactions, in 

particular those interactions that lead to wave-induced nearshore currents. Thus, a 2DH model is 

presented which solves the enhanced Boussinesq equation set of Madsen and Sørensen [3] pre-

breaking and the nonlinear shallow water equations post-breaking. Although the Madsen and 

Sørensen equations are relatively simple in comparison with the more sophisticated, higher-order 

Boussinesq equation sets, simplicity is a key consideration for the development of a numerical model 

that does not necessarily require high-performance computing resources to be a useful tool to the 
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coastal engineer. Waves in the model are generated by a system of independently moving piston-type 

paddles. A linear mapping is applied in the region of the paddles, and the governing equations are 

solved on the transformed, fixed domain, to overcome the problem of a time-varying domain when 

the paddles are in motion. The wave generation mechanism enables full replication of laboratory 

experiments, including the generation of multi-directional seas and their interaction with shorelines of 

different configurations. 

2 Governing equations 

2.1 Nonlinear shallow water equations 

The nonlinear shallow water equations implemented in the numerical model include the effects of bed 

friction and deviatoric stresses, and are given by 

0,
yx

qq

t x y
  (1a)  

2
x yx x

bx xx xy

q qq q
gd dT dT

t x x d y d x y
  (1b)  

and 

2

y y x y

by xy yy

q q q q
gd dT dT

t y y d x d x y
  (1c)  

where ζ is the free surface elevation above the still water level, d is the total water depth, h is the still 

water depth, and g is the acceleration due to gravity. dx
h

q u z  and dy
h

q v z  are the fluxes in 

the x- and y-directions respectively, in which u and v are the depth-integrated velocities. bx  and by  

are bed friction stresses per unit water density, estimated empirically from 

2 2 2 2and ,bx f by fC u u v C v u v   (2)  

in which fC  is the bed roughness coefficient and ,xx xyT T  and yyT  are effective stress terms. The 

effective stresses are the deviatoric stresses, grouped together with the stresses that arise from the 

non-uniformity of the vertical velocity profile as a result of the depth-integration process. They 

consist of three components: a molecular viscous stress, a Reynolds stress due to turbulent fluctuating 

velocity components, and a stress related to the non-uniformity of the vertical velocity profile. For 

most flow situations, the first and third components are significantly smaller than the Reynolds 

stresses, and can be neglected. The method of evaluating the Reynolds stresses is referred to as the 

turbulence model. The Boussinesq eddy viscosity concept forms the basis of many turbulence models, 

and expresses the Reynolds stresses in terms of the gradients of the time-averaged velocity 

components, giving 

2 , ,  and  2 ,xx xy yy

u v u v
T T T

x x y y
  (3)  

in which ε is the eddy viscosity. This is the simplest possible turbulence model, dating back to 

Reynolds and Prandtl, and is implemented in the present model, following Borthwick and Barber [35]. 

The value of ε can be be calculated from constant or depth-averaged eddy viscosity models. 

Figure 1:  Definition sketch 

2.1.1 Stage-discharge formulation 
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Formulation in terms of the free surface elevation ζ and the still water depth h presents difficulties 

when applying the shallow water equations to problems that involve a wet-dry interface, because both 

h and ζ are difficult to define at the interface and in dry areas. Problems also arise when there are 

discontinuous bodies of water, such as ponds at different elevations. This problem manifests itself 

during coastal overtopping, when the mean water levels either side of a wall or bank may be quite 

different after an inundation event. Following earlier work by [36], Liang and Borthwick [37] split the 

free surface gradient terms as follows in the x-direction: 

2 2
,

2

b b
z zg

gh g
x x x

  (4)  

and similarly in the y-direction, where bz  is the bed elevation above a horizonatal datum, and 

bz h . The splitting can be derived by examining the momentum balance across a vertical 

element of liquid extending from the bed to the free surface in the x-direction (and of unit width in the 

y-direction). For details of the full derivation, see [37]. 

From Figure 1 it can be seen that because η is measured relative to the datum, it is always consistently 

defined. Formulation in terms of η and bz  means that the model can then deal with discontinuous 

bodies of water, such as may occur when a seawall is overtopped. Flows due to inundation beyond a 

sea defence can then be handled by the numerical model. The system of shallow water equations 

implemented in the numerical model thus becomes 

,
t x y

u f g
s   (5)  

where 

2
2

2

2

1
, 2 , and

2

1
2

2

0

x y

x yx
x b

y
x y y

b

b
bx xx xy

b
by xy yy

q q

q qq
q g z

d d
q

q q q
g z

d d

z
g dT dT

x x y

z
g dT dT

y x y

u f g

s .

  (6)  

  

2.2 Boussinesq equations 

Including the effects of bed friction and eddy viscosity, and formulated in terms of , ,x yq q , the 

enhanced Boussinesq equation set of Madsen and Sørensen [3] implemented in the numerical model 

is as follows: 

0,
yx

qq

t x y
  (7a)  
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2

2

1Ψ ,
2

x yx

bx b
bx xx xy

q qq

zd dq zg
g g dT dT

t x x x y x x y

 (7b) 

and 

 
2

2

2Ψ ,
2

y x y

y b b
by xy yy

q q q

dq z d zg
g g dT dT

t y y y x y x y

 (7c) 

where 1 2Ψ ,Ψ  are dispersive terms, given by 

33 3 3
2 3

1 2 3 2

2 22 2 2 2

2 2

1
Ψ

3

1 1 1
2 ,

3 6 6

yx

y yx

qq
B h Bgh

x t x y t x x y

q qqh h
h Bgh Bgh h Bgh

x x t y t x y y x t x y

 (8a) 

and 

3 3 3 3
2 3

2 2 3 2

2 2 22 2 2

2 2

1
Ψ

3

1 1 1
2 ,

3 6 6

y x

y x x

q q
B h Bgh

y t x y t y x y

q q qh h
h Bgh Bgh h Bgh

y y t x t y x x y t x y

  (8b)  

in which B is the Boussinesq linear dispersion coefficient. By setting 
1

15
B , the embedded linear 

dispersion relation of (7) is equivalent to a [2][2]  Padé expansion of the exact linear dispersion 

relation, 
2 tanhgk kh . Setting 0B  reverts back to Peregrine’s classical Boussinesq equation 

set. 

3 Numerical implementation 

Figure 2:  Sample basin layout 

3.1 Computational grid and domain mapping 

In the numerical model, the physical domain is represented by a two-dimensional, rectangular grid of 

length xL  and width yL . Waves are generated by a line of imax independently moving piston paddles 

along the western boundary of the basin (see Figure 2). Note that a row-column indexing notation is 

used, whereby the ,i j  subscripts of a point ,i jp  on the grid represent the indices of points in the y- 

and x-directions respectively. Initially, when the paddles are at rest in the zero position, the Cartesian 

coordinates of the underlying uniform grid are given by 

, 1 Δ , 1 Δ ,j ix y j x i y   (9)  
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where Δ / 1x maxx L j  and Δ / 1y maxy L i , for 1... maxj j  and 1... maxi i . Δx  and Δy  

are the spacings between grid points in the x- and y-directions respectively. 

The length of the basin varies with time when the paddles are moving. To deal with this, the region 

governed by the Boussinesq equations is divided into two zones: the moving domain and the fixed 

domain. The moving domain is of variable length ib t  in the x-direction and fixed width, yL . At 

0t , all of the paddles are in the zero position, and the initial x-dimension of the moving domain is 

given by a fixed length, ( 0)ib t , herein referred to as 0b , which contains a fixed number of grid 

points, B , in the x-direction. The length of 0b , and consequently the value of B  is chosen 

depending on the problem under consideration. A similar approach is adopted to that of [20], whereby 

0b  is set to be approximately 10 times the maximum paddle sweep. 

When the paddles at the western boundary are in motion, the lattice of grid points that define the 

paddle domain stretches and compresses as the paddles move. In order to avoid re-meshing in this 

region at every time step, a transformation is used to map the moving grid onto a fixed computational 

grid to facilitate the solution of the governing equations. As the paddles are confined to the western 

edge of the tank and can only move in the x-direction, the mapping employed is a function of x only. 

Each moving row of grid points in the paddle domain is mapped onto a fixed row with points 

distributed evenly on the interval 1,1 , with spacing, Δ 2 / 1x B . 

Figure 3:  Paddle domain transformation applied to the moving domain 

The initial length of the paddle domain is given by a fixed length, 0b . As the paddles move, each 

row, i, of the grid has a variable length 0
ii pb t b x t , where 

ipx t  is the paddle displacement 

time series for the i-th paddle. The transformation from the moving , ,x y t  domain to the fixed 

, ,x y t  domain, is based on the following linear stretching mapping: 

1 2 .ip

i

x x t
x

b t
  (10)  

Note that y y  and t t . Thus, , , , ,f x y t f x y t . The transformed basic derivative 

operators are derived by applying the chain rule, yielding 

2 1
, , and 1 .

i

i i

b t
x

x b t x y y t t b t t x
  (11)  

Higher order and mixed derivatives are obtained through careful combination of the above operators. 

Application of the transformation in (10) to (7), via the transformed derivative operators, results in the 

mapped Boussinesq equation set. Both sets of equations (the transformed set in the vicinity of the 

paddles, and the untransformed equations given by (7) in the rest of the Boussinesq domain), are 

solved numerically in the same way, as described in Section 3.2. 

3.2 Numerical solution of the Boussinesq equations 

3.2.1 Finite difference discretisation 

The Boussinesq equations are discretised using a second-order centred finite difference scheme. This 

involves a three point stencil for first and second derivatives and a five point stencil for higher order 

derivatives. The stencils for the spatial cross-derivative terms, 
2 / x y , 

3 2/ x y  and 

3 2/ x y , span three points in the x and y directions. 
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The finite difference expressions at the interface between the moving and fixed domains must be 

treated carefully, because different governing equation sets and grid spacing exist either side of 

j B . At a point ,i jp , where j B , the three-point stencil defining first and second derivatives 

and the five-point higher order stencils will span both regions. Where third-order derivatives are 

calculated at 1j B , or 1j B , the five-point stencil employed will again span both regions. 

Mixed derivative non-uniform stencils are obtained through careful combination of the non-uniform 

and uniform stencils. Expressions for the first and second-order stencils at j B  are given in (12). 

Higher order and mixed derivative stencils as well as the equivalent expressions at 1j B  and 

1j B  have been omitted for brevity. Note that ib t  is abbreviated to ib . 

2

, , 1 , , 1

01 0 1 1
,

Δ 0 Δ 0 Δ 0 0

i i
x i j B i B i B i B

i i

b b bb
f p f f f

x b b x b x b b b
  (12a)  

2

, , 1 , , 12 2 2

2 2 21 1 1
, .

Δ 0 Δ 0 Δ 0 0

i i i
xx i j B i B i B i B

i i

b b b
f p f f f

x b b x b x b b b
  (12b)  

3.2.2 Time integration and conjugate gradient solver 

The discretised systems to be solved can be written as 

, ,t x yq qaη   (13a)  

and 

, ,t x yq qAQ b   (13b)  

where η  represents the vector of values of η, and Q  represents a vector containing values of xq  and 

yq  at each grid point within the Boussinesq domain. a  is the vector of non-time-dependent terms of 

(7a), and b  is a similar vector representing the non-time-dependent terms of equations (7b) and (7c). 

Non-time-dependent terms refer to all terms that do not contain a time derivative of the conserved 

variables, i.e. / t , /xq t , and /yq t . Thus Q  and b  have double the number of values of 

η  and a . A  is a matrix of coefficients resulting from the discretisation of the time-dependent terms 

of equations (7b) and (7c), and is of size m m , where 2 2switchm imax B . The system 

(13) is integrated forward in time using a fourth-order Runge-Kutta algorithm (RK4). At each stage of 

the RK4 algorithm, a linear system of the form Ax b  must be solved, where x  is the vector of 

xq

t
 and 

yq

t
 at each grid point. A  and b  are as described in the previous section. The matrix A  

is a real, symmetric, positive definite, sparse banded matrix. The conjugate gradient method, 

originally proposed by [38], is suited to the numerical solution of such a system. It stems from the 

method of steepest descent, but instead of searching in the direction in which the function to be 

minimised, f, decreases most quickly, the search directions used are A-orthogonal to each other. Two 

vectors, id  and jd  are said to be A-orthogonal, or conjugate, if 0T

i jd Ad . Given the inputs A , b  

and a starting estimate of the solution, x  (typically zero), the method of conjugate gradients as 

summarised in [39] is as follows: 
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0

2

0

1

1

1 1

1 1

1 1

0

While   and 

1

n n n

T

new n n

max new

T

n n
n T

n n

n n n n

n n n n

old new

T

new n n

T

n n

T

n n

n n n

n

n n

n n

d r b Ax

r r

r r

d Ad

x x d

r r Ad

r r

r r

r r

d r d

  (14)  

where d  is the vector of search directions, r  is the residual, n is the iteration, and ϵ is the error 

tolerance. When the algorithm is fully converged, i.e. the minimum has been reached, the residual is 

equal to zero. In practice however, the algorithm stops when the norm of the residual falls below the 

specified tolerance, or the maximum number of iterations, maxn , is reached. 

For ease of numerical implementation, the dispersive terms in the Boussinesq momentum equations 

are neglected at the points closest to the paddles ( 1,2j ). It is assumed that over this short distance, 

the lack of dispersion is not significant. A first-order forward difference discretisation of the resulting 

shallow water equations is used at the paddle faces ( 1j ), with a second-order centred difference 

scheme implemented one column of grid points away from the paddles in the x-direction ( 2j ). 

Second-order discretisation of the full Boussinesq equation set begins at 3j . 

3.2.3 Boundary conditions for the Boussinesq region 

At the start of each time step, the flux in the x-direction, xq , at the paddle faces ( 1j ) is updated to 

match the paddle motion, 

,1 ,1 ,
i ix i p

t
q d x t   (15)  

where d is the local water depth at the paddle, and 
ip

t
x t  is the velocity of the 

thi  paddle at the 

current time step. Slip conditions are assumed along the paddle faces. Therefore the steps that result 

along the 1j  boundary due to the motion of the paddles in the x-direction are not considered. It is 

assumed that the relative motion of adjacent paddles is sufficiently small not to impact on the results 

in a significant way. 

The northern and southern boundaries of the domain ( 1i  and ; 1, switchi imax j B ), are 

vertical solid walls. Since there can be no flux through the boundaries, 1, , 0y j yimax jq q . Slip 

boundary conditions are implemented in the numerical model using ‘ghost’ grid points beyond the 

boundary, whereby 
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0, 2, 0, 2, 0, 2,

1, 3, 1, 3, 1, 3,

1, 1, 1, 1, 1, 1,

2, 2, 2, 2, 2, 2,

, ,

, ,

, ,

, ,

j j x j x j y j y j

j j x j x j y j y j

imax j imax j ximax j ximax j yimax j yimax j

imax j imax j ximax j ximax j yimax j yimax j

q q q q

q q q q

q q q q

q q q q

  (16)  

In cases where the whole domain is solved by the Boussinesq equations, i.e. switchB jmax , no flow 

through the eastern boundary means that , 0xi jmaxq  for 1,i imax . Here, slip boundary 

conditions corresponding to vertical, solid walls must also be applied where, again, ghost cells are 

used. 

, 1 , 1 , 1 , 1 , 1 , 1

, 2 , 2 , 2 , 2 , 2 , 2

, ,

, ,

i jmax i jmax xi jmax xi jmax yi jmax yi jmax

i jmax i jmax xi jmax xi jmax yi jmax yi jmax

q q q q

q q q q
  (17)  

3.2.4 Smoothing of the updated solution 

A feature of iterative solvers such as the conjugate gradient method, is the accumulation of floating 

point error in the solution. These errors can grow rapidly and lead to saw-tooth instabilities that result 

in the model crashing. To mitigate against these instabilities, as well as the accumulation of error due 

to the first-order discretisation used at the paddle face, numerical smoothing is applied in the moving 

paddle domain. This takes the form of a 5-point filter applied in the y-direction parallel to the paddle 

faces. It is given by 

, 2, 1, , 1, 2,

1
4 10 4 ,

20

smooth

i j i j i j i j i j i j   (18)  

where ,

smooth

i j  represents the smoothed value of η at each grid point in the paddle domain, calculated 

using the updated values of η at the end of every time step. The same filter is applied to the fluxes xq  

and yq . Applying a filter in this way also minimises the potential for instability due to the assumption 

of slip conditions along the paddle faces, as described in the previous section. 

3.3 Numerical solution of the nonlinear shallow water equations 

3.3.1 Finite volume solver 

The nonlinear shallow water equations are used to model broken waves propagating as bores as well 

as being implemented in areas of shallow water ( / 0.05d , where d is the local water depth and λ 

is the wavelength). Thus a numerical scheme with shock-capturing capabilities is necessary to evolve 

discontinuous, steep-fronted flows. When discontinuities are present, the derivatives approximated by 

finite difference methods cannot be calculated. Hence, a finite volume method is used, which is based 

on the integral form of (5), given by 

Ω Ω Ω
 dΩ dΩ  dΩ

t x y

f g
u s   (19)  

where u, f, g and s are given by (6) and Ω  represents the volume element. In this research, the 

Godunov-type finite volume solver outlined by Liang and Borthwick [37] is implemented, with an 

HLLC approximate Riemann solver used to evaluate the fluxes across the interfaces between volumes 

where discontinuities might be present. Godunov, or upwind methods, use wave propagation 

information to construct the numerical scheme. The solver operates on a regular grid, with the 

coordinates of the centres of the grid cells or volumes given by ,j ix y  for 1,switch dj B B  and 

1,i imax . In this scheme, the time-marching formula is given by 
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1

, , ,

Δ Δ
Δ

Δ Δ

n n

i j i j E W N S i j

t t
t

x y
u u f f g g s   (20)  

where the subscript ,i j  refers to the cell index, the superscript n represents the time level, Δt  is the 

time step, Δx  and Δy  are the grid spacings, and Ef , Wf , Ng  and Sg  are the fluxes through east, 

west, north and south faces respectively of each cell. 

Following [37], the MUSCL-Hancock predictor-corrector method is adopted to integrate the 

equations forward in time. This method achieves second-order accuracy in time and space. 

3.3.2 Boundary conditions for the shallow water equations 

If the eastern end of the basin is inundated, and the nonlinear shallow water equations are applied in 

this region, ghost cells are utilised beyond the eastern wall of the tank in a similar way as in the 

Boussinesq region. Given that the conserved variables are calculated at cell centres in the finite 

volume solver, the eastern boundary of the basin exists at the interface between cells, giving rise to 

the boundary conditions 

, 1 , , 1 , , 1 ,, , .i jmax i jmax xi jmax xi jmax yi jmax yi jmaxq q q q   (21)  

Similarly, the boundary conditions for the southern and northern boundaries of the shallow water 

domain are given by 

0, 1, 0, 1, 0, 1,

1, , 1, , 1, ,

, ,

, ,

j j x j x j y j y j

imax j imax j ximax j ximax j yimax j yimax j

q q q q

q q q q
  (22)  

where 1,switch dj B B . 

3.3.3 Wetting and drying 

The method described by Liang and Borthwick [37] is invoked where a wet/dry front exists towards 

the eastern end of the basin. In this approach to wetting and drying, the local bed slope is modified to 

avoid spurious flow in dry cells. In general, dry cells are excluded from the computational domain 

unless they are about to be flooded, i.e., if a cell is dry but has a bed level below that of a wet 

neighbour. The moving shoreline is thus automatically tracked by the finite volume solver. 

Following [37] and [40] any cell with water depth less than the critical value (generally 1mm for 

laboratory scale simulations) is automatically dried out and the fluxes set to zero. The small amount of 

water that was present is added to a wet adjacent cell to ensure mass conservation. In some cases, for 

example when the slope is steep, the model may predict that more water than is actually available will 

flow out of the cell of interest, causing a negative water depth. In this situation, the depth is set to zero 

and water is subtracted from the adjacent cell containing the most water, again ensuring mass is 

conserved. In both cases, the fluxes, xq  and yq  in the adjacent cell are adjusted to ensure the 

velocities remain the same as before. 

It should be noted that automatically drying out cells with water depths below a critical value results 

in a shoreline position that differs from the theoretical shoreline. Antuono et al. [41] show that in 

depth-averaged models that incorporate a Chézy-type frictional formulation, where 0fC  the 

difference between the theoretical and fictitious shorelines grows linearly with time. This is due to the 

generation of a thin layer of water on the beach face which has a weak influence on the water 

dynamics in this area. 

3.4 Wave breaking and the interface between the Boussinesq and shallow water 

domains 

The 2DH model implements the enhanced Boussinesq equations (7) pre-breaking where the modelled 

free surface is smooth. The nonlinear shallow water equations (5) are applied to shoaling waves, 
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which allows them to shock up, break and propagate as bores. The energy dissipation that results from 

wave breaking is naturally handled by (5) due to the energy loss across the shock (see for example 

Section 2.7 of [42]). In the numerical model, the switch from Boussinesq to shallow water equations 

to initiate wave breaking occurs when the slope of the free surface exceeds a critical threshold, given 

by 

22

Θ .
x y

  (23)  

This calculation is performed at all points in the numerical domain at the beginning of each time step. 

The most offshore point where Θ 0.4 , (approximately 22°) determines the breaking location. 

Orszaghova et al. [20] found that this value for the slope of the breaking wave worked well for the test 

cases considered in [20], and as a result has also been implemented in the present research. Also 

following [20], the switch point between equation sets, switchB , is located a quarter wavelength 

offshore of this point. The wavelength of the shoaling wave that triggers the equation set switch is 

estimated by carrying out a down-crossing analysis in the x-direction, as waves are predominantly 

travelling in this direction. Therefore, the Boussinesq equations are applied offshore of the switch 

point, whereas the shallow water equations are applied at all points onshore of the switch. The switch 

is applied uniformly across the basin in the y-direction so that the interface between the Boussineq 

and shallow water domains is a straight line perpendicular to the side walls of the basin, as illustrated 

in Figure 2. While this may appear to be an overly simplistic approach for a model that operates in 

two horizontal dimensions, it is sufficiently accurate for waves approaching the shore at a reasonably 

shallow angle ( 30 ° to the shore normal). A more sophisticated breaking criterion warrants further 

research. 

The dispersion/shallowness parameter is also considered when determining the switch between the 

Boussinesq and shallow water equations. This parameter is defined as 
d

, where d is the local 

water depth and λ is the wavelength. Where λ cannot be easily determined, i.e. in an irregular wave 

field, it is represented by a typical horizontal length scale that is set by the user. This is set to 1.0 for 

the irregular waves presented in this research. Regardless of whether the switch between equation sets 

has been triggered by the free surface slope criterion, the shallow water equations are implemented in 

all areas where 
1

20
, i.e. where dispersive effects are negligible. Bellotti and Brocchini [43] show 

that dispersive contributions of 
2O  in Boussinesq-type equations disappear in the swash zone. 

Given that the shallow water equations are a subset of the Boussinesq equations, their use in this 

region is mathematically consistent. 

To ensure a smooth transition between equation sets, the dispersive terms of the Boussinesq equations 

are gradually ramped down approaching switchB . The ramping function is given by 

2

1 ,

cos ,
2

s

ramp s
s Bswitch

Bswitch s

x r

f x r
r x x

x r

  (24)  

and is applied as a scaling function on the dispersive terms ((8a) and (8b)) in the ramping zone. sr  

denotes the x-coordinate of the starting point of this zone, which is located half a wavelength offshore 

of Bswitchx  in the x-direction. The ramping zone is applied uniformly across the basin in the y-

direction. Thus, all dispersive terms have disappeared by Bswitchx  and the shallow water equations are 

solved onshore of this point. 
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Where the switch between the Boussinesq and shallow water regions exists, an adjustment must be 

made to the Boussinesq solver at the interface. In the RK4 algorithm, the stage 4 calculation of the 

gradients of , xq  and yq  at Bswitchx  requires a five-point stencil of information in the x and y-

directions. Therefore the stencil extends 2 points in the x-direction into the shallow water domain. 

Working the data requirements back to stage 1 of the RK4 algorithm, data extending to 8Bswitchx  are 

required by the Boussinesq solver. These data are simply provided by solving the shallow water 

equations where 1 8Bswitch Bswitchx x x . In the coefficient matrix A , the main diagonal entries for 

these data from the shallow water region, ,i jA  where i j , are set to unity, and all corresponding 

off-diagonal entries are set to zero. 

4 Model verification tests 

4.1 Evolution of sloshing waves in a closed basin 

The evolution of symmetric sloshing waves in a closed square basin is considered to test the stability 

of the model and to verify the correct handling of the cross-derivative terms. The 2DH model results 

are compared to a linear analytical solution, calculated at points of interest in the basin. The test has 

also been considered by other researchers to verify numerical models [44] [45]. The symmetric wave 

is of the form of an initial ‘hump’ of water shown in Figure 4. It is defined as a two-dimensional 

Gaussian surface, described by the equation 

22

0 0, exp
2 2

yx
LL

x y H b x y   (25)  

where 0  is the initial super-elevation of the water surface above an underlying still water depth h, 

xL  and yL  are the basin dimensions in the x and y-directions respectively, b is a spreading parameter 

and 0H  is the initial maximum super-elevation. 

Figure 4:  Evolution of a Gaussian hump in a closed basin: (a) initial symmetric disturbance at 

0t  s; (b) ζ-contours at 1t  s and (c) ζ at 50t  s.  

The basin under consideration has dimensions 7.5x yL L  m, has a flat, frictionless bottom, and is 

bounded by vertical, reflective walls on all four sides. The still water depth 0.45h  m, the hump 

amplitude 0 0.045H  m and the spreading parameter 2b  m. Wei et al. [44] present the 

derivation of a linear analytical solution, which at any individual point in the tank at time t with 

spatial coordinates ,x y  is given by 

0 0

, , e cos cos .nmi t

nm

n m

x y t n x m y   (26)  

In the above formula, the amplitude nm  of the ,n m -th mode component is given by the expression 

0

0 0

4
, cos cos d d ,

1 1

x y

x y

L L

nm
L L

n m x y

x y n x m y x y
L L

  (27)  

where ,n m  are the wave modes, nm  is the Kronecker delta function, and the wavelength, 

/ /x yL L . Each of the ,m n  modes of the waveform has a natural angular frequency, 
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nm , given by the dispersion equation, 
2 tanhnm nm nmgk k h , where the wavenumber, nmk , is 

given by 
2 2

nmk n m . 

Using a grid resolution of Δ Δ 0.0375x y  m and a time step, Δ 0.05t  s, the model is run for 

100 s. Both the bed friction coefficient fC , and the eddy viscosity parameter ε, are set to zero. As 

expected, the waveform propagates outwards in a circular fashion, as illustrated in Figure 4b, 

demonstrating the correct handling of the cross-derivative terms. 

Figure 5 provides comparisons between the nonlinear numerical prediction and the linear analytical 

solution of the free surface time histories at the centre of the tank. The analytical solution is generated 

by considering 51 wave components in the x- and y-directions (i.e. 51m n ). Overall, there is 

very close agreement between the numerical and analytical solutions, particularly in the early stages 

of the wave evolution. As the simulation progresses, the nonlinear properties of the Boussinesq 

numerical model result in a very gradual phase shift, with very small discrepancies emerging for the 

peaks and troughs. 

Figure 5:  Evolution of initial Gaussian hump in a closed basin: comparison between the numerical 

prediction and the analytical solution of the free surface elevation time series at the basin centre point. 

Reversibility of the Boussinesq model is verified by running the Gaussian hump simulation for 50 s, 

at which point the sign of the time step is changed and the simulation is run backwards until 0t  s. 

The total run time of 100 s provides a very sensitive check on the accuracy of the numerical model. 

Figure 6 shows the final surface profile along the basin diagonal at the end of the reversibility test, 

superimposed on the initial profile. The initial Gaussian hump is recovered, with the very small 

amplitude loss ( 0.2  mm) over the simulation duration due to numerical dissipation in the 

Boussinesq solver. 

Figure 6:  Evolution of initial Gaussian hump in a closed basin: reversibility check - initial free 

surface profile at 0t  s and final profile at 0t  s after forward and reverse simulation. 

4.2 Sloshing in a parabolic basin 

Sloshing in a parabolic basin is next simulated, to confirm the correct implementation of the wetting 

and drying algorithm. Sampson et al. [46] derive an analytical solution of the nonlinear shallow water 

equations for sloshing in a parabolic basin. The bed profile of the parabolic basin is given by 

20

2
0.5 ,b x

h
z x x L

a
  (28)  

where bz  is uniform with zero slope in the y-direction, xL  is the length of the domain in the x-

direction, 0h  is the still water depth at 0.5x L , and a is the width of the basin at elevation 0z h . 

Sampson et al. give the initial sloping free surface as 

2 2 2 2
2

0 2

0

,0 0.5 .
8 4 4

a s
x h s x L

g h g g
  (29)  

The analytical solution of the water surface time history is 

2 2 2
2

0 2

0

2 /2

e
, sin 2 cos 2

8 4

e e
cos sin 0.5 ,

4 2

t

t t

a
x t h s st s st

g h

s st st x L
g g

  (30)  
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where β is a velocity constant and s is a constant given by 
2 2

00.5 8 /s gh a . τ is a fixed 

friction parameter related to the bed friction coefficient by 
2 2/fC h u v . 

For the numerical simulation, the computational domain has plan dimensions of 220xL  m and 

17.6yL  m, with Δ Δ 1.76x y  m. The values of the coefficients are 80a  m, 10  ms
1
, 

0 80h  m and 0.1 s
1
. The time step Δ 0.04t  s and the simulation is run for 80 s. 

Figure 7:  Sloshing in a parabolic basin: analytical ([46]) and numerical free surface profiles at 

times 0t , 6, and 80 s. 

Excellent agreement is obtained between the analytical and numerical solutions, as shown in Figure 7. 

The model accurately predicts the moving wet/dry front, thereby validating the wetting and drying 

algorithm. The simulation is also run with the basin and initial water surface profile rotated by 90°, 

i.e. with the bed profile uniform, with zero slope in the x direction, and the parabolic profile occurring 

in the y z  plane. The results produced for this orientation are identical to those above, allowing for 

the changed coordinate axis. This benchmark verification test has also been used by other researchers 

(see e.g. [21] and [37]). 

4.3 Paddle wave generation test 

Orszaghova et al. [21] present a semi-analytical solution for a solitary wave for the one-dimensional 

Boussinesq equations of Madsen and Sørensen [3], with a closed form relation between the amplitude 

of the solitary wave and its celerity. Orszaghova uses this relation to calculate a paddle displacement 

time-series by solving 

, ,p p pt
x u x t u x Ct   (31)  

in which u is the depth-averaged velocity and C is the wave celerity. u is calculated from 

,
q

u
h

  (32)  

in which q and ζ are the one-dimensional flux and free surface profile calculated using the theory 

outlined in [21]. Equation (31) is solved numerically using Matlab’s in-built ordinary differential 

equation solver, ode113. The paddle signal generated by Orszaghova for a solitary wave of amplitude 

0.6A  m in still water depth 1.0h  m is applied to each of the numerical piston paddles in the 

present model. For this test, a basin of dimensions 50 m by 5 m in the x- and y-directions respectively 

is utilized, with 26 paddles along the western boundary. The grid spacing is Δ 0.1x  m and 

Δ 0.2y  m, and the time step is set to Δ 0.006t  s. Bed friction and eddy viscosity parameters are 

set to zero. Figure 8 shows the progression of the wave as it moves away from the paddles, along the 

basin in the x-direction. The surface profiles are stacked with a vertical spacing of 0.6 m to 

demonstrate that a wave of correct amplitude is generated, and that this amplitude is maintained as the 

wave propagates. This verification test also confirms that the wave is unaffected as it passes from the 

moving paddle domain into fixed Boussinesq domain. This demonstrates that the non-uniform finite 

difference stencils at the interface between the moving and fixed domains are implemented correctly. 

Figure 8: Solitary wave generated by numerical piston paddles: side-on view of stacked surface 

water profiles 

4.4 Solitary wave interaction with a conical island 

The test case of a solitary wave interacting with a flat-topped conical island has been used as a means 

of verifying 2DH models by many researchers, including Liang et al. [47] and Yamazaki et al. [48]. 

The original experiment is described by Liu et al. [49], and consisted of a 25 m by 30 m basin with the 

an island centred at ( 13x  m, 15y  m). The base of the island was 7.2 m in diameter, and its side 
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slope was 1V:1H. The conical island was truncated at a height of 0.625 m above the base. Waves 

were generated using a directional spectral wave generator installed on the long axis of the basin. In 

the experiments, three solitary waves were considered with height to depth ratios of /A h 0.05, 

0.1, and 0.2, in water of depth 0.32h  m. Gauges to measure the free-surface displacement were 

positioned at various locations including those shown in Figure 9a. 

For the numerical simulation, a solitary wave with 0.096  in a still water depth 0.32h  m is 

considered. A value of 0.096 rather than 0.1 is used because the resulting wave is a better match for 

the data measured at Gauge 1, and therefore gives a better representation of the incident wave. This is 

also the approach taken by [48]. The solitary wave is generated by calculating a paddle signal 

according to the procedure of [21] outlined in Section 4.3. Grid spacings of Δ Δ 0.05x y  m are 

implemented in the model with time step Δ 0.01t  s. A fC  value of 0.008 is used. 

Figures 9b, 9c, and 9d present the evolution of the wave free-surface as it interacts with the conical 

island. The wave front begins to curve as it approaches the island, and generates high run-up on the 

front face (Figure 9b). The wave splits either side of the island (Figure 9c), following which the two 

waves collide on the lee slope, generating another high run-up event. The large run-up events on 

either side of the island are of similar magnitude. Figure 10 presents time series of the experimental 

measurements and numerical predictions of the free surface at the gauge locations shown in Figure 9a. 

There is generally good agreement between the measured and predicted data, in particular as the wave 

approaches the island. Discrepancies are evident after the main wave passes each gauge, particularly 

at Gauge 6. This may be due to swash zone effects not being fully represented by the wetting and 

drying scheme, as noted by [47]. 

Figure 9:  Solitary wave interaction with a conical island: (a) gauge locations; 3D visualisation of 

numerically predicted water surface elevations at (b) 14.4t  s, (c) 16.4t  s, and (d) 18.7t  s.  

Figure 10:  Solitary wave interaction with a conical island: experimental gauge data from [49] 

(dots) and numerically predicted free-surface time series (solid line). 

5 Results 

5.1 Nearshore circulation at a sinusoidal beach 

In order to determine whether the model is capable of simulating near-shore circulation, the laboratory 

experiment carried out by da Silva Lima [50] is considered. In his experiment, da Silva Lima 

constructed a plywood sinusoidal beach in a wave basin and measured the wave heights and period-

averaged currents that resulted from paddle-generated regular waves travelling normal to the beach. 

These data have been used by a number of other researchers to verify numerical models, e.g. [51] and 

[52]. 

The still water depth for da Silva Lima’s experiment is given by 

0

2
0.75 sin sin 0 4.36m

4.36

, 0.7m 0m

4.36m

x y
x s x

h x y x s x

h x

  (33)  

where x is the distance offshore from the still water line, y is the alongshore distance with a range of 

1.5 to 4.5 m, 0 0.218h  m is the still water depth offshore of the toe, 0.05s  is the slope of the 

plane beach and 6  m is a parameter known as the rip current spacing. Applying (33) to a 6 m 

long and 3 m wide numerical basin results in the bathymetry shown in Figure 11. 

Figure 11: Contour plot illustrating sinusoidal beach bathymetry 
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5.1.1 Eddy viscosity and bed friction 

In addition to a constant eddy viscosity model, the non-uniform eddy viscosity model of [53] (and 

also described by [51] and [52]) is implemented for comparison. Here, the eddy viscosity is given by 

maxT bM A u   (34)  

where TM  is a dimensionless mixing parameter, and bA  is the excursion length of the orbital motion 

at the bed, given by 

max ,
sinh 2

b

u Ta
A

kh
  (35)  

in which a is the wave amplitude and T is the period. The maximum wave particle velocity at the bed 

is 

max

2
,

sinh

a
u

T kh
  (36)  

noting that maxu  is derived from linear wave theory, whereas ,u v  in the model are calculated 

from the Boussinesq and nonlinear shallow water equations. 

The bed friction coefficient fC  is calculated following the method of [52] who references the 

formula of [54]
*
 which is a function of both wave and current bed friction coefficients, fC  and fcurC : 

,
1

f fcur

f

C C
C   (37)  

where α is a weighting coefficient given by 

2 2

max

.
u v

u
  (38)  

fC  and fcurC  are calculated using empirical expressions based on experimental data. The wave 

friction factor is determined using Jonsson’s formula, 

0.194

exp 5.213 6.67 ,b
f

h

A
C

R
  (39)  

where hR  is the roughness height. The current friction factor is calculated from the expression 

obtained by [55]
†
. 

1

3

0.016 h
fcur

R
C

h
  (40)  

5.1.2 Numerical simulation 

The numerical simulation is carried out on a grid of size Δ Δ 0.05x y  m using a time step of 

Δ 0.005t  s. Regular waves are generated using the paddles with a wave amplitude 0 0.0309a  

m, period 0.76T  s and incident wave angle 0 °. The water depth offshore of the beach toe is 

                                                      
i
Referenced by [52] but full text not available
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0 0.218h  m. The minimum water depth is set to 1 mm, to limit unrealistically high velocities at the 

shoreline, and the simulation is run for 100 s. Three cases are considered: Case A uses a constant eddy 

viscosity of 0.005  m
2

/s with a fixed value of 0.025fC ; Case B implements the variable 

eddy viscosity model outlined in Section 5.1.1 with 1.0TM  and 0.001hR  m; and Case C sets 

0  m
2

/s and 0.025fC . 

For Cases A and B, the circulation pattern is established by 20t  s, and the current velocities are 

stable by 50t  s. Both cases produce broadly similar results - a clockwise rotating primary 

circulation cell offshore of the middle of the basin. Case A is characterised by high shoreline 

velocities and a relatively weak primary gyre, whereas the flow in the primary gyre in Case B is 

significantly stronger while the shoreline velocities are close to zero. The variable viscosity and bed 

friction model (i.e. Case B) results in relatively high values of ε ( 0.2 0.5  m
2

/s) near the 

shoreline leading to low velocities in this region, while offshore, 0  m
2

/s. Figure 15 shows the 

period-averaged velocity vectors (averaged over a single wave period) at 60t  s for Cases A and B, 

which illustrate the circulation patterns predicted by the numerical model. Data are plotted at every 

fourth grid point for ease of visualisation. 

In this case study, the free surface slope does not exceed the threshold of 0.4, and so the switching 

criterion is based on the depth to wavelength being 1/20. The dispersive terms of the Boussinesq 

equations are gradually ramped down approaching the switch point, 
switchBx . The resulting loss in 

energy translates into a pumping action that helps drive the gyre. The amplitude of the wave field at 

60t  s and the setup of the mean water level (obtained by averaging the time series from 60t  to 

65 s) are shown in Figure 14a and 14b. This figure indicates that the surf zone extends from 1  m 

from the shore close to the bed trough (at the southern boundary) and almost 2 m from the shore close 

to the bed cusp (northern boundary). A small hotspot of anomalous wave amplitude (and setup) 

occurs close to the initial shoreline near the north wall in Figure 14; this could be related to the very 

small local depth. 

For very small waves, the Boussinesq formulation may be valid all the way to the beach. Therefore, 

the validity of basing the switch only on the shallowness parameter, without taking nonlinearity into 

account, is considered by performing a sensitivity analysis on the limiting value of /h L . Figures 15a 

and 15b present the circulation patterns predicted by the model at 60t  s for a switching criterion 

based on values of /h L  of 1/30, and 1/50. Implementing this criterion has the effect of slightly 

shifting the main gyre towards the beach. Further decreasing the limiting shallowness parameter (e.g. 

to 1/60) has little impact, as the numerical model requires a minimum cross-shore width between the 

switch point and the wet/dry front to ensure dry cells are not fed into the Boussinesq solver. 

Setting 0  m
2

/s in Case C, while producing reasonable predictions of the evolving water surface 

profile, leads to the current field appearing somewhat chaotic, with no settled circulation pattern 

developing. In a paper describing Boussinesq modelling of rip currents, Chen et al. [27] attribute this 

phenomenon to the absence of a model for sub-grid turbulent processes. They conclude that a 

turbulence model is necessary to account for the influence wave-generated current fields has on flow 

patterns, and achieve good results by implementing a Smagorinsky-type turbulence model in their 

fully nonlinear Boussinesq equation set. Chen et al.’s conclusions are confirmed by the present 

research. 

Figure 12:  Nearshore circulation at a sinusoidal beach: Experimental velocities and measurement 

grid (Δ 0.2x  m, Δ 0.375y  m) from [50] 

. 

In his experiments, da Silva Lima reports the centroid of the primary gyre as being located 

approximately 1.7 m offshore of the still water line in the x direction, and approximately 2.0 m 

from the northern boundary in the y direction, as shown in Figure 12. While the numerical model 
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predicts the circulation pattern with reasonable accuracy, the location of the main gyre is 

approximately 1.2 m further offshore compared with the experimental results, for both Cases A and B. 

There are a number of possible reasons for this, including the calibration of the model, and how the 

switch between the Boussinesq and shallow water equation sets is applied. The equation set switch is 

triggered by either the slope of the water surface reaching a certain limit, or by the shallowness 

parameter μ, i.e. the ratio of the water depth to the wavelength. As alluded to previously, in the 

numerical simulation, the free surface slope does not exceed the set threshold of 0.4, so the switch is 

determined by the most offshore location where 1/ 20 , which in this case is located at 1.65x

m and 1.5y  m, along the northern boundary of the basin. Ideally, the switch point would follow 

the contours of the beach, varying from 1.65x m at the northern boundary, between the 0.16 and 

0.173 m contours in Figure 11, to 0.7x  m at the southern boundary. In the numerical model, 

onshore of 1.65x  m, the shallow water equations are applied uniformly across the numerical 

domain, despite the area of deeper water between 0.7 m and 1.65x  m offshore of the still water 

line, and 2y  m and 4.5y  m. As a result, wave-current interaction is not adequately represented 

in this region because the governing shallow water equations are unsuited to this purpose. This is most 

likely the main reason for the shift in the centroid of the main gyre to a position further offshore than 

observed in the laboratory experiments. 

It may well be that the hydrostatic assumption underpinning the shallow water equations may have 

contributed to the rather poor representation of secondary circulation cells. A non-hydrostatic model 

such as that of Antuono (2014, 2017) [17], [18] could well provide more accurate predictions of 

secondary gyres, given that such a model includes more of the physics, in particular hydrodynamic 

pressure which would affect the current-driving mechanisms in the swash zone. Moreover, the present 

model would benefit from a two-dimensional switch between equation sets, where the interface 

between the Boussinesq and shallow water domains can follow the bed contours, rather than a straight 

line in the y-direction across the basin. A curved interface between the domains may be facilitated by 

switching to a fully finite volume scheme, rather than the coupled finite difference and finite volume 

scheme proposed herein. 

Model calibration may also be a factor affecting the results. Whereas the parameters, fC  and ε were 

varied for Case A, and similarly TM  and hR  for Case B, a detailed parameter study was not carried 

out. The impact of the value of the local free surface slope limit Θ  was investigated by applying a 

range of values between 0.3 and 0.5, however this did not produce any discernible change in the 

predicted circulation pattern. Improved results may be achieved with a more sophisticated turbulence 

model. 

Figure 13:  Nearshore circulation at a sinusoidal beach: period-averaged velocity vectors at 60t  

s for (a) Case A and (b) Case B. 

Figure 14:  Nearshore circulation at a sinusoidal beach (Case B): (a) wave field amplitude at 

60t  s; and (b) setup. 

Figure 15:  Nearshore circulation at a sinusoidal beach: period-averaged velocity vectors at 60t  

s for Case B with switching criterion (a) / 1/ 30h L  and (b) / 1/ 60h L . 

5.2 Nearshore circulation at a tri-cuspate beach 

Cuspate beaches represent a category of rhythmic shorelines commonly found at the coast, formed by 

the interaction between waves, currents and sediment. Borthwick and Foote [56] present a series of 

laboratory experiments carried out at the UK Coastal research facility (UKCRF) to investigate the 

hydrodynamics of regular wave interaction with a fixed cuspate beach. For the experiments, a 

sinusoidal cuspate beach was constructed on the upper section of an otherwise 1:20 plane beach. 

Borthwick and Foote investigated the rip currents and circulation cells resulting from regular waves 

travelling normal to the cuspate beach, and the meandering longshore currents formed when the 

waves approach the shore at an oblique angle. Digital image analysis of video footage of neutrally 
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buoyant markers was used in the experiments to determine the horizontal spatial patterns of the wave-

induced currents, and measurements were also taken of the wave height field and the vertical structure 

of the rip and nearshore currents. The experimental data obtained have been used by other researchers 

to verify numerical models, such as by [51] and [52]. 

To investigate further the ability of the numerical model to simulate nearshore circulation over more 

complex bed topography, the model is applied to Borthwick and Foote’s experiment involving regular 

waves travelling normal to the cuspate beach (Case B in their paper). The wave basin at the UKCRF 

has dimensions of 27 m cross-shore and 35 m alongshore with a working area of 20m by 15m. Waves 

are generated using 72 paddle wave-makers that can vary the angle of incidence from 0°to 30°. The 

beach toe is located 8.33 m from the paddles. At the cusps, the still water depth is given by 

2
, sin 1 sin

L

L

L

x x y
h x y s x x A

x R
  (48)  

In the above formula, s is the slope of the underlying plane beach, Lx  is the cross-shore length of an 

individual cusp, x is the distance onshore from the toe of the cusp, A is an amplitude related to the 

cusp height, ϕ is a phase angle, y is the distance alongshore from the edge of the cusps, and R is the 

longshore length of an individual cusp. The values ascribed to the parameters for the numerical 

simulation are 0.05s , 5Lx  m, 0.75A  m, 3 / 2 , and 4R  m. The resulting 

bathymetry is illustrated in Figure 16. 

Figure 16:  Tri-cuspate beach: 3D visualisation of basin bathymetry 

The wave conditions simulated by the numerical model are regular waves with period 1.2T  s, 

offshore height 0.125oH  m ramped up over a period of 10 s, and incident wave angle 0 . 

The numerical basin has dimensions of 20 m by 22 m in the x- and y-directions respectively, with 

Δ Δ 0.11x y  m. The time step is set to Δ 0.01t  s and the simulation end time is set to 100 s. A 

constant eddy viscosity model is implemented, with 0.007  m
2

/s. The bed friction coefficient 

fC  is ramped down linearly from 0t  to 10 s from an initially high value of 0.1 to target values of 

0.001fC  at the cusps, and 0.02 elsewhere in the basin, in order to increase the model stability. 

By 20t  s, a circulation pattern begins to emerge, and is properly established by 28t  s. Figure 

17b shows the period averaged velocity vectors at 60t  s, averaged over a single wave period, 

filtered to show every fourth point for clarity. The circulation pattern described by [56] and displayed 

in Figure 17a can clearly be observed, i.e. the counter-rotating pairs of circulation cells, as the water 

flows up over the cusp horns, and circulates back around to form seaward-directed rip-currents in the 

embayments between the cusps. The acoustic Doppler velocimeters (ADVs) used to obtain the 

experimental velocity measurements could not be used in the very shallow water at the shoreline; 

however Borthwick and Foote report the presence of secondary circulation cells in this area, which 

are simulated numerically by [52]. Figure 17 shows some circulation in this area predicted by the 

numerical model, however the cells are not clearly defined. This feature of the numerical results is 

most likely due to the shallow water equations governing in this region. The high shoreline velocities 

which characterise the constant eddy viscosity simulation of circulation at the half-sinusoidal beach in 

Section 5.1 are again present here, suggesting the need for a more sophisticated method of calculating 

fC  in this region. 

Figure 17:  Tri-cuspate beach: Period-averaged velocity field obtained (a) experimentally by 

interpolating measured velocities of floats [56] , and (b) by the numerical model ( 60t  s). The 

boxed areas on each subfigure represent the three cusps. 

In the numerical simulations, different values of fC  were tested in the range 0.001 to 0.01 at the 

cusps and between 0.01 and 0.03 in the rest of the domain, based on Borthwick and Foote’s 
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description of the construction of the cuspate beach. The eddy viscosity parameter ε was varied from 0 

m
2

/s to 0.01 m
2

/s. For values of ε below 0.007 m
2

/s, it was found that a stable circulation pattern 

failed to develop, again highlighting the need for an adequate representation of turbulent processes in 

the numerical scheme. However, for higher values of ε, it was found that while the stable circulation 

patterns developed as described previously by Borthwick and Foote, the velocities were very low, 

indicating excessively high energy losses. 

Neither the sinusoidal or tri-cuspate beach numerical simulations predicted waves with a free-surface 

slope of Θ 0.4 , therefore for both of these cases, the switch between equation sets was triggered by 

the shallowness parameter, set to 1/ 20 . As described in Section 3.4, the dispersive terms are 

ramped down over half a wavelength approaching the switch. This effectively introduces loss of wave 

height, triggering radiation stresses needed to pump the wave-induced currents. The sensitivity of the 

shallowness parameter for the tricuspate beach test was assessed in a similar manner to the half-

sinusoidal beach case, by setting 1/ 30  and 1/50, however, this did not produce any discernable 

change in the circulation pattern predicted by the model. By setting 0  m
2

/s, i.e. Case C in the 

sinusoidal numerical simulation, Θ  was exceeded but as discussed previously, a stable circulation 

pattern failed to develop. Further research is needed to find a method that can model turbulent 

processes without excessive energy dissipation, but produces realistic flow patterns. 

5.3 Interaction of a uni-directional focused wave group with a plane beach 

Experiments undertaken at the UK Coastal Research Facility (UKCRF) using focused wave groups 

are described by Hunt [57] and Hunt et al. [58], where NewWave theory was implemented to generate 

32 different focused wave groups with varying amplitudes and phases. The wave basin at the UKCRF 

had internal plan dimensions of 20 m x 36 m in the x- and y-directions respectively. Waves were 

generated by 72 independently operated piston paddles, each 0.5 m wide and 1.5 m high. The toe of a 

1:20 plane beach was located 8.33 m from the paddles. The water surface elevation in the UKCRF 

experiments was measured using calibrated wave gauges positioned both offshore and in the surf 

zone. Measurements were taken by Hunt and co-workers at 250 mm intervals along the centre-line of 

the basin, from 1.5 m offshore of the beach toe ( 6.83x  m) to 18.33x  m. 

The numerical model is used to simulate WG1 of the UKCRF tests: a crest-focused wave group with 

linear focus amplitude 0.114fA  m, focus location at the beach toe ( 8.33x  m), propagating 

over a flat bed followed by a plane beach. Still water depth at the paddles is 0.5h  m. The wave 

amplitude selected is the largest in the series of experiments undertaken at the UKCRF. The wave 

group is generated numerically using the paddle displacement signal from the laboratory experiments, 

shown in Figure 18. We note that the horizontal displacements of the paddle are larger than the peak 

water surface motion at the focus point. The actual (laboratory) paddle signal was calculated at a 

temporal resolution of Δ 0.05t  s, and so is interpolated to obtain a signal with the desired 

computational time step of Δ 0.007t  s. To generate a normally incident wave group, the same 

signal is applied across all paddles in the numerical model. Although the UKCRF basin has a cross-

shore dimension of 36 m, the numerical basin is set to 1 m wide to reduce the computational load, 

while the onshore dimension in the x-direction is set to 22 m. Thus the computational domain is 22 m 

x 1 m and mimics a wave flume rather than the whole basin, which is sufficient for modelling waves 

travelling normal to the beach. The grid size is Δ Δ 0.04x y  m, with time step Δ 0.007t  s and 

the simulation is run for 90 s, which corresponds to the total paddle signal duration. The eddy 

viscosity parameter ε is set to zero and the bed friction coefficient 0.008fC . 

Figure 18:  Paddle displacement time series for uni-directional focused wave group in the UKCRF 

(WG1) 

Figure 19:  Numerically predicted water surface elevation profiles (side-on view) in the UKCRF at 

(a) 45.5t  s; (b) 46.9t  s; (c) 49t  s; and (d) 51.1t  s. The green dotted line represents the 

switch point between Boussinesq (BE) and nonlinear shallow water (NSWE) equation sets. 
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Figure 19 presents plots of the predicted free-surface profile at four different times, showing the 

evolution of the focused wave group as it propagates up the beach. The red line indicates the paddle 

position, while the dashed green line represents the switch point between the governing Boussinesq 

(BE) and nonlinear shallow water (NSWE) equation sets. The switch point is determined by 

calculating the local slope of the water surface (Equation (23)). In this case, the switch point is set to 

one quarter of a wavelength offshore of the most offshore location where the threshold slope of 0.4 is 

exceeded. The wavelength of the wave where the slope threshold is exceeded is determined by a 

down-crossing method. 

Figure 20 compares the experimentally measured and numerically predicted free surface elevation 

time series at 6 wave gauge locations along the basin centreline. Leading waves in the wave group are 

predicted to very high accuracy across all the wave gauge locations. In the deeper water, before the 

waves break, the numerical model under-predicts the amplitude of the central wave crest, and over-

predicts the troughs either side, in particular the trailing trough (see Figures 20a and 20b). The wave 

breaking location, and the propagation of broken waves is predicted with reasonable accuracy. A 

slight phase lag in the propagation of the third and fourth bores can be seen in Figures 20c to 20f, 

where the numerically predicted bores appear to travel slower than the waves observed in the 

laboratory. In general, the mismatch between the numerical prediction and the experimental data 

mirrors that reported by Orszaghova [20] for the one-dimensional model, and may be attributed to 

limitations in the underlying shallow water equations. The speed of propagation (phase speed or 

celerity) of linear surface gravity waves in shallow water /10kh  is given by c gh ; 

however research has shown that this shallow water approximation under-predicts the observed phase 

speed of waves in the surf zone in both field observations (e.g. [59], [60], [61]) and laboratory 

experiments (e.g. [62], [63], [64]). Several researchers (e.g. [12] and [13]) have used a modified 

shallow water approximation of the phase speed in the surf zone given by c a gh , where a is a 

constant to be determined and typically has a value of 1.3a . This value is consistent with surf zone 

measurements made in the laboratory by [63]. 

Figure 21 presents space-time plots of the wave group as it propagates up the beach. Presentation of 

the data in this way allows an overall comparison to be made between the numerical prediction and 

the gauge data. The central crest (shown in yellow) and the troughs on either side (dark blue) are 

clearly visible. Dispersion is evident as the wave group propagates up the beach, and breaking can be 

identified in the numerical x t  plot by a sharp drop in amplitude at 15.5x  m for the central crest, 

and at 13.5x  m for the trailing crest. This feature is more difficult to see in the x t  plot of the 

experimental data due to the low resolution, but in general there is good agreement between the two 

datasets. Overall, the numerical model performs well, capturing the evolution of the wave group from 

the paddle face through to wave breaking and formation of bores. 

Figure 20:  WG1 - Crest-focused uni-directional wave group time series in the UKCRF: 

Comparison between measured wave gauge data (thick grey line) and numerical prediction (red line) 

at selected gauge locations 

Figure 21:  Space-time ( x t ) plot of NewWave propagation at a plane beach: (a) measured free-

surface; and (b) numerical prediction of free-surface elevation data along basin centreline 

6 Conclusions 

This paper presents a two-horizontal-dimensional (2DH) numerical flow solver for modelling the 

propagation of waves in the coastal zone, from intermediate to zero depth. Pre-breaking, the 

numerical model is based on the enhanced Boussinesq equation set derived by [3]. Broken waves 

propagate as bores and are described in the hybrid model by the non-linear shallow water equations. 

The switch between the governing equation sets is determined by the most offshore location where the 

absolute value of the local slope surface vector exceeds a set threshold. The switch is applied 

uniformly across the domain in the y-direction, with the shallow water equations solved at all points 

onshore of the switch point in the x-direction, and the Boussinesq equations solved offshore of the 

switch point. Waves are generated in the model by independently moving numerical piston paddle 
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wavemakers. The deformation of the underlying grid due to the motion back and forth of the paddles 

is handled by applying a domain-mapping technique in the region adjacent to the paddles. 

Different aspects of the numerical model have been verified using a series of benchmark tests. 

Evolution of sloshing waves, produced by an initial Gaussian hump in a closed, square basin is used 

to check the correct implementation of the cross-derivative terms in the Boussinesq equations. 

Excellent agreement is obtained with the corresponding analytical solution. A reversibility check on 

the evolution of the Gaussian hump confirms the accuracy of the numerical methods implemented in 

the model, and demonstrates its conservation properties. Simulation of sloshing in a parabolic basin 

and comparison of the numerical prediction with the analytical solution of [46] confirm the accuracy 

of the finite-volume solver and its ability to model the moving wet/dry front. The semi-analytical 

solution for a solitary wave derived by [20] is used to test the ability of the paddles to generate waves 

of the desired amplitude. The splitting of a solitary wave as it propagates over a shelf demonstrates 

the nonlinear dispersive properties of the model and provides another opportunity to check the 

reversibility of the model. Numerical predictions of the interaction of a solitary wave with a flat-

topped conical island were in close agreement with previously published experimental measurements 

[49], confirming that the model correctly simulated two-dimensional inundation and run-up. 

The numerical model has been used to predict nearshore circulation patterns resulting from the 

interaction of regular waves with non-planar beaches, obtained previously in the laboratory by [50] 

and [56]. The circulation patterns generated by the laboratory experiments were reasonably well 

reproduced by the numerical model. Further research is recommended on the implementation of a 

two-dimensional criterion for the switch between the governing equation sets, as well as a more 

sophisticated turbulence model. The numerical model has also been used to simulate the propagation 

of a uni-directional wave group and its interaction with a plane beach. Excellent agreement was 

obtained between the numerical predictions and previous laboratory measurements of free-surface 

elevations made at the UKCRF. We believe the present model has considerable potential for 

modelling multi-directional wave interaction with beaches and coastal structures, and could be used 

by practitioners to evaluate 2D extreme overtopping and run-up events. 
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Highlights 

• A two-horizontal-dimensional model for nearshore hydrodynamics is presented 

• A series of benchmark tests are used to verify the numerical model 

• The ability of the model to predict nearshore circulation patterns is examined 

• The evolution of a focused wave group interacting with a plane beach is studied 
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