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1 Introduction

Abelian T-duality asserts in its simplest form that closed strings do not distinguish between

circular target space geometries of radius R and 1
R measured in units of the string length

scale. This result is a crucial thread of a wider tapestry of U-dualities that are expected

to be displayed M-theory whose target spaces contain toroidal directions. This article will

consider some generalised notions of Abelian T-duality and show how they are upgraded

to analogous concepts within U-duality.

Non-Abelian T-duality [1] is a proposed dualisation of closed-string non-linear sigma-

models (NLSM) whose target space admits the action of non-Abelian isometry group.

Whilst the status of Non-Abelian T-duality in terms of the string genus expansion remains

unclear, recent evidence [2] at two-loops provides confidence that the duality could remain

robust to quantum (α′) corrections on the worldsheet. What is absolutely clear is that

in the context of holography at large N , where both string genus and α′ corrections are

suppressed, Non-Abelian T-duality can be a powerful solution generating technique as

advocated first in [3–6] (see [7] for a review and further references).
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More radically Poisson-Lie (PL) T-duality [8, 9] dispenses with the requirement of

isometry of a target space but does assume some underlying algebraic structure given by

a Drinfeld double. Here again, though the quantum corrections are far from understood

beyond one-loop in α′, there have been a number of significant developments. By exploiting

the close connection between PL T-duality and the classical Yang-Baxter equation, this

has given rise to wide classes of new integrable NLSMs called η- or Yang-Baxter sigma-

models [10, 11]. Most notably when applied to the AdS5 × S5 superstring this has led

to a marginal deformation that is expected to encode a quantum-group deformation, with

q ∈ R, of N = 4 Super-Yang-Mills gauge theory [12, 13]. Parallel to this has been the

realisation with the λ-model [14, 15] of an analogous quantum-group deformation with q a

root-of-unity; the η- and λ-models are related (at least in simplest bosonic setting where it

has been spelt out explicitly) by a PL duality transformation combined with some analytic

continuation [16–18]. Alongside η and λ- integrable deformations, non-commutative β-

deformations realised by TsT transformations can also be thought of as a Yang-Baxter

sigma-model [19–21].

Critical to us will be that the most natural understanding of Poisson-Lie T-duality and

its associated target spacetimes is provided by the tools and techniques of Double Field

Theory (DFT) [22] and generalised geometry [23–25]. In essence, Poisson-Lie models,

i.e. models where Poisson-Lie duality can act, arise as generalised Scherk-Schwarz reduc-

tions [26, 27] in which all non-trivial coordinate dependance is encoded in a twist matrix, or

generalised frame field, EA
I as was first shown in [28] and developed in [29]. Through the

Courant bracket, the generalised frame fields of [28] realise the algebra of a Drinfeld double

and depend crucially on the properties of the Poisson-Lie bi-vector upon which Poisson-Lie

duality relies. When inequivalent twist matrices give rise to the same structure constants

of a Drinfeld double (equivalently when there are different splittings of the Drinfeld double

into maximally isotropic subalgebras), Poisson-Lie T-duality is realised as an O(d, d) duality

acting on the Scherk-Schwarz reduced model. Previous attempts to understand Poisson-Lie

T-duality and non-Abelian T-duality in DFT and related works can be found in [30–32].

An obvious question is then if these generalised Poisson-Lie type T-dualities can be

extended to generalised notions of U-duality. Though some partial descriptions have been

recently suggested in the literature [33], thus far an algebraically robust description has

been lacking. It is this that we address in the current article in the context of exceptional

field theory (ExFT)/exceptional generalised geometry [34–40], the M-theoretic analogues

to Double Field Theory/generalised geometry. Given the importance of generalised Scherk-

Schwarz reductions in the DFT realisation of Poisson-Lie T-duality, it is natural to use the

analogous ExFT structure [41–43] to build a notion of Poisson-Lie U-duality. This is our

goal in this paper.

In ExFT, a splitting is made of 11−d “external” directions and d “internal” directions

such that all field content and gauge symmetries are repackaged into representations of

the exceptional Lie groups Ed(d). Our focus will be case of d = 4 such that the duality

group is SL(5) and we will restrict our attention to the “internal” directions in which the

Poisson-Lie U-duality will act.
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We begin with a review of Poisson-Lie T-duality and its realisation in Double Field

Theory in 2, before reviewing the relevant SL(5) Exceptional Field Theory in section 3 and

introducing the natural analogue of a Drinfeld Double, which for want of a better name we

call an Exceptional Drinfeld Algebra in section 4. In section 5 we will show how a gener-

alised frame can be introduced that reproduces the algebra of the Exceptional Drinfeld Al-

gebra, allowing us to define a U-duality notion of Poisson-Lie duality. Finally, in sections 6

and 7 we develop methods for constructing an Exceptional Drinfeld Algebra starting from

a Lie Group G, and thereby also suggest a U-dual version of Yang-Baxter deformations. Fi-

nally, we present some examples in section 8 and conclude in section 9 with a brief outlook.

Note added. While finalising this manuscript, the paper [44] appeared which proposes

a U-duality extension of Drinfeld Doubles and has some overlap with our sections 4 and 5

in the case where our Ia = τa5.

2 Review of Poisson-Lie T-duality

In this section we provide a brief recap of Poisson-Lie T-duality. We will flip the con-

ventional exposition by starting with algebraic considerations to eventually arrive at an

associated NLSM describing the NS sector of a closed string; this will serve as a road map

for what follows.

Central to the construction is a (classical) Drinfeld double: an even-dimensional real

algebra d with generators TA obeying [TA, TB] = iFAB
CTC equipped with a symmetric

split-signature ad-invariant pairing η(·, ·) such that d admits at least one decomposition

d = g⊕ g̃ with g and g̃ sub-algebras that are maximally isotropic with respect to η. Letting

ta (t̃a) be generators for g (g̃) we have

η(ta, tb) = 0 , η(ta, t̃
b) = δba , η(t̃a, t̃b) = 0 ,

[ta, tb] = ifab
ctc , [ta, t̃

b] = if̃ bcatc − ifacbt̃c , [t̃a, t̃b] = if̃abct̃
c .

(2.1)

The Jacobi identity for d imposes a compatibility constraint,

0 = 2f̃ ed[afb]d
c − 2f̃ cd[afb]d

e − f̃ ecdfabd , (2.2)

which is better understood as demanding that δ(ta) = f̃ bcatb ⊗ tc defines a one-cocycle on

g valued in g ∧ g which, as a trivial consequence of the Jacobi identity for g̃, also obeys a

co-Jacobi identity. Equivalent we may then speak of (g, δ) as defining a Lie bi-algebra.

The exponential of a Lie bi-algebra is a Poisson-Lie group, that is a Lie-group mani-

fold G equipped with a Poisson bi-vector compatible with the group composition law and

obeying the Schouten identity. Equivalent to this Poisson bi-vector is a one-cocyle on G

valued in g ∧ g denoted by Π = Πab
g ta ⊗ tb which is constructed from the adjoint action of

g ∈ G on d as follows:

g · ta · g−1 = (ag)a
btb , g · t̃a · g−1 = (bg)

abtb + (ag−1)b
at̃b , Πab

g = (bg)
ac(ag−1)c

b . (2.3)
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As a consequence of this definition, Π enjoys some useful properties including:

Πab
g = (bg)

ac(ag−1)c
b = −Πba

g ,

Πhg = Πg + (ag−1 ⊗ ag−1)Πh , Πe = 0 ,

dΠab
g = −lcf̃abc − 2lcfcd

[aΠb]d ,

(2.4)

in which we have introduced the left-invariant one-forms l = ilata = g−1dg. The dual

vector fields to la will be denoted va. It will be useful in what follows to build from Πab a

second set of vector fields πa ≡ Πab
g vb. A modest calculation, appealing to the properties

of eq. (2.4), shows that these objects realise the algebra of d given in eq. (2.1) under the

Lie derivative

Lvavb = −fabcvc , Lvaπ
b = fac

bπc − f̃ bcavc , Lπaπ
b = −f̃abcπc . (2.5)

We now upgrade this discussion to generalised geometry which concerns the generalised

tangent bundle E given locally as TG⊕ T ?G. On E there is a generalised Lie (Dorfman)

derivative which acts on two sections U = ui∂i + µidx
i and V = vi∂i + νidx

i by

LUV = Luv + (Luν − ιvdµ) . (2.6)

In particular we can introduce two sets of generalised vectors,

Ea = va , Ẽa = πa + la , (2.7)

which we package together by defining a set of generalised frame fields EA = (Ea, Ẽ
a) that

under the Dorfman derivative furnish the algebra of the double d,

LEAEB = −FABCEC . (2.8)

We may now perform a generalised Scherk-Schwarz reduction of type II supergravity

on G. For this, introduce a set of d2 constants E0 = G0 + B0 assembled into constant

generalised metric, ie. a representative of the coset O(d, d)/O(d)×O(d) given by

H̊AB =

(
G0 −B0G

−1
0 B0 −B0G

−1
0

G−1
0 B0 G−1

0

)
, H̊AB = ηACH̊CDηDB , ηAB = η(TA, TB) . (2.9)

We can use the generalised frame field to translate this constant generalised metric to one

defined on E ≈ TG⊕ T ?G according to

H = H̊ABEA ⊗ EB . (2.10)

From this “curved” generalised metric, we can extract the metric tensor and B-field

Eij = Gij + Bij on G which match the target space geometry of the Poisson-Lie σ-model

with action [9]

S =

∫
d2σ la+

[(
E−1

0 + Πg

)−1
]
ab
lb− , (2.11)
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in which the left invariant one-forms on G have been pulled back to the worldsheet and ±
signify light-cone coordinates. The would-be-Noether currents, J±a = via(Gij ± Bij)∂±xi,
associated to the G action generated by the vector fields va are not conserved but enjoy a

remarkable non-commutative conservation law,

d ? Ja = f̃ bca ? Jb ∧ ?Jc , (2.12)

that is often called a Poisson-Lie symmetry.

We could of course swap the role of g and g̃ in the entire discussion above constructing

Π̃ab, π̃a, ṽ
a, l̃a as well as generalised frame fields ẼA. This results in a dual σ-model, S̃,

defined on G̃ = exp g̃ that is canonically equivalent to the first [9, 45, 46]. A set of Buscher

rules for such a dualisation is easily formulated in the generalised geometry by starting with

a curved space generalised metric H, undressing the frame fields EA to return to the flat

space generalised metric H̊, performing an O(d, d) action that implements the swapping

(Ta, T̃
a)↔ (T̃ a, Ta) and then re-dressing with the generalised frames ẼA.

The action in eq. (2.11) is one-loop renomalisable [47] and the RG equations governing

the two sigma models S and S̃ are equivalent at one-loop [48] and can be formulated in terms

of a renormalisation to H̊ [49, 50]. Should the target space of the original theory define a

solution of the appropriate (super)gravity (or part thereof) under normal circumstances so

too will the dual, and hence this procedure defines a solution generating technique. This

is called Poisson-Lie T-duality.

3 Brief review of SL(5) exceptional field theory

In the ExFT approach to eleven-dimensional supergravity a split is made into a d dimen-

sional “internal” space M and 11− d “external” directions but importantly no restriction

is made on the coordinate dependence of any fields and no truncation is assumed from the

outset. This splitting enables a rewriting of the variables of supergravity in a way that

makes manifest the Ed(d) U-duality symmetry. In order to get efficiently to the core issues,

our focus in this paper will be exclusively on the internal directions and we shall ignore

both dependance of internal fields on external coordinates and external fields entirely —

these extra modes will be spectators as far as the Poisson-Lie U-duality is concerned. Our

approach is essentially a specialisation of the general construction of gauged supergravities

via ExFT [41–43, 51] and the inclusions of these spectator modes is well discussed in the

literature.

On the internal space the bosonic field content, namely the components of the metric

tensor and three-form and dual six-form potentials, are packaged into a generalised metric

MAB where the index A runs over a particular representation R of the duality group [34,

52]. R is sometimes called the coordinate representations1 and the sections of its associated

fibre bundle, the generalised tangent bundle E, are called generalised vector fields and

1In ExFT it is sometimes asserted that space is augmented by extra coordinates to form a multiplet XA

in the representation R — however, the price paid is that additional constraints are required to reduce the

dynamics to depend only on the conventional d coordinates (or fewer). Here we will only consider objects

that depend on d coordinates and need not invoke this.
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generate diffeomorphisms, two-form and 5-form gauge transformations on the internal space

M via the generalised Lie derivative.

As it is most amenable for direct calculation, we will henceforth consider the case of d =

4. In this case, E4(4)
∼= SL(5) and the representation R = 10 and we will use the composite

index notation A = [AB] with A = 1 . . . 5. For d = 4, the generalised tangent bundle

E ≈ TM⊕∧2T ?M consists of vector fields and two-forms, generating diffeomorphisms and

gauge transformations on M . The generalised Lie derivative acts on generalised vector fields

as introduced in eq. (2.6) with the replacement of one-forms to two-forms. For practical

reasons, we will often prefer to work with the fundamental 5 representation of SL(5), with

associated bundle Λ0T ?M ⊕ ∧3T ?M , the sections of which undergo diffeomorphisms and

gauge transformations mediated by the generalised Lie derivative as follows

LUW = LuW
(0) +

(
LuW

(3) +W (0)dµ
)
, (3.1)

where the generalised vector field U = u+ µ, W = W (0) +W (3) and u is a vector field, µ

is a 2-form, W (0) is a scalar field and W (3) is a 3-form.

4 Exceptional Drinfeld algebra

Recall that a Drinfeld double, d, is an algebra that (i) is equipped with a symmetric

split-signature ad-invariant pairing η(·, ·) and (ii) admits at least one decomposition into

maximally isotropic subalgebras g, g̃ with respect to η such that d = g ⊕ g̃. Let us now

construct the analogue of a Drinfeld double which, for want of inspiration, we call an

“Exceptional Drinfeld Algebra” and denote by dE . We will do this by generalising the

above notions from O(d, d) to SL(5), mirroring the generalisation of generalised geometry

or gauged supergravities from O(d, d) to SL(5). Thus, we define (in the specific case of

SL(5)) an Exceptional Drinfeld Algebra, dE , as a (i) (n ≤ 10)-dimensional subalgebra of

sl(5) ⊕ R+, which contains at least one (ii) 4-dimensional subalgebra g, that satisfies the

“maximal isotropy” condition for SL(5) which we will now define.

Let us write the generators of dE in a 10-dimensional SL(5) covariant manner, such

that they are represented by

dE = span (TAB) , (4.1)

with TAB = T[AB] and A,B = 1, . . . , 5. However, as we will make explicit later, typically

n < 10 so the generators TAB are not all linearly independent. Since dE is a subalgebra

of sl(5) ⊕ R+, we can introduce the sl(5)-invariant εABCDE which is left invariant up to

scalings.

The “maximal isotropy” condition for the subalgebra g is that its generators satisfy

εABCDETABTCD = 0 , (4.2)

where this should be understood as a relation on the universal enveloping algebra. We can

always label these generators as ta ≡ Ta5 with a = 1 . . . 4 and the remaining 6 generators

by t̃ab ≡ 1
2ε
abcdTcd.
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Finally, let us discuss the structure constants of dE . In analogy to 7-d gauged maximal

SUGRA [53], dE is a Leibniz algebra with structure constants given by

[TAB, TCD] =
i

2
FAB,CD

EFTEF , (4.3)

where the structure constants, also called the embedding tensor, are given by

FAB,CD
EF = 4FAB,[C

[Eδ
F ]
D] ,

FAB,C
D =

1

2
εABCEFZ

EF ,D +
1

2
δD[ASB]C +

1

3
δD[AτB]C +

1

6
δDC τAB .

(4.4)

Here SAB is symmetric, τAB is antisymmetric and TABC
D = 1

2εABCEFZ
EF ,D is traceless, i.e.

Z [AB,C] = 0. This is, in general, not a Lie algebra because the structure constants need

not be anti-symmetric under the interchange of the two sets of lower indices. Moreover,

instead of the Jacobi identity, closure of dE requires the quadratic constraint (also known

as the Leibniz identity)

2FAB,[C
GF|G|D],E

F − FAB,GFFCD,EG + FAB,E
GFCD,G

F = 0 . (4.5)

Requiring closure under the adjoint action of g ∈ G on dE implies that

g · TAB · g−1 =
1

2
(Ag)AB

CDTCD . (4.6)

Moreover, since dE ⊂ sl(5)⊕ R+, this adjoint action must lie inside SL(5) × R+, i.e.

(Ag)AB
CD = 2(Ag)[A

[C(Ag)B]
D] . (4.7)

Finally, since g ⊂ dE is a subalgebra, we must have

g · ta · g−1 = (adg)a
b tb , (4.8)

where adg denotes the adjoint action of g ∈ G on g. As a result, the SL(5) × R+ matrix

(Ag)A
B is given by

(Ag)A
B =

(
Ξ

1/3
g |adg|−1/3(adg)a

b Ξ
−1/3
g |adg|1/3(λg)a

0 Ξ
−1/3
g |adg|1/3

)
, (4.9)

where |adg| = det (adg) is the determinant of the adjoint action of g ∈ G, Ξg = det (Ag) is

the overall R+ action and (λg)a defines the action of g ∈ G on t̃ab as

g · t̃ab · g−1 = Ξ2/3
g |adg|1/3(adg−1)c

a(adg−1)d
b t̃cd + λabc (adg)c

e te , (4.10)

where (λg)
abc = εabcd(λg)d.

Equations (4.6) and (4.9) imply the following properties for (λg)a:

• (λg)a vanishes at the identity of G

(λe)a = 0 . (4.11)
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• (λg)a inherits a group composition rule from that of the adjoint action

(λhg)a = (Ξg)
2
3 |adg|−

2
3 (adg)a

b(λh)b + (λg)a , (4.12)

which is reminiscent of the composition law obeyed by the Poisson-Lie bi-vector.

In the following, we will often drop the subscript g on Ξg and (λg)a for simplicity.

The structure constants of the algebra dE can now be related to λa using

d
(
g TAB g

−1
)

= i lcg [tc, TAB] g−1 , (4.13)

where l = i la ta = g−1 dg denotes the Maurer-Cartan one-form as in section 2. We first

use that g is a subalgebra of dE with structure constants fab
c, which we decompose into a

traceless part f̂ab
c and trace Ia, given by

fab
c = f̂ab

c +
2

3
δc[bIa] , Ia = fab

b . (4.14)

This allows us to identify

Sa5 =
4

3
Ia +

2

3
τa5 , Tab5

c = f̂ab
c , S55 = 0 . (4.15)

We then find from (4.13)

dΞ =
1

2
la τa5 Ξ ,

λ(a,b) = −1

4
Sab +

2

3
λ(aIb) +

1

3
λ(aτb)5 ,

λ[a,b] =
1

6
τab + T5ab

5 + f̂ab
cλc +

1

3
λ[aτb]5 ,

(4.16)

where we defined the derivative of λa as

dλa = λa,b l
b . (4.17)

Moreover, we can use invariance of the structure constants of dE under the adjoint

action of G. This implies

FAB, CD
GHAG

EAH
F = AA

GAB
HAC

IAD
JFGH,IJ

EF , (4.18)

and thus various relations between the structure constants (4.4), Ξg, adg and (λg)a which

will be important for us in the following.

5 The frame fields and embedding tensor

The next step is to furnish the algebra eq. (4.3) via the generalised Lie derivative acting on

a set of generalised frame fields. By analogy with the Poisson-Lie case of eq. (2.7) we will

construct the generalised frame fields out of objects on dE , in particular λabc, as follows

Ea = va , Ẽab = λabc vc + α la ∧ lb , (5.1)

– 8 –
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where λabc = εabcdλd, α is a function on G and va and la are the left-invariant vector fields

and one-forms on G.

Taken together these define generalised frame fields in the 10, ie. EAB =

(Ea,
1
2εabcdẼ

cd), that should obey

LEABECD = −FAB,CDEFEEF , (5.2)

with FAB,CD
EF given in (4.4).

In addition the frame fields must define SL(5) × R+ group elements and so can be

decomposed in terms of objects in the 5̄ representation:

EAB = 2∆−1E[AEB] , (5.3)

where under the generalised Lie-derivative ∆ has weight 1.2 It is often easier to work with

the Ea, which are given by

Ea =
1

3!
εabcd

(
α2 lb ∧ lc ∧ ld − αλbcd

)
, E5 = α , ∆ = α3 |l| , (5.4)

and must obey

LEABEC = FAB,C
DED +

1

2
τABEC , (5.5)

in which we recall the structure constants (embedding tensor) in the fundamental defined

in eq. (4.4).

We will now show that, with the λa defined in section 4, via equation (4.9), and an

appropriate function α that we will specify shortly, the EAB of (5.1) satisfy the differential

conditions (5.2), once certain further restrictions are placed on the structure constants (4.4).

Firstly, we evaluate (5.5) and find:

Sa5 = 2Lva lnα+2Ia , S55 = 0 , Sab = 4I(aλb)−4λ(a,b) +4λ(aLvb) lnα,

τa5 = 3Lva lnα+Ia , τab =−2
(

3λ[aLvb] lnα+λ[aIb] +λ[a,b]

)
,

Tab5
c = f̂ab

c , Tab5
5 =−f̂abcλc+

4

3
λ[a,b] ,

Tabc
d = 3f̂[ab

dλc]−2λ[a,bδ
d
c] , Tabc

5 =−3f̂[ab
dλc]λd+6λ[a,bλc] .

(5.6)

Recall from (4.11) that λa vanishes at the identity of G. Since the expressions (5.6) define

structure constants, we can evaluate them at the identity where λa = 0. This implies the

following relation between the structure constants.

Tabc
5 = 0 , Tab5

5 = −2

3
τab , Tabc

d = τ[abδ
d
c] . (5.7)

Therefore, to perform a Poisson-Lie U-duality, we must impose the further restriction on

the algebra dE that its structure constants (4.4) must satisfy (5.7).

2Here EAI has the natural weight 3
5
.
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With the structure constants related by (5.7), we can derive the following three equa-

tions from the adjoint-invariance condition of the structure constants (4.18).

0 = fab
cλc + λ[aτb]5 +

2

3
λ[aKb] ,

0 = f[ab
dλc] − f[ab

eδdc]λe −
4

3
λ[aKbδ

d
c] ,

0 = τ[abλc] ,

(5.8)

where Ka = Ia+ 1
2τa5. These relations together with (4.16) and for the structure constants

related by (5.7) imply that the λa introduced in (4.9) and

αg = α0(Ξg)
2/3|adg|1/3 , (5.9)

for some constant α0, satisfy precisely the right differential conditions, i.e.

Sa5 = 2Lva lnα+2Ia , S55 = 0 , Sab = 4I(aλb)−4λ(a,b) +4λ(aLvb) lnα,

τa5 = 3Lva lnα+Ia , τab =−2
(

3λ[aLvb] lnα+λ[aIb] +λ[a,b]

)
,

Tab5
c = f̂ab

c , −2

3
τab =−f̂abcλc+

4

3
λ[a,b] ,

τ[abδ
d
c] = 3f̂[ab

dλc]−2λ[a,bδ
d
c] , 0 =−3f̂[ab

dλc]λd+6λ[a,bλc] .

(5.10)

Therefore, the generalised Lie derivative of EAB given in (5.1) furnish the algebra of the

Drinfeld extension (4.4) when the structure constants are related by (5.7).

With the relations (5.7), the algebra relations of the Exceptional Drinfeld algebra

reduce to

[Ta5, Tb5] = i fab
c Tc5 ,

[Ta5, Tbc] = − [Tbc, Ta5] = i

(
2 fa[b

dTc]d +
2

3
Ka Tbc +

1

2
εbcde f̃

def
aTf5

)
,

[Tab, Tcd] =
i

3

(
f̃ efgb εefg[c Td]a − f̃ efga εefg[c Td]b

)
+
i

2
εabef f̃

efg
g Tcd .

(5.11)

Here we have introduced the “dual structure constants” f̃abcd given by

f̃abcd = −4 εabce (Sde − 2 τde) , (5.12)

and we also make use of the definitions

Ka = Ia +
1

2
τa5 , La = τa5 − Ia. (5.13)

In terms of the generators t̃ab, the Exceptional Drinfeld algebra relations (5.11) take the

form
[ta, tb] = i fab

c tc ,[
ta, t̃

bc
]

= −
[
t̃bc, ta

]
= i

(
−2 fad

[b t̃c]d +
1

3
La t̃

bc + f̃ bcda td

)
,[

t̃ab, t̃cd
]

= i
(
−2 f̃ cd[a

e t̃
b]e + 2 f̃ cdee t̃

ab + f̃abee t̃
cd
)
.

(5.14)
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Note that the Exceptional Drinfeld Algebra is a Leibniz algebra and the
[
t̃ab, t̃cd

]
is not

antisymmetric.

With the information above we can also give the derivative of λabc in a form that

mirrors that displayed by the PL bivector Π (2.4) namely:

dλabc = f̃abcd l
d + 3fed

[a λbc]d le +
1

3
λabc Le l

e . (5.15)

5.1 Poisson-Lie U-dualities

When an exceptional Drinfeld algebra admits two different subalgebras g and g̃ satisfying

the “maximal isotropy conditions” (4.2), we can perform a Poisson-Lie U-duality as follows.

Firstly, note that the generators of g and g̃ are necessarily related by some SL(5) trans-

formation TAB. Next, for both g and g̃, we can introduce Ξ, λa and Ξ′, λ′a, respectively

as shown in 4. We then construct the frame fields EA and E ′A realising the algebra of the

exceptional Drinfeld algebra based on g, g̃, respectively, using our results in 5. Finally, we

can perform a generalised Scherk-Schwarz reduction of 11-dimensional supergravity on G

using the Ansatz

MAB = EAĀEBB̄MĀB̄ , (5.16)

where MĀB̄ are the scalar fields of 7-dimensional maximal gauged supergravity and are

thus constant on the internal space. We now perform a SL(5) transformation on the fields

of the 7-dimensional supergravity, i.e.

M′ĀB̄ = TĀC̄TB̄D̄MĀB̄ , (5.17)

and lift M′ to 11-dimensional supergravity using the frame fields E ′AB̄. Thus the dual

background is described by the fields encoded in the generalised metric

MAB = E ′AĀE ′BB̄M′ĀB̄ . (5.18)

Equivalently, the Poisson-Lie U-duality can be viewed as a local SL(5) transformation

generated by

TAB ≡ E ′AĀ TĀB̄
(
E−1

)
B̄
A . (5.19)

This point of view provides the U-duality analogue of the analysis of [28–32].

6 The quadratic constraint

If we are given a Drinfeld extension, as defined in section 4 with structure constants related

by 5.7, we can use the results of the previous section to immediately construct the frame

fields associated to it, and thus to perform a Poisson-Lie U-duality. However, in practice,

we typically want to know when a given algebra g can be enlarged into a Drinfeld extension,

and, in particular, how to define λa and α and thus the frame fields (5.1) given g, so that

we can perform a Poisson-Lie U-duality. To answer this question, we must first study the

closure conditions of dE , i.e. the quadratic constraints (4.5), to understand what conditions

g imposes on the structure constants of dE .
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The quadratic constraints (4.5) imply that the irreducible representations of FAB,C
D

must satisfy
FAB,[C

EτD]E = 0 ,

FAB,(C
ESD)E = 0 ,

2FAB,F
[CZ |F|D],E + FAB,F

EZCD,F − 1

2
τABZ

CD,E = 0 .

(6.1)

These live in the 10 ⊗
(
10⊕ 15⊕ 40

)
. We now use (4.15) and (5.7) to simplify the

quadratic constraints and find:

• The conventional Jacobi identity for g: f[ab
efc]e

d = 0, as well as

0 = fab
cτc5 . (6.2)

• The compatibility conditions involving the g action on the remaining embedding

tensor components, Sab and τab:

0 = fab
dScd − 2fc[a

dSb]d −
4

3
K[aSb]c −

4

3
Kcτab ,

0 =
1

2
I[aτbc] + τ[abτc]5 ,

0 = fc[a
dτb]d +

1

3
Kcτab −

1

2
τc[aτb]5 +

1

4
Sc[aτb]5 ,

0 = f[ab
dSc]e + 2f[ab

dτc]e +
2

3
Se[aLbδ

d
c] +

2

3
Leτ[abδ

d
c] + 3δd[cδ

fgh
ab]eτfgIh ,

(6.3)

in which we recall Ka = Ia + 1
2τa5 and define La = τa5 − Ia.

• A dual Jacobi condition, involving only Sab and τab and not the structure constants

of g:
0 = τ[abτcd] ,

0 = Sa[bτcd] .
(6.4)

6.1 Dual structure constants

It is worthwhile revisiting the above conditions in terms of the dual structure con-

stants (5.12)

f̃abcd = −4 εabce (Sde − 2τde) . (6.5)

Now the compatibility conditions (6.3) are equivalent to

6ff [a
[cf̃de]f b] + fab

f f̃ cdef +
2

3
f̃ cde[aLb] = 0 ,

f̃abccIb = 0 ,

f̃abccτb5 = 0 ,

fde
af̃ bdec +

2

3
f̃abdcLd = 0 .

(6.6)

Finally, the dual Jacobi conditions (6.4) are equivalent to the fundamental identity for

f̃abcd:

f̃abgc f̃
def

g − 3f̃g[dec f̃
f ]ab

g = 0 . (6.7)

This implies that the dual structure constants f̃abcd define a Nambu bracket.

– 12 –



J
H
E
P
0
4
(
2
0
2
0
)
0
5
8

6.2 Cocycle condition

The first equation in (6.6)

6ff [a
[cf̃de]f b] + fab

f f̃ cdef +
2

3
f̃ cde[aLb] = 0 , (6.8)

is particularly interesting. Note that the dual structure constants define a map: f̃ : g −→
Λ3g, given by

f̃(x) = xa f̃ bcda tb ∧ tc ∧ td , ∀x = xa ta ∈ g . (6.9)

Viewed this way f̃ defines a Λ3g∗-valued Lie algebra 1-cochain, which is a useful perspective

for what follows.

Let us now first focus on the case La = τa5 − Ia = 0. Then (6.8) implies that f̃abcd
must be a Lie-algebra 1-cocycle, i.e. f̃ must be closed under the Lie algebra differential

df̃(x, y) ≡ adxf̃(y)− adyf̃(x)− f̃([x, y]) = 0 , ∀x, y ∈ g . (6.10)

The usual Lie algebra differential is nilpotent d2 = 0, and thus the cocycle condition is

solved by a coboundary

f̃ = dm , (6.11)

for some m ∈ Λ3g?, where

dm(x) ≡ adxm, ∀x ∈ g . (6.12)

Now let us turn to La 6= 0. Now, the modified cocycle condition (6.8) can be expressed

in terms of the operator

d′f̃(x, y) ≡ adxf̃(y)− adyf̃(x)− f̃([x, y])− 1

3

(
f̃(x)L(y)− f̃(y)L(x)

)
= 0 , ∀x, y ∈ g ,

(6.13)

where

L(x) ≡ Laxa , ∀x = xa ta ∈ g . (6.14)

However, the operator d′ is still nilpotent. Let

d′m(x) ≡ adxm+
1

3
L(x)m, ∀x ∈ g , (6.15)

for some m ∈ Λ3g?. Then it is easy to show that d′2 = 0. Therefore, the modified cocycle

condition (6.8) can be solved by a coboundary

f̃ = d′m, (6.16)

for any m ∈ Λ3g?.
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7 Coboundary Ansatz

As discussed above, the quadratic constraints lead to compatibility conditions between

the structure constants of g and f̃abcd (6.6), which include the modified cocycle condi-

tion (6.8). Let us now focus on coboundary solutions to these equations, i.e. solutions of

the form (6.16). In the case of Poisson-Lie T-duality, the analogous coboundary case leads

to Yang-Baxter deformations. Therefore, when f̃ is a modified coboundary as above this

should lead to the U-duality analogue of Yang-Baxter deformations. Moreover, White-

head’s lemma states that for semisimple Lie algebras H1(g) = 0, i.e. for semisimple Lie

algebras every 1-cocycle is a coboundary, and thus the coboundary Ansatz is the only

solution for semisimple Lie algebras with Ia = τa5.

Writing (6.16) out explicitly, it becomes

f̃abcd = 12 fde
[ambc]e +

4

3
mabcLd . (7.1)

In terms of the irreps τab and Sab, the Ansatz (7.1) is

Sab =
8

3
m(aKb) , τab =

4

3
m[aKb] + 2 fab

cmc . (7.2)

Now the first equation of (6.6) is automatically solved and the remaining compatibility

conditions impose the following restrictions on ma:

0 = fab
dfcd

eme − fabdKcmd + fc[a
dτb]5md −

4

9
Kcm[aKb] −

2

3
Kcm[aτb]5 ,

0 = 2f[ab
dfc]e

fmf +
4

3
f[ab

dmc]Ke +
4

9
meK[aLbδ

d
c] +

4

9
Kem[aLbδ

d
c] +

4

9
Lem[aKbδ

d
c]

+
2

3
Lef[a

fδdc]mf + 2δd[cδ
fgh
ab]emfKgIh + 3δd[cδ

fgh
ab]effg

imiIh ,

0 = f[ab
dKc]md .

(7.3)

Finally, the dual Jacobi conditions imply

f[ab
efcd]

fmemf = 0 ,

Kaf[bc
emd]me = 0 .

(7.4)

Now let us construct the object λa satisfying the first-order constraints (5.10) with Sab
and τab given as in (7.2), as well as the group composition properties (4.11) and (4.12). It

is given by

(λg)a = ma − (Ξg)
2
3 |adg|−

2
3 (adg)a

bmb , (7.5)

which clearly satisfies (4.11) and (4.12). Moreover, we can readily calculate the Lie deriva-

tive

Lvbλa ≡ λa,b =
2

3
Kb(λ−m)a + fab

c(λ−m)c , (7.6)

and find that at the identity where λa = 0

Sab =
8

3
m(aKb) , τab =

4

3
m[aKb] + 2fab

cmc , (7.7)

as required by (7.2).
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Now we note that (5.10) is satisfied precisely when (5.8) holds. However, as shown

in section 4, these equations follow from adjoint-invariance of the structure constants, and

thus from integrating the quadratic constraints (4.5) over G. Since we have already satisfied

the quadratic constraints (4.5) and ensured that λa transforms the right way on G, our

Ansatz (7.5) satisfies (5.8) and thus (5.10).

Finally, for a given group G, we can integrate dΞ = 1
2 l
a τa5 Ξ to find the function Ξ

appearing via α, see equation (5.9), in the frame fields (5.1).

Given the analogy with Poisson-Lie T-duality, it is tempting to speculate that the

matrix mabc defined above is related to an M-theoretic analogue of Yang-Baxter defor-

mations. In particular, one may want to view m : g −→ Λ2g? and defining an associated

3-bracket. The appropriate notion of closure of the 3-bracket should then be the fundamen-

tal identity (6.7). We can then follow [54] to find the analogue of the classical Yang-Baxter

equation. We leave a detailed study of this question for future work.

8 Some examples

Let us now consider some examples of the co-boundary case.

The most obvious example here is g = su(2) + u(1) in which we choose T4 be the u(1)

generator and Ti = τi be the Pauli matrices for i = 1 . . . 3. This however is rather trivial,

immediately from fab
cτc5 = 0 we have that Ki = 0 for i = 1, 2, 3. Then from the constraint

f[ab
dKc]md = 0 one concludes that mi = 0 for i = 1, 2, 3. From the constancy condition

one is left with 0 = f[ab
dλc] but picking say a = 1, b = 2, c = 4, d = 3 one finds that the

only remaining component m4 is forced to be zero. Of course, since there is a U(1) factor

here there can still be solutions for λ not of co-boundary type.

Let us consider g = (II)+u(1) where (II) is the BianchiII or Heisenberg-Weyl algebra

for which the only non-vanishing commutator is

[T2, T3] = iT1 . (8.1)

We can choose a parameterisation of (II) as

T1 = i


0 0 1

0 0 0

0 0 0

 , T2 = i


0 1 0

0 0 0

0 0 0

 , T3 = i


0 0 0

0 0 1

0 0 0

 , (8.2)

and a corresponding group element (in which the overall phase accounts for the U(1) factor)

g = ei
θ
3


1 x y

0 1 z

0 0 1

 . (8.3)

The function Ξg = e
1
3
θk4−xk2−zk3 which enters into the co-boundary ansatz for λ is com-

patible with the group multiplication law and the differential constraint dΞg = 1
2 l
cτa5Ξg.
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Ka ma τa5 τab Sab f̃

(1) {0, 0, 0, 0} {m1, 0, 0, 0} − × − ×
(2) {0, k2, k3, 0}

{
0,m2,

k3m2
k2

, 0
}
× − × ×

(3) {0, k2, k3, k4} {0, 0, 0, 0} × − − −
(4) {0, 0, 0, 0} {0,m2,m3,m4} − − − −

Table 1. Solutions for g = (II)+u(1) in which × indicates a non-zero embedding tensor component.

Of these note that λa is non-zero only for the first two rows.

The one forms and dual vectors are given as

l1 = −dy + xdz , l2 = −dx , l3 = −dz , l4 =
1

3
dθ

v1 = −∂y , v2 = −∂x , v3 = −x∂y − ∂z , v4 = 3∂θ .
(8.4)

and the adjoint action is

(adg)a
b =


1 0 0 0

−z 1 0 0

x 0 1 0

0 0 0 1

 . (8.5)

The various constraint equations discussed above admit a set of solutions, illustrated in

table 1, leading to constant embedding tensor components. Of these λa is non zero for only

the first two entries of the table as can be seen from the above form of the adjoint action.

Explicitly we have the cases

λ(1) = m1{0, z,−x, 0} , λ(2) =
m2

k2

(
1− e−

2
3

(xk2+zk3)
)
{0, k2, k3, 0} . (8.6)

9 Discussion and outlook

This work opens a number of interesting lines.

As indicated in section 4, by a procedure of undressing, SL(5) action and redressing,

one has a map between two generalised metrics giving rise to same lower dimensional su-

pergravity theory and one should like to exploit this as a solution generating technique.

An exciting opportunity is to explore pragmatic usages of this technique in constructing

new holographic supergravity solutions, a programme which becomes richer as the dimen-

sionality of the internal space is increased.

A immediate mechanical task is to scan through the four-dimensional Lie-algebras (see

e.g. [55]) and classify all the Exceptional Drinfeld Algebras dE ⊂ SL(5)×R+ thereby pro-

viding an exceptional analogue of the classification of six-dimensional Drinfeld doubles [56].

The framework proposed above should admit a ready generalisation to the other excep-

tional generalised geometries based on en,(n), at least for n ≤ 6, though the details should be
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worked out. New features occur at larger n: at n = 6 a new object λabcdef would enter and

modify the structure; at n = 7 a mixed symmetry object λa1...a7,a8 must be considered; at

n = 8 the generalised Lie derivative alone doesn’t close and compensating additional shift

symmetries must be incorporated. Beyond n = 8 one is dealing with infinite dimensional

algebras which would be exciting to investigate in this context.

Here we have taken a target space perspective and one might wonder about the impli-

cations of this construction on the world-volume of membranes or five-branes in M-theory.

Recall the worldsheet currents Ja associated to the G action generated by the vector fields

va obey a modified conservation law in the case of Poisson-Lie NLSMs. For the case of

SL(5) exceptional generalised geometry we need only think of membranes where a natural

expectation is a modified conservation law of the form

d ? Ja = f̃ bcdaJb ∧ Jc ∧ Jd . (9.1)

Beyond SL(5), when five-branes should be considered this is likely to be more involved.

The Poisson-Lie scenario described in section 2 can be generalised in two important

ways. First, the assumption of a Drinfeld double can be relaxed to only require a sin-

gle isotropic subgroup, this set-up captures WZW models as well as their integrable λ-

deformations. Second, one can take a reduction of the Poisson-Lie model to “dressing

cosets” which allows for target spaces that are cosets rather than groups (required to de-

fine e.g. integrable Yang-Baxter type deformations of AdS5 × S5). One would hope to

situate both of these generalisations within the exception generalised geometry setting.

Here we have seen that how the components of the embedding tensor are realised as

encoding structure constants of an exceptional Drinfeld algebra. One can thus reduce on

the geometry we construct to a lower dimensional gauged supergravity theory. Here the

resultant theories obtained after Scherk-Schwartz reduction will be maximally supersym-

metric, and so a natural question related to the preceding paragraph, is to obtain the

half-maximal or lower supersymmetric analogue construction exploiting the ideas in [57].

The converse question is interesting; under what circumstances can a lower dimensional

gauged supergravity theory be uplifted to an exceptional Drinfeld algebra?
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A Conventions

We consider an algebra g (group G) with Hermitian generators ta obeying [ta, tb] = ifab
ctc.

We define the trace of the structure constants as Ia = fab
b such that fab

c = f̂ab
c + 2

3δ
c
[bIa]

with f̂ab
b = 0. When dim g = 4 we can make use of the identity f̂ef

[aεbc]ef = 0.

We denote by la the left-invariant Maurer-Cartan one-forms on G, given by g−1dg =

i la ta, and by va their dual vector fields that generate right translations. They satisfy

dla =
1

2
fbc

alb ∧ lc , ιva l
b = δa

b , Lvavb = −fabcvc , Lva l
b = +fac

blc , (A.1)

in which L denotes the Lie-derivative that we recall acts on forms according to L = dι+ ιd.

We define the adjoint action of G on g as

adg : ta 7→ gtag
−1 = (ag)a

btb . (A.2)

Certain manipulations require the identities

d(adg)a
b = −lcfcad(adg)db , d|agg| = −laIa|adg| , (adg)a

d(adg)b
efde

c = fab
d(adg)d

c .

(A.3)
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[9] C. Klimč́ık and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys.

Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(93)90041-M
https://arxiv.org/abs/hep-th/9210021
https://inspirehep.net/search?p=find+EPRINT+hep-th/9210021
https://doi.org/10.1007/JHEP12(2019)146
https://doi.org/10.1007/JHEP12(2019)146
https://arxiv.org/abs/1910.00397
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.00397
https://doi.org/10.1016/j.nuclphysb.2010.12.013
https://arxiv.org/abs/1012.1320
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1320
https://doi.org/10.1007/JHEP06(2011)106
https://arxiv.org/abs/1104.5196
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5196
https://doi.org/10.1103/PhysRevLett.110.231601
https://arxiv.org/abs/1212.1043
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1043
https://doi.org/10.1016/j.nuclphysb.2013.04.004
https://arxiv.org/abs/1301.6755
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.6755
https://doi.org/10.22323/1.347.0099
https://arxiv.org/abs/1904.11561
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.11561
https://doi.org/10.1016/0370-2693(95)00451-P
https://doi.org/10.1016/0370-2693(95)00451-P
https://arxiv.org/abs/hep-th/9502122
https://inspirehep.net/search?p=find+EPRINT+hep-th/9502122
https://doi.org/10.1016/0370-2693(96)00025-1
https://doi.org/10.1016/0370-2693(96)00025-1
https://arxiv.org/abs/hep-th/9512040
https://inspirehep.net/search?p=find+EPRINT+hep-th/9512040


J
H
E
P
0
4
(
2
0
2
0
)
0
5
8
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