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Abstract 28 

 29 

Objective: Septic arthritis is commonly caused by Staphylococcus aureus and is a medical 30 

emergency requiring antibiotics and joint irrigation. The bacteria produce α-toxin causing rapid 31 

cartilage cell (chondrocyte) death. Saline (0.9%NaCl) lavage is normally used to remove bacteria 32 

and toxins, however, its composition might be sub-optimal to suppress the lethal effects of α-toxin. 33 

We utilised rabbit erythrocyte haemolysis as a sensitive, biologically-relevant assay of α-toxin 34 

levels to determine if changes to osmolarity, temperature, pH, and divalent cation (Mg2+, Ca2+) 35 

concentration were protective.  36 

Design: Erythrocytes were incubated in the various conditions and then exposed to α-toxin 37 

(‘chronic’ challenge) or incubated with α-toxin and then exposed to experimental conditions (‘acute’ 38 

challenge).  39 

Results: Raising osmolarity from 300mOsm (0.9%NaCl) to 400, 600 or 900mOsm (sucrose 40 

addition) when applied chronically, significantly reduced haemolysis linearly. As an acute 41 

challenge, osmotic protection was significant and similar over 400-900mOsm. Reducing 42 

temperature chronically from 37oC to 25oC and 4oC significantly reduced haemolysis, however, 43 

when applied as an acute challenge although significant, was less marked. Divalent cations (Mg2+, 44 

Ca2+ at 5mM) reduced haemolysis. Varying pH (6.5, 7.2, 8.0) applied chronically marginally 45 

reduced haemolysis. The optimised saline (0.9%NaCl;900mOsm with sucrose), 5mM MgCl2, 46 

(37oC) rapidly and significantly reduced haemolysis compared to saline and Hank’s buffered saline 47 

solution (HBSS) applied either chronically or acutely.   48 

Conclusions: These results on the effect of S. aureus α-toxin on erythrocytes showed that 49 

optimising saline could markedly reduce the potency of S. aureus α-toxin. Such modifications to 50 

saline could be of benefit during joint irrigation for septic arthritis. 51 

 52 

 53 

 54 

 55 

 56 
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Introduction 63 

 64 

Septic arthritis, a destructive joint disease leading to permanent cartilage damage and 65 

disability, affects all ages with an incidence in Western Europe of 4-10 cases/100,000 66 

persons/yr1,2. Staphylococcus aureus (S. aureus) accounts for 40-70% of all cases of septic 67 

arthritis1,3,4 and the incidence is rising due to factors including an ageing population, increased use 68 

of immunosuppressive agents, musculoskeletal prosthetics and surgical procedures5. Management 69 

of septic arthritis is to rapidly eliminate the bacteria and associated toxins through intravenous 70 

antibiotics and copious joint irrigation5. Despite eradication of the bacteria, the damage caused to 71 

articular cartilage persists in >50% of cases and may lead to osteoarthritis (OA)1,2,6.  72 

S. aureus produces an array of toxins including exotoxins (including alpha (α), beta (β), 73 

gamma (γ) and delta (δ) haemolysin)7 which are potent virulence factors8-11. Recent work using in 74 

vitro bovine cartilage and an in vivo murine model of septic arthritis with isogenic mutants of S. 75 

aureus, has identified α-toxin as the primary agent causing the rapid death of cartilage cells 76 

(chondrocytes)12-14. Chondrocytes are the only cell type capable of maintaining the tissue’s 77 

resilience through the turnover of extracellular matrix proteins and their loss, through the action of 78 

α-toxin, will result in cartilage degradation. S. aureus α-toxin also has longer-term damaging effects 79 

on chondrocytes, for example, it may increase expression of catabolic factors including matrix 80 

metalloproteinases (MMPs) and inducible NO synthase (iNOS) leading to deleterious changes to 81 

cartilage metabolism15-18. While there has been considerable attention given to the development of 82 

antibacterials for treating S. aureus infection, the protection of chondrocytes against the deleterious 83 

effects of α-toxin has not been as intensively investigated. 84 

 S. aureus α-toxin binds to the A Disintegrin And Metalloproteinase 10 (ADAM10) receptor 85 

present on animal and human articular chondrocytes and rabbit erythrocytes19-21. This leads to the 86 

formation of a heptameric pore and rapid influx of Na+ and water, causing cell swelling and lysis, 87 

leading to the release of intracellular components resulting in inflammation22. Rabbit erythrocytes 88 

show only low sensitivity to other haemolysins23 (in contrast to human erythrocytes24) and are 89 

therefore an extremely flexible and sensitive model system for studying the interaction between 90 

this α-toxin and cell lysis24. Additionally, the release of haemoglobin can easily be measured 91 

spectrophotometrically, allowing the dynamic effects of biologically-relevant activity of α-toxin on 92 

cell viability to be assessed24.  93 

 The fluid used for joint irrigation is normally isotonic saline (0.9%NaCl;300mOsm) which is 94 

hypo-osmotic compared to normal synovial fluid (400mOsm)25. Previous work has shown that the 95 

sensitivity of chondrocytes to other forms of injury may be markedly reduced when the osmolarity 96 

of isotonic saline or culture medium (typically 300mOsm) is increased26,27. This raised the 97 

possibility that the saline currently used for irrigation might be sub-optimal and that altering some of 98 

its properties might reduce the injurious effects of α-toxin and thus be chondroprotective against α-99 

toxin. Accordingly, we have tested the effects of osmolarity (300, 400, 600, 900mOsm), 100 
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temperature (4oC, 25oC, 37oC), divalent cations (Ca2+ and Mg2+) and pH (6.5, 7.2, 8.0) on the 101 

potency of S. aureus α-toxin using the sensitive rabbit erythrocyte haemolysis assay. The aim of 102 

this study therefore was to determine if these relatively simple alterations to the properties of 103 

standard saline could reduce the damaging effect of S. aureus α-toxin.  104 

 105 

 106 

 107 

 108 

 109 

  110 
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Materials and Methods. 111 

(a) Biological materials, tissue culture, reagents. Saline (0.9%;300mOsm) used clinically for 112 

irrigation was obtained from Baxter Healthcare Ltd., Norfolk, UK. Hank’s buffered saline solution 113 

(HBSS;300mOsm) was purchased from Invitrogen Ltd., Paisley, UK. HEPES (4-(2-hydroxyethyl)-1-114 

piperazineethanesulfonic acid) buffer was obtained from Sigma-Aldrich Chemical Co., Gillingham, 115 

UK. TSA (tryptone soya agar), TSB (tryptone soya broth) and skimmed milk were obtained from 116 

Oxoid Ltd., Basingstoke, UK.  117 

(b) Rabbit red blood cells. The rabbit red blood cell (RBC) haemolysis assay was used to semi-118 

quantitatively determine biologically relevant α-toxin activity24. Fresh, heparinised RBCs from 119 

Orygen Ltd., Penicuik, UK, were prepared at ~5% haematocrit in saline (0.9% NaCl) and kept at 120 

5oC until required. Fresh blood was obtained weekly and was suitable for up to 5 days of 121 

experimentation after receipt.  122 

(c) Preparation of bacterial pellets and supernatant samples. S. aureus strain 8325-4 was kindly 123 

provided by Prof. T.J. Foster and stored at -80°C in 10%v/w skimmed milk. This strain is a well-124 

characterised prophage-cured derivative of strain NCTC8325 that produces large amounts of α-125 

toxin28 and has comparable potency to clinical strains of S. aureus in terms of chondrocyte-126 

damaging potential12. When required, bacteria were thawed and streaked onto TSA plates and 127 

cultured (24hrs;37°C). TSB plates containing 2µg/ml tetracycline were then prepared and 128 

inoculated with several single bacterial colonies from the TSA plate and incubated (24hr;37°C) with 129 

shaking. From this culture, serial dilutions were performed in saline to 10-6, spread on TSA plates 130 

and incubated (24hr;37°C). The number of Colony Forming Units/ml (CFU/ml) in TSB was typically 131 

~1x109 CFU/ml. α-toxin-containing supernatants were obtained by centrifugation (800xg;10min) of 132 

the TSB cultures which were then filter-sterilised and stored (4oC) until required which was within 133 

one week. To establish an appropriate time-course at the beginning of a week’s experiments, the 134 

sensitivity of rabbit RBCs to α-toxin were assessed by adding a small volume of toxin to a 5% RBC 135 

suspension and incubating at 37oC for 60mins. Samples were taken every 10mins, centrifuged 136 

(10,000xg;10secs) and haemolysis determined by the absorbance of haemoglobin at 540nm 137 

(Abs540) on a Nanodrop spectrophotometer (ThermoFisher Scientific, Waltham, USA). Maximum 138 

(100%) haemolysis was determined by freeze/thawing a sample of the RBC suspension. Percent 139 

haemolysis (%H) was then calculated ((Abs540 of sample – Abs540 of negative control)/(Abs540 of 140 

100% haemolysis – Abs540 of negative control) x100%) to give a measure of α-toxin activity. The 141 

sensitivity of erythrocyte samples to α-toxin and the amount and potency of α-toxin produced from 142 

each S. aureus culture, were variable. Rabbit erythrocytes which were relatively insensitive to toxin 143 

requiring >1hr of incubation before haemolysis was detectable, were not studied further. A rabbit 144 

blood sample which produced ~50% haemolysis after about 15mins was considered acceptable for 145 

experimentation.   146 

(d) Chronic or acute exposure of α-toxin-treated erythrocytes to various solutions and 147 

temperatures. Chronic exposure: Suspensions of rabbit erythrocytes were initially exposed to the 148 



6 
 

experimental conditions of osmolarity, temperature, pH or divalent cations for 10mins before an 149 

aliquot of α-toxin was added, the cell suspension mixed quickly, and the time course of % 150 

haemolysis (%H) measurements commenced. Acute exposure: The α-toxin treated erythrocyte 151 

suspensions were initially incubated under control conditions and haemoglobin release measured 152 

until this reached 20-30% haemolysis. The cell suspension was then challenged with the various 153 

experimental conditions, and the extent of haemolysis determined until the end of the time course. 154 

The rate of change in % haemolysis/10mins for the chronic challenge was measured over 10-155 

20mins and for the acute challenge, the time course was measured over 20-30mins after the start 156 

of the experiment. Data were shown as the change in % haemolysis (%H)/10mins. For the control 157 

condition in the ‘acute exposure’ experiments for osmolarity and divalent cations, an identical 158 

volume of saline was added at the same time point to correct for α-toxin dilution. For the pH 159 

experiments, HEPES (10mM) was present and pH adjusted using HCl or NaOH. For some 160 

experiments, erythrocytes were suspended in Hank’s balanced salt solution (HBSS;pH 7.2).  161 

(e) Data analysis and statistics. Data are shown as means ± standard error of the mean (s.e.m.) for 162 

N independent experiments and n replicates for each experiment (N(n)), and analysed using 163 

GraphPad Prism Ver. 7.0b (GraphPad, San Diego, USA). Non-parametric t-tests and ANOVAs 164 

(Analysis of Variance) were performed as indicated and significant differences accepted when 165 

P<0.05. 166 

  167 
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 168 

Results 169 
 170 

(a) Suppression of α-toxin damage by raising saline osmolarity. To assess the effects of raising 171 

saline osmolarity (300mOsm) above that of synovial fluid (i.e. ≥400mOsm) on the damaging effect 172 

of α-toxin on rabbit erythrocytes, two types of experiments were performed: (i) chronic challenge – 173 

where erythrocytes were exposed to the various osmotic conditions including α-toxin throughout 174 

(Fig. 1A), or (ii) acute challenge – where erythrocytes were exposed to α-toxin until approx. 20-175 

30% haemolysis had occurred, before the hyper-osmotic challenge was delivered (Fig. 1B). For the 176 

chronic challenge, by the end of the time-course, control percent haemolysis (%H) (300mOsm; 177 

~93%) was significantly greater than 400mOsm (72%;P=0.0008), 600mOsm (47%;P<0.0001) and 178 

900mOsm (21%;P<0.0001) (Fig. 1A(i)). An inverse linear relationship was evident between 179 

osmolarity and %H induced by α-toxin (R2=0.9626;P=0.0189; (Fig. 1A(ii)). The change in % 180 

haemolysis/10mins was calculated after toxin exposure and was 3.9% for the control and although 181 

reduced at 400mOsm, was not significant (2.2%;P=0.506). However a reduction was observed at  182 

600mOsm (0.7%;P<0.0001) and 900mOsm (0.1%;P<0.0001; (Fig. 1A(iii)). 183 

When osmolarity was raised >300mOsm, approximately 10mins after α-toxin addition 184 

(‘acute challenge’) there was rapid and almost complete protection of erythrocytes (Fig. 1B(i)). 185 

There was a significant decrease in haemolysis between the control (300mOsm;82%) and 186 

hyperosmotic solutions (44%, 41%, 41% for 400, 600, 900mOsm respectively) by the end of the 187 

experiment (P<0.0001 for all osmolarities compared to 300mOsm). Interestingly, in contrast to the 188 

chronic challenge, the effects of 400mOsm and greater were not significantly different when 189 

compared to each other (P=0.327;Fig. 1B(ii)). The rates of change in %H were significantly 190 

decreased for osmolarities of  ≥400mOsm (Fig. 1B(iii)). Raising osmolarity using sucrose was thus 191 

strongly protective particularly after α-toxin damage to erythrocytes had been initiated. 192 

The osmotic protection conferred by sucrose was compared with that of a different 193 

osmolyte (NaCl) to the same osmotic pressure. At 40mins, NaCl (600mOsm) reduced %H from the 194 

control (300mOsm) value of 66±6% to 56±8%, whereas with sucrose this was decreased further to 195 

20±3%. In additional experiments at the same time point, when the osmolarity was raised to 196 

900mOsm, the %H for the control was 68±8%, and reduced to 21±7% in the presence of NaCl but 197 

was only 4±2% with sucrose (data are means ± s.d., N=2). Although NaCl protected erythrocytes 198 

against α-toxin, it appeared less effective when present at the same osmolarity as sucrose. 199 

(b) Reducing temperature of saline conferred protection against α-toxin-induced haemolysis. RBC 200 

suspensions were incubated for 10mins at the various temperatures, treated with α-toxin and then 201 

haemolysis determined. The chronic exposure to reduced temperature protected erythrocytes 202 

treated with α-toxin (Fig. 2A(i)). After 60mins at 25oC, the %H was 48% and significantly less 203 

compared to 37oC (75%;P=0.0056). However, when the α-toxin treated red blood cells were 204 

incubated at 4oC, haemolysis was virtually abolished over the time course studied (P<0.0001;Fig. 205 
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2A(i)). An inverse linear regression was observed between decreasing temperature and 206 

haemolysis (R2=1.00;P=0.002) (Fig. 2A(ii)). The rate of change in haemolysis (%H/10mins) for 4oC, 207 

25oC, and 37oC was 0.02%, 2.0%, and 2.6% respectively (4oC vs. 37oC, P=0.0115;4oC vs. 25oC, 208 

P=0.0451) (Fig. 2A(iii)). When temperature was changed quickly during the time course 209 

(‘temperature switch protocol’), no significant difference in haemolysis was observed between 37oC 210 

and 25oC until the 50min time-point (71% vs. 66%; P=0.0232; Fig. 2B(i)). A significant difference 211 

was also found between 37oC and 4oC after 40mins (65% vs. 59%;P=0.001). Although a linear 212 

relationship was evident, there was no significant deviation from a gradient of zero 213 

(R2=0.979;P=0.0923;Fig. 2B(iii)). Therefore, reducing temperature was more protective before α-214 

toxin addition. However, after its addition, reducing the temperature from 37oC to 4oC reduced 215 

haemolysis by ~10% (Fig. 2B(i)). 216 

(c) Protective effect of divalent cations against α-toxin induced erythrocyte haemolysis. For the 217 

chronic exposure experiments, divalent cations (Ca2+ or Mg2+ at 5mM) produced a modest 218 

decrease in haemolysis with significant protection observed as early as 10mins with CaCl2 219 

(P=0.0149) and 20mins with MgCl2 (P<0.0001;Fig. 3A(i)). This was maintained throughout the 220 

exposure protocol. By the end of the experiment, lower haemolysis levels resulted from cell 221 

suspensions containing Ca2+ (58.8%, P=0.0063) or Mg2+ (60.7%, P=0.0231) compared to the 222 

control (71.7%;Fig. 3A(i)). The protective effects of the divalent cations were indistinguishable 223 

(P>0.99;Fig. 3A(i, ii)). The addition of Mg2+ after α-toxin exposure (‘acute exposure’) gave 224 

significant protection (P=0.0002) against haemolysis, however, no difference was recorded with 225 

Ca2+ (P=0.12) at 60mins (Fig. 3B(i)). Furthermore, the rate of change showed no differences 226 

between the control and divalent ions (P>0.05;Fig. 3B(ii)). Thus, divalent ions provided only minor 227 

protection against haemolysis induced by α-toxin. 228 

(d) Influence of pH on α-toxin induced erythrocyte haemolysis. Altering saline pH might provide 229 

some protection against the damaging effects of α-toxin. A significant decrease in %H occurred 230 

between pH 6.5 and 8.0 (two-way ANOVA; P=0.0015) at 60mins (Fig. 4(i). However, there were no 231 

significant differences between normal pH (pH 7.2) and pH 6.5 (P=0.1995) or pH 8.0 (P=0.0892). 232 

The data points fitted a linear regression but the slope was not significantly different from zero 233 

(R2=0.9685, P=0.1136;Fig. 4(ii)). The rate of change of %H between 10-20mins of toxin exposure 234 

showed little variation across the pH values (P>0.99) (Fig. 4(ii)) suggesting that increasing saline 235 

pH may only offer marginal protection.  236 

(e) Effect of optimised saline on α-toxin-induced erythrocyte haemolysis. On the basis of the 237 

previous results, an optimised saline solution (0.9%NaCl, 900mOsm, 5mM MgCl2, 37oC) was 238 

prepared. This was compared to normal saline (0.9%NaCl) and HBSS (which contains Ca2+) in its 239 

ability to protect erythrocytes against α-toxin (Fig. 5A(i)). When the red blood cells were pre-240 

incubated in these solutions for 10mins before addition of α-toxin, the optimised saline abolished 241 

subsequent haemolysis in contrast to both normal saline and HBSS (both P<0.0001), where levels 242 

of haemolysis were 78% (normal saline), 63% (HBSS), 4% (optimised saline) at 60mins (Fig. 243 
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5A(i)). The rate of change of haemolysis was greatest for normal saline (3.3%) followed by HBSS 244 

(1.7%) then optimised saline (0.05%;Fig. 5A(ii)). The addition of optimised saline after toxin 245 

exposure also significantly suppressed haemolysis compared to the other solutions. With optimised 246 

saline, haemolysis showed a small increase from 36% to 46% by the end of the experiment, 247 

whereas these levels rose considerably more with the use of normal saline (75%) and HBSS 248 

(72%;Fig. 5B(i)). Likewise, the rate of change was much reduced with optimised saline 249 

(0.2%H/10mins) compared to normal saline (1.3%H/10mins, P=0.0374) and HBSS 250 

(1.4%H/10mins, P=0.03;Fig. 5B(ii)).  251 

 252 

  253 
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Discussion 254 

During treatment for S. aureus septic arthritis, it is important that the synovial fluid and 255 

infected tissues of the joint are rinsed quickly with a benign solution to remove bacteria and 256 

associated toxins. Traditionally, saline (0.9% NaCl) is used, however this might be sub-optimal for 257 

suppressing α-toxin activity and there may be opportunities for its composition and other properties 258 

to be modified to protect chondrocytes. To assess the protective effects of these modified 259 

solutions, the release of haemoglobin from rabbit erythrocytes was used as a sensitive and 260 

biologically-relevant measure of S. aureus α-toxin activity. The results suggested that increased 261 

osmolarity, reduced temperature, divalent cations, and to a lesser extent alkaline pH, could 262 

significantly reduce the damaging effect of α-toxin suggesting that relatively simple modifications to 263 

saline could be of benefit during joint irrigation for septic arthritis. 264 

It could be considered that the rabbit haemolysis assay for determining methods for 265 

protecting cells against the damaging effects of α-toxin would not be an appropriate model. 266 

However, rabbit erythrocytes contain the S. aureus α-toxin receptor ADAM10 which is also present 267 

on chondrocytes of animals and normal and degenerate human cartilage19-21. The measurement of 268 

haemoglobin release following the interaction between α-toxin and erythrocytes provided a 269 

dynamic and sensitive assay for the lethal effects of α-toxin, and was highly flexible experimentally 270 

and reproducible. While it would be possible test these conditions on cartilage explants, 271 

interpreting the results obtained under these various conditions might not as straightforward, as for 272 

example access to the receptor in cartilage zones could be delayed and/or restricted. While studies 273 

on isolated chondrocytes could be of benefit, the receptor may be damaged or its sensitivity altered 274 

as a result of the enzymic treatment of cartilage which is required for release of chondrocytes. Our 275 

previous work has demonstrated that S. aureus α-toxin is the key damaging agent to chondrocytes 276 

in a cartilage model of septic arthritis12,14. Thus, although the rabbit erythrocyte model could be 277 

considered a limitation in this study, it nevertheless yielded valuable information about whether 278 

protection against α-toxin was possible and identified alterations to the irrigation fluid which could 279 

potentially be extended to detailed in vivo and clinical studies on S. aureus septic arthritis.  280 

Two protocols were used which would broadly correspond to different stages of α-toxin 281 

action on the cell membrane which is time-dependent with the binding and pore-formation 282 

occurring within 2-3 mins24. For the chronic challenge, erythrocytes were equilibrated with the 283 

various conditions (osmolarity, temperature, pH, divalent cations), before toxin was added and the 284 

haemolysis time-course commenced.  For the acute challenge, the time-course was started by α-285 

toxin addition to the RBC suspension, and when there was 20-30% haemolysis, the erythrocytes 286 

were exposed to the experimental conditions. Thus, the chronic exposure would mainly represent 287 

the effect of experimental conditions on early steps of toxin action but for the acute exposure, pore 288 

formation would be complete and the pathological changes (i.e. increased ion permeability, cell 289 

swelling) would be underway with haemolysis following. The acute exposure would be closer to the 290 

clinical situation where the majority of cells in the joint would already have been exposed to 291 
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prevailing levels of α-toxin, and cell injury/death would be proceeding. While the overall effects of 292 

chronic and acute challenges of osmolarity, reduced temperature and divalent cation concentration 293 

(Figs. 1-4) were similar and gave significant protection, the time courses appeared different. 294 

Raising osmolarity prior to toxin addition (chronic osmotic challenge) reduced the rate of 295 

haemolysis in a dose-dependent manner (Fig. 1A(i)-(iii)). This suggested that erythrocyte 296 

shrinkage could have interfered with early events of toxin action i.e. monomeric α-toxin binding to 297 

the cell membrane and pore formation. However studies by Cooper et al.24 where an osmolyte 298 

(polyethylene glycol) was added after α-toxin addition, suggested that binding and pore formation 299 

were unaffected and that pore permeability instead was more sensitive to osmolarity. An acute 300 

hyper-osmotic challenge to erythrocytes in which α-toxin pores would already have formed, was 301 

rapidly (within 10mins) effective over the range studied (400-900mOsm). However, there was no 302 

difference between the osmolarities (Fig. 1B(i)-(iii)). This protective effect may be different 303 

compared to the chronic challenge, with the acute hyper-osmotic medium causing rapid 304 

erythrocyte shrinkage thereby conferring protection against the cell swelling induced by α-toxin. 305 

The raised osmolarity might simply shrink the cells rapidly meaning that it would take longer for the 306 

cells to swell to a critical volume. It was noted that NaCl was less effective at protecting 307 

erythrocytes compared to sucrose to the same osmolarity. This may be because Na+ can enter via 308 

Na+ channels and Na+/K+/2Cl- cotransporter29 effectively reducing the osmolarity compared to 309 

sucrose. Thus, sucrose would be the preferred osmolyte for the optimised irrigation fluid as it is 310 

impermeable and metabolically inert (see26). 311 

Pre-incubating erythrocytes at 25oC delayed the damaging action following α-toxin addition. 312 

However once established, the rate of increase in haemolysis was the same as for cells 313 

equilibrated at a physiological temperature (Fig. 2A(iii)). This suggested that the early steps of pore 314 

formation were sensitive to reduced temperature. However, pre-equilibration at 4oC completely 315 

protected erythrocytes against α-toxin (Fig. 2A(i)). This may accord with Reichwein et al.,30 who 316 

demonstrated a temperature-dependent transition from toxin monomers to a functional heptameric 317 

pore. They pre-incubated rabbit erythrocytes with α-toxin (0oC;30mins), and then washed and 318 

maintained the erythrocytes at either 0oC or 37oC. Enzyme-linked immunosorbent assays (ELISA) 319 

showed that there were no α-toxin oligomers on the cell membrane nor any haemolysis at the 320 

lower temperature. In contrast, the cells that were incubated at 37oC experienced haemolysis, 321 

suggesting that α-toxin binding/pore formation was suppressed at low temperature. This is 322 

supported by Freer31 who showed that α-toxin binding did not necessarily lead to erythrocyte 323 

destruction and that lysis (i.e. functional pore formation) did not occur until temperatures were  324 

>12oC. Notably, the effects of reduced temperature in the acute challenge experiments (Fig. 2B(i)) 325 

were less marked than for the chronic challenge as there was a delay before the inhibition 326 

occurred (Fig. 2(A,B)). This could be because the pores had formed, and reduced temperature had 327 

little effect on the cation flow and subsequent erythrocyte swelling. Clinically, the acute challenge 328 

methodology would represent the situation where irrigation fluid was introduced into the infected 329 
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joint during treatment. The toxin would already be present, bound to the cell membranes and 330 

acting on chondrocytes and other cells in the joint to cause its damaging effects.   331 

There was a mild but significant protection of erythrocytes when pH was increased from 6.5 332 

to 8.0 (Fig. 4(i)). The pH of 0.9% NaCl should be ~7.0 but the true value often oscillates around 333 

pH=5.5 due to varying levels of dissolved CO2
32). Work by others33 suggested that acidity 334 

converted α-toxin from an amphipathic form into a more hydrophobic molecule, thus accelerating 335 

pore formation. It has also been proposed that acidic pH enhanced H+
 
binding to histidine residues 336 

on the toxin molecule vital for polymerisation, accelerating pore formation34. There may therefore 337 

be benefit to introduce a benign pH buffer to stabilise irrigation fluid pH, perhaps at a slightly 338 

alkaline level, to provide some protection against α-toxin and also dampen any elevated pCO2 339 

levels present in the clinical environment. 340 

Ca2+ and Mg2+ produced small but significant protection against α-toxin (Fig. 3A,B) with no 341 

differences between these ions. Previous studies on Ca2+ suggested that it reduced the lateral 342 

movement of monomeric α-toxin in the plane of the membrane thereby reducing the rate of pore 343 

formation35. Depletion of Ca2+ was sufficient to remove the protection suggesting a reversible 344 

effect. However, it was unclear if this was Ca2+-specific or whether due to the osmolarity of the 345 

CaCl2 which would contribute ~90mOsm35. Apart from the protective effects of divalents on the 346 

action of α-toxin on cells, antibacterial roles for Ca2+ and Mg2+ have been reported36. Raised 347 

divalent concentrations disrupted S. aureus membranes possibly by forming complexes with 348 

cardiolipin which introduced membrane bending and destabilised its integrity. Stationary-phase 349 

bacteria, which are resilient against environmental pressures, were subjected to either divalent ion 350 

for 40mins and ~60% of the bacterial culture did not survive. A threshold of 10mM Ca2+
 
and 20mM 351 

Mg2+
 
to destroy S. aureus was established36. This study used concentrations greater than the 352 

present work, and therefore it may be interesting to further investigate increasing Ca2+ and Mg2+ 353 

concentrations on S. aureus survivability and α-toxin potency.  354 

 On the basis of these experiments, we tested an optimised saline applied as either a 355 

chronic or an acute challenge and observed substantial protection of erythrocytes against α-toxin 356 

(Fig. 5A,B). That there was little difference between normal saline and HBSS suggested that the 357 

majority of the protection was due to the raised osmolarity. With the acute challenge (Fig. 5B), the 358 

protection was very rapid indicating the quick suppression of the damaging effect of α-toxin which 359 

could be considered potentially clinically relevant for joint irrigation. There was still, however, a 360 

small increase in %H (Fig. 5B) possibly because further optimisation may be required, and/or there 361 

are other toxic elements produced by S. aureus which could have a relatively minor damaging 362 

effect on rabbit erythrocytes. A modified irrigation solution may also have benefits beyond those of 363 

protecting cells against α-toxin. For example, cooled irrigation fluid could offer pain relief and anti-364 

inflammatory effects. A study involving patients who underwent total knee arthroplasty found that 365 

saline administered at 4oC alleviated pain, localised swelling, and decreased analgesia intake, as 366 

well as improving the quality of post-operative recovery37. Furthermore, a hyper-osmolar irrigation 367 
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saline, in addition to rapid protection against α-toxin, could be beneficial as Chan and Foster38 368 

found that addition of 20mM sucrose in growth media suppressed α-toxin gene (hla) expression by 369 

~98% of the control.  370 

While the present results were obtained using the rabbit red blood cell model, some caution 371 

should be exercised when extrapolating these results to the protection of chondrocytes within the 372 

cartilage matrix. Previous studies using a bovine osteochondral explant model have shown that S. 373 

aureus α-toxin can rapidly penetrate the matrix and cause chondrocyte death12. We have also 374 

shown that chondrocyte volume changes very quickly (within mins) following alterations to 375 

extracellular osmolarity39. Thus there is the expectation that by raising osmolarity, protection of in 376 

situ chondrocytes against α-toxin should be achieved in the same way this has been demonstrated 377 

with rabbit erythrocytes.  With these observations in mind and taking the results from the present 378 

study together with previous observations, the beneficial effects of modifying the irrigation saline 379 

used during joint lavage should be considered in further in vivo animal and/or clinical research. The 380 

use of a relatively benign, inexpensive, drug-free and rapidly-effective modified saline as part of the 381 

normal lavage process is potentially an attractive novel method for limiting the damaging action of 382 

S. aureus α-toxin during septic arthritis.  383 

S. aureus infections have been treated with -lactams (e.g. penicillin) for decades, but the 384 

appearance and rapid spread of methicillin-resistance S. aureus (MRSA) have all but eliminated 385 

these antibacterials for treatment40. Non-antibiotic treatment is therefore an area of important 386 

research interest since suppressing activity of bacterial toxins either by influencing toxin 387 

production, or blocking their action would not only make the bacteria less pathogenic, but may also 388 

increase their susceptibility to host immune defence41. For example, inhibition of S. aureus 389 

pathogenesis by interfering with the signal transduction pathways for virulence using the RNA III 390 

inhibiting peptide has been described42. This peptide reduced the pathology and delayed the onset 391 

of disease symptoms in models of S. aureus infection including septic arthritis42. Other methods 392 

include an α-toxin antibody43, cyclodextrin-lipid complexes to suppress the damaging effect of S. 393 

aureus α-toxin44 and nanoparticle-based α-toxin entrapment to deliver the non-disrupted pore-394 

forming toxin for immune processing45. These methods could be particularly important for cells with 395 

high levels of the ADAM10 receptor21 which would render them particularly sensitive to S. aureus 396 

α-toxin. In summary, the development of the optimised irrigation saline described here potentially 397 

offers a cheap, very rapid (within minutes) and relatively benign method to suppress the damaging 398 

effects of α-toxin and may be of benefit during joint irrigation for septic arthritis caused by S. 399 

aureus.  400 
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Figures 559 

 560 

Figure 1. Raised osmolarity reduced rabbit erythrocyte haemolysis induced by S. aureus α-561 

toxin. The % haemolysis (%H) was measured over 60mins under either (A) chronic or (B) acute 562 

challenge with various osmolarities as follows; 0.9% saline (control, 300mOsm (●)) and saline 563 

osmolarity raised by sucrose addition to 400mOsm (), 600mOsm (▲) or 900mOsm (inverted 564 

triangle) either before toxin addition (chronic) or at approx. 20-30% haemolysis (indicated by the 565 

bar and arrow – ‘osmolarity change’). The panels labelled (ii) show the % haemolysis data at 566 

t=60mins plotted as a function of osmolarity, and the panels labelled (iii) show the rate of change of 567 

% haemolysis/10mins plotted as a function of osmolarity. In this and subsequent figures, significant 568 

differences are indicated as follows: * P<0.05; ** P<0.01; *** P<0.001). Results are means ± s.e.m. 569 

from (5(2)). 570 

  571 

Figure 2. Decreasing temperature suppressed rabbit erythrocyte haemolysis induced by S. 572 

aureus α-toxin. The % haemolysis (%H) was measured over 60mins under either (A) chronic or 573 

(B) acute challenge at different temperatures as follows; 37oC (control) (●), 25oC (), 4oC (▲) 574 

either before toxin addition (chronic) or at about 20% haemolysis (indicated by the bar and arrow – 575 

‘temperature change’).The panels labelled (ii) show the % haemolysis data at t=60mins plotted as 576 

a function of temperature, and the panels labelled (iii) show the rate of change of % 577 

haemolysis/10mins plotted as a function of temperature. Results are means ± s.e.m. from (4(2)).  578 

 579 

Figure 3. Divalent cations inhibited rabbit erythrocyte haemolysis induced by S. aureus α-580 

toxin. The % haemolysis (%H) was measured over 60mins under either (A) chronic or (B) acute 581 

challenge in the presence of Ca2+ or Mg2+ normal saline (NS; 0.9% NaCl control) (●), Ca2+ (5mM) 582 

or Mg2+ (5mM)  (▲) either before toxin addition (chronic) or at about 20% haemolysis (indicated by 583 

the bar and arrow – divalent challenge).The panels labelled (ii) show the % haemolysis data at 584 

t=60mins plotted as a function of temperature, and the panels labelled (iii) show the rate of change 585 

of % haemolysis/10mins plotted as a function of temperature. Results are means ± s.e.m from 586 

(4(2)).  587 

 588 

Figure. 4. Effect of varying pH on rabbit erythrocyte haemolysis induced by S. aureus α-589 

toxin. The % haemolysis (%H) was measured over 60mins under chronic challenge at pH values 590 

of 7.2 (control) (), 6.5 (●), and 8.0 (▲) in HBSS containing the buffer HEPES (10mM) with pH 591 

altered using HCl or NaOH (all at 300mOsm). The panel labelled (ii) shows the % haemolysis data 592 

at t=60mins plotted as a function of temperature, and the panel labelled (iii) shows the rate of 593 

change of % haemolysis/10mins plotted as a function of temperature. Results are means ± s.e.m. 594 

from (3(2)).  595 

 596 
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Figure 5. The protective effect of optimised saline on rabbit erythrocyte haemolysis induced 597 

by S. aureus α-toxin. The % haemolysis (%H) was measured over 60mins under either (A) 598 

chronic or (B) acute challenge in the presence normal saline (NS; 0.9% NaCl control) (●), HBSS 599 

(), or optimised saline (OS; 0.9% NaCl, 900mOsm, 5mM MgCl2, 37oC) (▲) either before toxin 600 

addition (chronic) or at about 20% haemolysis (indicated by the bar and arrow – challenge). The 601 

panels labelled (ii) show the rate of change of % haemolysis/10mins for chronic and acute 602 

challenges respectively in the various solutions. Results are means ± s.e.m. from (5(2)).  603 
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