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Abstract

Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is
unavailable but simulating from the model is possible. However, many ABC algorithms require a large
number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation
(BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation
enables one to intelligently decide where to evaluate the model next but common BO strategies are
not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the
literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of
simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty.
We then propose to select the next evaluation location to minimise the expected loss. Experiments show
that the proposed method often produces the most accurate approximations as compared to common
BO strategies.

1 Introduction
We consider the problem of Bayesian inference of some unknown parameter θ ∈ Θ ⊂ Rp of a simulation
model. Such models are typically not amenable to any analytical treatment but they can be simulated with
any parameter θ ∈ Θ to produce data xθ ∈ X . Simulation models are also called simulator-based or implicit
models [Diggle and Gratton, 1984]. Our prior knowledge about the unknown parameter θ is represented
by the prior probability density π(θ) and the goal of the analysis is to update our knowledge about the
parameters θ after we have observed data xobs ∈ X .

If evaluating the likelihood function π(x |θ) is feasible, the posterior distribution can be computed directly
using Bayes’ theorem

π(θ |xobs) =
π(θ)π(xobs |θ)∫

Θ
π(θ′)π(xobs |θ′) dθ′

∝ π(θ)π(xobs |θ). (1)

In this article we focus on simulation models that have intractable likelihoods. This means that one can
only simulate from the model, that is, draw samples xθ ∼ π(· |θ), but not evaluate the likelihood function
π(xobs |θ) at all so that the standard Bayesian approach cannot be used. For example, possibly high-
dimensional unobservable latent random quantities present in the simulation model can make evaluating
the likelihood impossible. Such difficulties occur in many areas of science, and typical application fields
include population genetics Beaumont et al. [2002], Numminen et al. [2013], genomics Marttinen et al.
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[2015], Järvenpää et al. [2017], ecology [Wood, 2010, Hartig et al., 2011] and psychology Turner and Van
Zandt [2012], see e.g. Lintusaari et al. [2017] and references therein for further examples.

Approximate Bayesian computation (ABC) replaces likelihood evaluations with model simulations1, see
e.g. Marin et al. [2012], Turner and Van Zandt [2012], Lintusaari et al. [2017] for an overview. The main
idea of the basic ABC algorithm is to draw a parameter value from the prior distribution, simulate a data
set with the given parameter value, and accept the value as a draw from the (approximate) posterior if the
discrepancy between the simulated and observed data is small enough. This algorithm produces samples
from the approximate posterior distribution

πABC
ε (θ |xobs) ∝ π(θ)

∫
πε(xobs |x)π(x |θ) dx, (2)

where πε(xobs |x) ∝ 1∆(xobs,x)≤ε, although other choices of πε are also possible [Wilkinson, 2013]. The
function ∆ : X × X → R+ is the discrepancy that tells how different the simulated and observed data sets
are, and it is often formed by combining a set of summary statistics even though, occasionally, the output data
have a relatively small dimension and the data sets can be compared directly. Sometimes the discrepancy
function may be available from previous analyses with similar models or can be constructed based on expert
knowledge of the application field. The discrepancy and the summaries affect the approximations and their
choice is an active research topic [Blum et al., 2013, Fearnhead and Prangle, 2012, Gutmann et al., 2017].
In this work, we are concerned with another, equally important, research question, namely given a suitable
discrepancy function, how to perform the inference in a computationally efficient manner.

The threshold ε controls the trade-off between the accuracy of the approximation and computational
cost: a small ε yields accurate approximations but requires more simulations, see e.g. Marin et al. [2012].
Given t samples from the model for some θ, that is, x

(i)
θ ∼ π(· |θ) for i = 1, . . . , t, the value of the ABC

posterior in Equation (2) can be estimated as

πABC
ε (θ |xobs) ∝∼ π(θ)

t∑
i=1

πε(xobs |x(i)
θ ), (3)

where “∝∼” means that the left-hand side is approximately proportional to the right-hand side and where the
extra approximation is due to replacing the integral with the Monte-Carlo sum.

Algorithms based on Markov Chain Monte Carlo and sequential Monte Carlo have been used to improve
the efficiency of ABC as compared to the basic rejection sampler [Marjoram et al., 2003, Sisson et al., 2007,
Beaumont et al., 2009, Toni et al., 2009, Marin et al., 2012, Lenormand et al., 2013]. Unfortunately, the
sampling based methods still require a very large number of simulations. In this paper we focus on the
challenging scenario where the number of available simulations is limited, e.g. to fewer than a thousand,
rendering these sampling-based ABC methods infeasible. Different modelling approaches have also been
proposed to reduce the number of simulations required. For example, in the synthetic likelihood method
summary statistics are assumed to follow the Gaussian density [Wood, 2010, Price et al., 2017] and the
resulting likelihood approximation can be used together with MCMC but evaluating the synthetic likelihood
is typically still very expensive. Wilkinson [2014], Meeds and Welling [2014], Jabot et al. [2014], Kandasamy
et al. [2015], Drovandi et al. [2015], Gutmann and Corander [2016], Järvenpää et al. [2017] all use Gaussian
processes (GP) to accelerate ABC in various ways. Some other alternative approaches are considered by
Fan et al. [2013], Papamakarios and Murray [2016]. Also, Beaumont et al. [2002], Blum [2010], Blum and
François [2010] have used modelling as a post-processing step to correct the approximation error of the
nonzero threshold.

While probabilistic modelling has been used to accelerate ABC inference, and strategies have been pro-
posed for selecting which parameter to simulate next, little work has focused on trying to quantify the amount
of uncertainty in the estimator of the ABC posterior density under the chosen modelling assumptions. This

1Such approaches are also called likelihood-free in the literature although this name can be considered a misnomer. Namely,
while the user does not need to provide the likelihood of the simulator model, many methods construct some sort of likelihood
approximation implicitly or explicitly.
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uncertainty is due to a finite computational budget to perform the inference and could be thus also called
as “computational uncertainty”. Consequently, little has been done to design strategies that directly aim to
minimise this uncertainty. To our knowledge, only Kandasamy et al. [2015] have used the uncertainty in
the likelihood function to propose new simulation locations in a query-efficient way, but they assumed that
the likelihood can be evaluated, although with high a computational cost. Also, Wilkinson [2014] modelled
the uncertainty in the likelihood to rule out regions with negligible posterior probability. Rasmussen [2003]
used GP regression to accelerate Hybrid Monte Carlo but did not consider the setting of ABC. Osborne
et al. [2012] developed an active learning scheme to select evaluations to estimate integrals such as the model
evidence under GP modelling assumptions, however, their approach is designed for estimating this particular
scalar value. Finally, Gutmann and Corander [2016] proposed Bayesian optimisation to efficiently select new
evaluation locations. While the BO strategies they used to illustrate the framework worked reasonably, their
approach does not directly address the goal of ABC, that is to learn the posterior accurately.

In this article we propose an acquisition function for selecting the next evaluation location tailored
specifically for ABC. The acquisition function measures the expected uncertainty in the estimate of the
(unnormalised) ABC posterior density function over a future evaluation of the simulation model, and proposes
the next simulation location so that this expected uncertainty is minimised. We also consider some variants
of this strategy. More scecifically, in Section 2 we formulate our probabilistic approach on a general level.
In Section 3 we propose a particular algorithm, based on modelling the discrepancy with a GP. Section
4 contains experiments. Some additional details of our algorithms are discussed in Section 5 and Section
6 concludes the article. Technical details and additional experiments are presented in the supplementary
material.

2 Problem formulation
We start by presenting the main idea of the probabilistic framework for query-efficient ABC inference.
Suppose we have training data D1:t = {(xi,θi)}ti=1 of simulation outputs xi ∈ X that were generated by
simulating the model with parameters θi. Suppose also that we have a Bayesian model that describes our
uncertainty about the future simulation output x∗ ∈ X with parameter θ∗ conditional on the training data
D1:t. This uncertainty is represented by a probability measure Π(dx∗ |θ∗, D1:t)

2. Instead of modelling
the full data x∗ ∈ X , we note that in practice it is reasonable to model only some summary statistics
s(x∗) ∈ S ⊂ Rr. Alternatively, the discrepancy between the observed data and simulator output can be
modelled as is done later in this article. Importantly, our estimate for the ABC posterior probability density
function πABC actually depends on the training data if e.g. Equation (3) is used, and can therefore also be
considered a random quantity. Given the training data D1:t, we assume that, using our Bayesian model,
we can represent the uncertainty in πABC using a probability measure Π(dπABC |D1:t) over the space of
(suitable smooth) density functions πABC : Θ → R+, where the probability measure Π now describes the
uncertainty in the ABC posterior.

If the amount of available simulations is limited due to a high computational cost, we may have con-
siderable uncertainty of the ABC posterior πABC. Let LπABC(D1:t) denote the loss due to our uncertainty
about the ABC posterior density. This loss function could, for example, measure overall uncertainty in the
probability density πABC or the uncertainty of a particular point estimate of interest such as the posterior
mean. In the latter case, for a scalar θ, we could choose LπABC(D1:t) = V(

∫
Θ
θπABC(θ) dθ |D1:t), where the

variance (assuming it exists) is taken with respect to the probability measure Π(dπABC |D1:t).
We consider the sequential setting where, at each iteration, we need to decide the next evaluation location.

After each iteration, we can compute the uncertainty in the ABC posterior and the corresponding loss
function, and fit a model that predicts the next simulation output, given all data available at the time. Our
aim is to choose the next evaluation location θ∗ = θt+1 such that the expected loss, after having simulated

2We use Π(·) to denote the probability measure of a random quantity that can be interpreted from the argument. Similarly,
π(·) denotes a probability density function whenever the corresponding random vector is assumed to be absolutely continuous.
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the model at this location, is minimised. That is, we want to minimise

Ex∗ | θ∗,D1:t
(LπABC(D1:t ∪ {x∗,θ∗})) =

∫
LπABC(D1:t ∪ {x∗,θ∗})Π(dx∗ |θ∗, D1:t) (4)

with respect to θ∗, where we need to average over unknown unknown simulator output x∗ = xt+1 at
parameter θ∗ using the model for the new simulator output Π(dx∗ |θ∗, D1:t). If the loss function measures
the uncertainty of the ABC posterior density, then this approach is, by construction, a one step-ahead Bayes
optimal solution to a decision problem of minimising the expected uncertainty and offers thus a query-efficient
approach to determine the next evaluation location.

This approach resembles the entropy search (ES) method [Hennig and Schuler, 2012, Hernández-Lobato
et al., 2014]. Other related approaches have been proposed by Wang et al. [2016], Bijl et al. [2016], Wang and
Jegelka [2017]. Different from these approaches, our main goal is to select the parameter for a future run of the
costly simulation model so that the uncertainty in the approximate posterior is minimised. ES, in contrast,
is designed for query-efficient global optimisation and it aims to find a parameter value that maximises the
objective function, and to minimise the uncertainty related to this maximiser. We note that the rationale of
our approach is essentially the same as in probabilistic numerics literature (see e.g. Hennig et al. [2015]) or
in sequential Bayesian experimental design (see Ryan et al. [2016] for a recent survey). However, different
from these approaches, our interest is to design the evaluations to minimise the uncertainty in a quantity
that itself describes the uncertainty of the parameters of a costly simulation model. The uncertainty in the
former is due to a limited budget for model simulations that we can control, while the uncertainty in the
latter is caused by noisy observations that have already been provided to us and are considered here as fixed.

The framework outlined above requires some modelling choices and can lead to computational challenges
as the selection of the future evaluation location itself can require costly evaluations (as is the case of
ES). In the following section we propose an efficient algorithm based on a loss function that measures the
uncertainty in the (unnormalised) ABC posterior over the parameter space and a GP surrogate model. We
also consider some alternative strategies that are more heuristic but easier to evaluate. While our approach
can be extended to a batch setting where multiple acquisitions are computed in parallel, in this article we
restrict our discussion to the sequential case. We note that the outlined strategy is “myopic”, meaning that
the expected uncertainty after the next evaluation is considered only, and the number of simulations left in
a limited budget is not taken into account, see e.g. González et al. [2016] for some discussion in BO context;
non-myopic strategies are also beyond the scope of this work.

Details of our approach appear in the next section, but the main idea is illustrated in Figure 1. We model
the discrepancy ∆θ = ∆(xobs,xθ) with GP regression (Figure 1a). The ABC posterior is proportional to
the prior times the probability of obtaining a discrepancy realisation that is below the threshold when the
model is simulated. However, because the GP is fitted with limited training data, this probability cannot
be estimated exactly, causing uncertainty in the ABC posterior density function (Figure 1b). We propose
an acquisition function that selects the next evaluation location to minimise the expected variance of the
(unnormalised) ABC posterior density over the parameter space.

3 Nonparametric modelling and parameter acquisition
This section contains the details of our algorithms. Section 3.1 describes the GP model for the discrepancy,
which permits closed-form equations for many of the required quantities to estimate the posterior, which are
derived in Section 3.2. In Sections 3.3 and 3.4 we formulate the proposed acquisition functions, and handling
uncertainty in GP hyperparameters is briefly discussed in Section 3.5.
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Figure 1: (a) The estimated and true discrepancy distributions are compared. Most of the evaluations are
successfully chosen on the modal area of the posterior, leading to a good approximation there. (b) The red
curve shows the mean of the unnormalised posterior density function and the grey area its 95% pointwise
credible interval.

3.1 GP model for the discrepancy
We consider the discrepancy ∆θ a stochastic process indexed by θ i.e. a random function of the parameter
θ. We assume that the discrepancy can be modelled by a Gaussian distribution3, that is ∆θ ∼ N (f(θ), σ2

n)
for some unknown suitably smooth function f : Θ → R and variance σ2

n ∈ R+ both of which need to be
estimated. We place a Gaussian process prior on f so that f ∼ GP(µ(θ), k(θ,θ′)). While other choices
are also possible, in this paper we consider µ(θ) = 0, and use the squared exponential covariance function
k(θ,θ′) = σ2

f exp(−
∑p
i=1(θi − θ′i)

2/(2l2i )). There are thus p + 2 hyperparameters to infer, denoted by
φ = (σ2

f , l1, . . . , lp, σ
2
n).

Conditioned on the obtained training data D1:t = {(∆i,θi)}ti=1, which consists of realised discrepancy-
parameter pairs, and the GP hyperparameters φ, our knowledge of the function f evaluated at an arbitrary
point θ ∈ Θ can be shown to be f(θ) |D1:t,θ,φ ∼ N (m1:t(θ), v2

1:t(θ)), where

m1:t(θ) = k(θ,θ1:t)K(θ1:t)
−1∆1:t, (5)

v2
1:t(θ) = k(θ,θ)− k(θ,θ1:t)K

−1(θ1:t)k(θ1:t,θ) (6)

and K(θ1:t) = k(θ1:t,θ1:t) + σ2
nI. Above we defined k(θ,θ1:t) = (k(θ,θ1), . . . , k(θ,θt))

T , k(θ1:t,θ1:t)ij =
k(θi,θj) for i, j = 1, . . . , t and similarly for k(θ1:t,θ). We have also used ∆1:t = (∆1, . . . ,∆t)

T . A compre-
hensive presentation of GP regression can be found in Rasmussen and Williams [2006].

3.2 Quantifying the uncertainty of the ABC posterior estimate
As in Gutmann and Corander [2016], one can compute the posterior predictive density for a new discrep-
ancy value at θ using ∆θ |D1:t,θ,φ ∼ N (m1:t(θ), v2

1:t(θ) + σ2
n) and obtain a model-based estimate for the

3Alternatively, we could model some transformation of the discrepancy such as log ∆θ . In that case, the the following
analysis goes similarly.
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acceptance probability given the modelling assumptions and training data D1:t, as

P(∆θ ≤ ε |D1:t,θ,φ) = Φ

(
(ε−m1:t(θ))/

√
σ2
n + v2

1:t(θ)

)
, (7)

where Φ(z) =
∫ z
−∞ exp(−t2/2) dt/(2π) is the cdf of the standard normal distribution. This probability is

approximately proportional to the likelihood and yields a useful point estimate of the likelihood function.
We here take a different approach and explicitly exploit the fact that part of the probability mass of ∆θ is
due to our uncertainty in the latent function f and GP hyperparameters φ. For simplicity, we first assume
that the GP hyperparameters φ are known and discuss relaxing this assumption in a later section. Indeed,
if we knew f , the (unnormalised) ABC posterior π̃ABC

ε (θ) and the acceptance probability pa(θ)4 could be
computed as

π̃ABC
ε (θ) = π(θ)pa(θ), pa(θ) = Φ

(
ε− f(θ)

σn

)
. (8)

With a limited number of discrepancy–parameter pairs in D1:t there is uncertainty in the values of the
function f (and in GP hyperparameters φ) which we propose to quantify and attempt to minimise in order
to accurately estimate the ABC posterior. The following result (whose proof is found in the supplementary
material) allows us to compute the expectation and the variance of the unnormalised ABC posterior.

Lemma 3.1. Under the GP model described in Section 3.1, the pointwise expectation and variance of π̃ABC
ε

with respect to Π(df |D1:t) are

E(π̃ABC
ε (θ) |D1:t) = π(θ) Φ

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)

)
, (9)

V(π̃ABC
ε (θ) |D1:t) = π2(θ)

[
Φ

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)

)
Φ

(
m1:t(θ)− ε√
σ2
n + v2

1:t(θ)

)

− 2T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

σn√
σ2
n + 2v2

1:t(θ)

)]
,

(10)

where m1:t(θ) and v2
1:t(θ) are given by Equations (5) and (6), respectively, and T (·, ·) is Owen’s t-function

which satisfies

T (h, a) =
1

2π

∫ a

0

e−h
2(1+x2)/2

1 + x2
dx, (11)

for h, a ∈ R.

We note that Equation (9) equals the product of the prior density π(θ) and the point estimate of the
likelihood shown in Equation 7 which was used in Gutmann and Corander [2016]. The variance of the
unnormalised ABC posterior in Equation (10) depends on Owen’s t-function that needs to be computed
numerically. However, there exists an efficient algorithm to evaluate its values by Patefield and Tandy
[2000].

It is of interest to examine when the variance in Equation (10) is large. If a parameter θ satisfiesm1:t(θ) =
ε, then the first term of Equation (10) is maximised, and in this case the second term is maximised for θ values
where the posterior variance v2

1:t(θ) is large. On the other hand, if m1:t(θ)� ε but v1:t(θ)� |m1:t(θ)− ε|,
the first term in Equation (10) is approximately maximised and the second term is also close to its maximum
value, especially if also v1:t(θ) � σn. Because the ABC threshold ε is usually chosen very small, we thus
conclude that the variance in Equation (10) tends to be high in regions where the mean of the discrepancy
m1:t(θ) is small and/or the variance of the latent function v2

1:t(θ) is large relative to the mean function.
4This notation should not be confused with a probability distribution function which is always denoted with π(·).
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Some further insight to Equation (10) is obtained by using the approximation Vf(θ) |D1:t
(π̃ABC
ε (θ)) ≈

((π̃ABC
ε )′(Ef(θ) |D1:t

(f(θ))))2Vf(θ) |D1:t
(f(θ)), where the formula (π̃ABC

ε )′(Ef(θ) |D1:t
(f(θ))) denotes the deriva-

tive of π̃ABC
ε with respect to f(θ) evaluated at Ef(θ) |D1:t

(f(θ)). This approximation, also known as the delta
method, produces

− logVf(θ) |D1:t
(π̃ABC
ε (θ)) ≈ (ε−m1:t(θ))2

σ2
n

− log(v2
1:t(θ))− 2 log π(θ) + log(2πσ2

n), (12)

where the last term is constant and can be dropped. This equation has some similarity with the lower
confidence bound (LCB) criteria used in bandit problems and Bayesian optimisation

LCB(θ) = m1:t(θ)− βt
√
v2

1:t(θ), (13)

where βt is a tradeoff parameter. Both equations produce small values if the mean of the discrepancy
m1:t(θ) is small (assuming also that ε ≤ m1:t(θ)) or the variance v2

1:t(θ) is large relative to the mean
m1:t(θ). However, the LCB tradeoff parameter βt typically depends on the iteration t and the dimension
of the parameter space (see Srinivas et al. [2010] for theoretical analysis) while in the posterior variance
(Equation (12)) this tradeoff is determined automatically in a nonlinear fashion and, unlike for LCB, the
variance formula depends also on the prior density π(θ).

Other useful facts for π̃ABC
ε can also be obtained. Some of these formulas are not required to apply our

methodology and are thus included as supplementary material. For instance, if π(θ) > 0 then the cdf for
π̃ABC
ε (θ) is

Fπ̃ABC
ε (θ)(z) = Φ

(
σnΦ−1(z/π(θ)) +m1:t(θ)− ε

v1:t(θ)

)
, (14)

if z ∈ (0, π(θ)), zero if z ≤ 0, and 1 if z ≥ π(θ). This formula enables the computation of quantiles which
can be used for assessing the uncertainty via credible intervals. Setting α = Fπ̃ABC

ε (θ)(z), where α ∈ (0, 1)
and solving for z yields the α-quantile that was already used in Figure 1b,

zα = π(θ)Φ

(
v1:t(θ)Φ−1(α)−m1:t(θ) + ε

σn

)
. (15)

From the above equation we see, e.g., that the median is given by π(θ)Φ((ε−m1:t(θ))/σn).
Above we assumed that the GP hyperparameters φ are known but in practice these need to be estimated.

One can use the MAP-estimate in the place of the fixed values in the previous formulae. The MAP-estimate
is computed by maximising the logarithm of the marginal posterior

φMAP
1:t = arg max

φ

(
log π(φ)− 1

2
∆T

1:tK
−1(θ1:t)∆1:t −

1

2
log det(K(θ1:t))

)
, (16)

where π(φ) is the prior density for GP hyperparameters and where the covariance function in K(θ1:t) =
k(θ1:t,θ1:t)+σ2

nI depends naturally also on φ. For the rest of the paper, we assume that the MAP estimate is
used for GP hyperparameters, however, we also briefly discuss how one could integrate over them in Section
3.5.

3.3 Efficient parameter acquisition
We define our loss function LπABC

ε
for model-based ABC inference as

LπABC
ε

(D1:t) =

∫
Θ

V(π̃ABC
ε (θ) |D1:t) dθ =

∫
Θ

π2(θ)V(pa(θ) |D1:t) dθ, (17)

where π̃ABC
ε (θ) = π(θ)pa(θ) is the unnormalised ABC posterior and the variance is taken with respect to

the unknown latent function f conditioned on the training data D1:t. We call the function in Equation (17)

7



as the integrated variance loss function. It measures the uncertainty in the unnormalised ABC posterior
density averaged over the parameter space Θ. The loss function is defined in terms of the unnormalised
ABC posterior because we are here interested in minimising the uncertainty in the posterior shape. Also,
this choice allows tractable computations unlike some other potential choices such as defining the integrated
variance over the normalised ABC posterior density function. However, in principle, other loss functions,
suitable for particular problem at hand, could be defined.

We obtain the following formula for computing the expected integrated variance loss function L1:t(θ
∗)

(abbreviated as “expintvar”) when the new candidate evaluation location is θ∗. The proof is rather technical
and can be found in the supplementary.

Proposition 3.2. Under the GP model described in Section 3.1, the expected integrated variance after
running the simulation model with parameter θ∗ is given by

L1:t(θ
∗) = E∆∗ | θ∗,D1:t

∫
Θ

π2(θ)V(pa(θ) |∆∗,θ∗, D1:t) dθ (18)

= 2

∫
Θ

π2(θ)

[
T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

√
σ2
n + v2

1:t(θ)− τ2
1:t(θ,θ

∗)

σ2
n + v2

1:t(θ) + τ2
1:t(θ,θ

∗)

)

− T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

σn√
σ2
n + 2v2

1:t(θ))

)]
dθ,

(19)

where the variance of pa(θ) is taken with respect to Π(df |∆∗,θ∗, D1:t), the function T (·, ·) is the Owen’s
t-function as in Equation (11) and

τ2
1:t(θ,θ

∗) =
cov2

1:t(θ,θ
∗)

σ2
n + v2

1:t(θ
∗)
, (20)

where cov1:t(θ,θ
∗) = k(θ,θ∗)− k(θ,θ1:t)K

−1(θ1:t)k(θ1:t,θ
∗) is the posterior covariance between the evalu-

ation point θ and the candidate location for the next evaluation θ∗.

A future evaluation at θ∗ causes a deterministic reduction of the GP variance that is given by the
Equation (20). However, the variance of the unnormalised ABC posterior depends on the realisation of the
discrepancy ∆∗ and we need to average over π(∆∗ |θ∗, D1:t). It is easy to see that if τ2

1:t(θ,θ
∗) → v2

1:t(θ),
then the integrand at the corresponding parameter θ approaches zero. It can also be shown (using Owen
[1980, Eq. 2.3]) that if τ2

1:t(θ,θ
∗) = 0, then the integrand in Equation (19) equals the current variance given

by Equation (10).
While some of the derivations could be done analytically, computing the expected integrated variance

requires integration over the parameter space Θ. This can be done with Monte Carlo or quasi-Monte Carlo
methods; here we use importance sampling (IS) to approximate the integral when p > 2. Using the IS
estimator [Robert and Casella, 2004, Eq. 3.10, p. 95], we obtain

L1:t(θ
∗) = 2

∫
Θ

π2(θ)g1:t+1(θ,θ∗) dθ ≈ 2

s∑
i=1

ω(i)π2(θ(i))g1:t+1(θ(i),θ∗), (21)

where g1:t+1(θ,θ∗) is the term inside the square brackets in Equation (19) and the importance weights are
given by

ω(i) =
1

π2(θ(i))V(pa(θ(i)) |D1:t)

/
s∑
j=1

1

π2(θ(j))V(pa(θ(j)) |D1:t)
, (22)

and θ(i) ∼ πq(·) for i = 1, . . . , s. The importance distribution πq(θ) is proportional to the prior squared times
the current variance of the unnormalised ABC posterior i.e. πq(θ) ∝ π2(θ)V(pa(θ) |D1:t). This importance
distribution is a reasonable choice, because one evaluation is unlikely to change the variance surface much
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and the expected variance thus has similar shape as the current variance surface. It is easy to see that if the
prior is bounded and proper i.e. π(θ) < ∞ and

∫
Θ
π(θ) dθ = 1, then πq defines a valid probability density

function (up to normalisation). Because the normalising constant of πq is unavailable, we need to normalise
the weights in Equation (22). Generating samples from the importance distribution πq is not straightforward
but can be done using (e.g. adaptive) Metropolis algorithm or using sequential Monte Carlo methods.

As outlined in Section 2, the new evaluation location is chosen to minimise the expected loss, that is

θt+1 ∈ {θ ∈ Θ : θ = arg min
θ∗∈Θ

L1:t(θ
∗)}, (23)

where the right hand side is a set of parameters because the minimiser may not be unique. We call this
new strategy ’an acquisition rule’ according to the nomenclature in the Bayesian optimisation literature.
Unlike in BO, however, our aim is not to optimise the discrepancy but to minimise our uncertainty in the
ABC posterior approximation. The second term in Equation (19) does not depend on θ∗ and its value can
be computed just once (or omitted completely) and the normalisation of the prior density π(θ) does not
affect the solution of (23) as it only scales the objective function. Gradient-based optimisation with multiple
starting points can be used for solving (23) and the gradient is derived in the supplementary material. The
resulting algorithm for estimating the ABC posterior is outlined as Algorithm 1.

Algorithm 1 GP-based ABC inference using the expected integrated variance acquisition function.

1: Generate initial training locations θ1:t0 ∼ π(·)
2: for t = 1 : t0 do
3: Simulate xt ∼ π(· |θt)
4: Compute ∆t ← ∆(xobs,xt)
5: end for
6: for t = t0 : tmax − 1 do
7: Estimate GP hyperparameters φMAP

1:t using D1:t and Equation (16)
8: Precompute Cholesky factorisation for the GP prediction
9: Simulate evaluation points θ(i) and weights ω(i) for i = 1, . . . , s by sampling from πq(·)

10: Precompute the second term in Equation (19)
11: Obtain θt+1 by solving the optimisation problem in Equation (23)
12: Simulate xt+1 ∼ π(· |θt+1)
13: Compute ∆t+1 ← ∆(xobs,xt+1)
14: Update the training data D1:t+1 ← D1:t ∪ {(∆t+1,θt+1)}
15: end for
16: Estimate GP hyperparameters φMAP

1:tmax
using D1:tmax and Equation (16)

17: Simulate samples ϑ(1:n) from the density defined by Equation (9)
18: return ϑ(1:n) as a sample from the approximate posterior density

3.4 Alternative acquisition rules
We briefly discuss some alternative acquisition rules for ABC inference. Their derivations follow directly from
our previous analysis and we include these strategies in our experiments in Section 4. One such alternative
to the expected integrated variance strategy is to evaluate where the current uncertainty of the unnormalised
ABC posterior is highest. This approach is similar to Kandasamy et al. [2015]. This strategy is a reasonable
heuristic in the sense that the next evaluation location is where improvement in estimation accuracy is
needed most, although it does not account for how large an improvement can be expected at the location,
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or overall. This approach requires solving the optimisation problem

θt+1 ∈ {θ ∈ Θ : θ = arg max
θ∗∈Θ

π2(θ∗)V(pa(θ∗) |D1:t)} (24)

=

{
θ ∈ Θ : θ = arg max

θ∗∈Θ

(
log π(θ∗) + log

√
V(pa(θ∗) |D1:t)

)}
, (25)

where the current variance V(pa(θ) |D1:t)) is given by Equation (10) and is taken with respect to Π(df |D1:t).
We call this method the “maxvar” acquisition rule. The gradient of this acquisition function is derived in
the supplementary material.

To encourage further exploration, similarly to Gutmann and Corander [2016], we also consider a stochastic
variant of the maxvar acquisition rule in Equation (25). Specifically, we generate the evaluation point
randomly according to the variance surface πq(θ) ∝ π2(θ)V(pa(θ) |D1:t) which we also use as an importance
distribution for the expected integrated variance acquisition function as discussed earlier. That is, instead
of finding the maximiser, we generate θt+1 ∼ πq(θ). This strategy requires generating random samples from
πq(θ) but sampling (and optimising) the variance function can be done fast compared to the time required
to run the simulation model. We call this method “rand_maxvar”.

The stochastic acquisition rule is reminiscent of Thompson sampling, but it is actually quite different. In
our method, acquisitions are drawn at random from the probability distribution which is proportional to the
(point-wise) variance of the approximate posterior density. In Thompson sampling, instead, one generates a
posterior density realisation from the model, and chooses the next point as the maximiser of this realisation.

The maxvar and rand_maxvar strategies avoid the integration over the parameter space that is necessary
for the expintvar method. However, one could replace the integration in expintvar by only a single evaluation
at the candidate point. In other words, this method chooses a location with the highest expected reduction
in the uncertainty of the unnormalised ABC posterior in that particular location. We call this variant the
“expdiffvar” from now on.

A comparison of the acquisition functions in a one-dimensional toy problem is shown in Figure 2. A
simulation model has been run eight times and the acquisition functions for selecting the ninth evaluation
location (shown with triangles) are plotted for comparison. The current variance surface (maxvar) and the
expected integrated variance (expintvar) function are plotted with three values of the threshold ε. Unlike the
current variance surface, the expected integrated variance appears insensitive to the value of the threshold.
Figure 2b shows also that using the MAP-estimate for the GP hyperparameters causes underestimation of
the variance of the unnormalised ABC posterior. In the next section we show how the uncertainty in GP
hyperparameters is (approximately) taken into account.

3.5 Uncertainty in hyperparameters
Above we assumed that either the GP hyperparameters φ are known or MAP estimates are used. Here we
briefly discuss how the uncertainty in the GP hyperparameters could also be taken into account. Integrating
over the uncertainty in the GP hyperparameters requires Monte Carlo sampling as in Murray and Adams
[2010]. An alternative approach is to use central composite design [Rue et al., 2009, Vanhatalo et al., 2010].
Briefly, in central composite design (CCD) certain design points φi are chosen and each of them is given
a weight ωi ∝ π(φi |D1:t)γ

i ∝ π(D1:t |φi)π(φi)γi, where γi is a design weight. This approach has the
advantage that the amount of design points grows only moderately with increased dimension and has been
shown to yield good accuracy in practice. Further details on choosing the design points and their weights
are given in Vanhatalo et al. [2010].

Integrating over the uncertainty in the GP hyperparameters φ in Lemma 3.1 leads to the following
calculations. Using the law of total expectation yields

E(pa(θ)) = EφEf |φ(pa(θ)) ≈
∑
i

ωi Ef |φ=φi(pa(θ)) =
∑
i

ωi Φ
(
a(θ,φi)

)
, (26)

where the grid points and the corresponding weights are φi and ωi, respectively, and where a(θ,φi) =

(ε−m1:t(θ |φi))/
√

(σ2
n)i + v2

1:t(θ |φ
i). If Monte Carlo sampling is used, then ωi = 1/s for all i = 1, . . . , s,
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Figure 2: (a) The discrepancy observations (black stars) and the estimate of the ABC posterior density
based on eight training data points (with ε = 0.1) as compared to the true posterior. (b) The variance of
the unnormalised ABC posterior is computed using the MAP estimate (maxvar (MAP)) or CCD integration
(maxvar (CCD)) for GP hyperparameters and for three values of the threshold ε. Details of the CCD inte-
gration are in Section 3.5. (c) Expected integrated variance (expintvar) acquisition function. (d) Expected
improvement (EI) and lower confidence bound (LCB) criteria (scaled to fit the same figure). Note that the
scales of the variance function (b) and acquisition functions computed with different thresholds, (c) and (d),
are not comparable.

where s is the number of samples. Similarly, for the variance we obtain

V(pa(θ)) = E(pa(θ)2)− [E(pa(θ))]2

= EφEf |φ(pa(θ)2)− [EφEf |φ(pa(θ))]2

≈
∑
i

ωi
[
Φ(a(θ,φi))− 2T (a(θ,φi), b(θ,φi))

]
−

[∑
i

ωi Φ(a(θ,φi))

]2

, (27)

where b(θ,φi) = (σn)i/
√

(σ2
n)i + 2v2

1:t(θ |φ
i). This formula with CCD integration was already used in

Figure 2b.
One can also take into account the uncertainty in GP hyperparameters in the expected integrated variance

acquisition function. The posterior predictive distribution for a future simulation is then approximated by a
Gaussian mixture and one can make the simplification by (incorrectly) assuming that the future evaluation
will not affect the GP hyperparameters but only the latent function f . Evaluating the resulting acquisition
function requires a large number of calls to Owen’s t-function and GP formulas and is computationally more
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costly and thus possibly impractical. Alternatively, one can define an integrated5 acquisition function as in
Snoek et al. [2012], Hernández-Lobato et al. [2014], Wang and Jegelka [2017] which only requires computing
Equation (19) for each sampled GP hyperparameter φi. The integrated acquisition function is then averaged
over these values. Alternatively, one could simply use the posterior mean of the hyperparameters in the place
of the MAP estimate. However, we leave a detailed analysis for future work.

4 Experiments
We compare the proposed expected integrated variance acquisition rule (expintvar) to commonly used BO
strategies: expected improvement (EI) and lower confidence bound (LCB) criterion, see e.g. Shahriari et al.
[2015]. We use the same trade-off parameter for LCB as Gutmann and Corander [2016], but unlike them,
we consider the deterministic LCB rule. As a simple baseline, we also draw points sequentially from the
uniform distribution, abbreviated as “unif”. We also included the probability of improvement (PI) strategy in
preliminary experiments, but it resulted in poor estimates and was therefore excluded from the comparisons.

In addition to expintvar, we also include the maxvar, rand_maxvar and expdiffvar strategies, which were
briefly described in Section 3.4, to our list of methods to be compared. The MAP estimate for the GP
hyperparameters φ is used in all the experiments. We use MATLAB and GPstuff 4.6 [Vanhatalo et al., 2013]
for GP fitting. For fast and accurate computation of Owen’s t-function, we use a C-implementation of the
algorithm by Patefield and Tandy [2000]. The algorithms in this article are also made available in the ELFI
(engine for likelihood-free inference) Python software package by Lintusaari et al. [2018].

The total variation (TV) distance is used for assessing the accuracy of the posterior approximation. It
is defined as TV = 1/2

∫
Θ
|π̂ABC
ε (θ) − πtrue(θ)|dθ, where π̂ABC

ε is the estimated ABC posterior and πtrue

is the reference distribution. As the reference we use the exact ABC posterior with the same threshold as
used for the approximations but in some scenarios, however, the reference distribution is the exact posterior
for computational convenience and to see the overall approximation quality. The point estimate of the ABC
posterior density function for the comparisons is always computed using Equation (9). We demonstrate our
approach with multiple toy models as well as two realistic models. While the likelihood is actually available
for the toy models, we restrict our comparison to the model-based ABC methods, the focus of this work,
at the same time acknowledging that in practice with likelihood available the standard methods, such as
MCMC, are expected to outperform the likelihood-free alternatives. An overview of the results is given in
Table 1 and discussed in detail in the following sections.

4.1 Synthetic 2D simulation models
To compare the different acquisition strategies first without the need to actually handle different simulation
models, we construct “synthetic” discrepancies by adding Gaussian noise to certain parametric curves, and use
these to simulate the discrepancy realisations directly. The exact ABC posterior that is used as a reference
distribution here is computed using the posterior density given by Equation (8) with a small predefined
threshold ε. As test cases we consider 1) a unimodal density with two correlated variables, 2) a bimodal
density, 3) a density where the first parameter is (almost) unidentifiable, and 4) a banana shaped density.
For all cases, a uniform prior was assumed. The resulting exact ABC posterior densities are illustrated in
Figure 3. (See supplementary material for additional details). The integration and sampling steps required
by expintvar and rand_maxvar strategies are performed in a 2D grid of 502 evaluation locations. The initial
training set size is t0 = 10 and the initial training sets for the repeated experiments are generated randomly
from the uniform prior as is done in the other test cases as well.

The threshold is fixed so that differences in approximation quality between the acquisition methods are
solely caused by the selection of the evaluation locations. However, because selecting a reasonable threshold
can be challenging in practice, we also examine how updating this value adaptively during the acquisitions

5Note that the term “integrated” here refers to integrating over GP hyperparameters φ and not for integrating over the
parameter space Θ as in Equation (19).
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expintvar expdiffvar maxvar rand_maxvar LCB EI unif

unimodal∗ 1.00 1.39 1.52 1.23 1.27 2.54 0.97
bimodal∗ 1.00 1.23 1.24 1.03 1.04 1.51 1.13
unidentifiable∗ 1.00 1.11 1.21 1.12 1.01 1.58 1.49
banana∗ 1.00 1.12 1.23 1.09 1.08 1.67 1.47

Gaussian (strong prior) 1.00 1.13 1.18 1.24 1.68 2.68 1.02
Gaussian (weak prior) 1.00 1.20 1.16 1.07 1.10 1.59 1.83

Gaussian 3d 1.00 1.26 1.16 0.94 1.26 1.67 2.24
Gaussian 6d 1.00 1.06 1.08 0.98 1.14 1.42 1.94
Gaussian 10d 1.00 1.08 1.08 1.17 1.21 1.51 1.45

Lotka-Volterra 1.00 1.20 1.37 1.10 1.15 1.85 1.62

Table 1: Results for the test problems. The numbers in the table represent the median of the area under
the TV curve (TV values as a function of iteration) scaled so that the proposed expintvar method obtains
value one. Smaller values mean better average performance. In the first four test problems (marked with ∗),
the reference distribution is the exact ABC posterior obtained using the same threshold as the model-based
estimate. In the other cases, TV distance is computed with respect to the ’true’ posterior. For the Gaussian
3d-10d examples, the TV represents the average TV of marginal densities.

affects the results. In the supplementary we show results when the threshold is constantly updated so that
it matches either the 0.01th or the 0.05th quantile of the realised discrepancies.
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Figure 3: Exact ABC posterior densities for the synthetic 2d test problems.

The results in Figure 4 indicate that the expintvar is the best method overall but also rand_maxvar
produces good results. Of the common alternatives, LCB is clearly the best and produces results with similar
accuracy as rand_maxvar. The performance of the EI strategy is poor because it tends to focus evaluations
greedily around the mode and samples insufficiently in the tail areas which often results in poor estimates
to the ABC posterior density and high variability between different experiments. Interestingly, the uniform
strategy produces the best estimates in the case of the unimodal example. Most of the acquisitions are not
focused on the modal region but because the modelling assumptions hold everywhere and the parameter
space is rather small, the extrapolation seems to work well in this case.

4.2 Gaussian simulation model
A simple Gaussian simulation model is used to study the effect of prior strength and the dimension of
the parameter space. Data points are generated independently from xi ∼ N (· |θ,Σ), i = 1, . . . , n, where
θ ∈ Θ = [0, 8]p needs to be estimated and the covariance matrix Σ is known. If θ ∼ N (a,B) truncated to Θ,
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Figure 4: Median of the TV distance between the estimated ABC posterior and the corresponding exact
ABC posterior over 100 experiments. Vertical lines show the 95% confidence interval of the median computed
using the bootstrap.

the true posterior is N (θ |a?,B?) truncated to Θ, where a? = B?(B−1a+nΣ−1x̄obs), B? = (B−1 +nΣ−1)−1

and x̄obs = n−1
∑n
i=1 xi is the sample mean. As discrepancy, we use the Mahalanobis distance ∆θ =

((x̄obs− x̄θ)TΣ−1(x̄obs− x̄θ))1/2. The true posterior is used for comparisons in all the following experiments
with the Gaussian model.

4.2.1 Strength of the prior

In the first experiment we set p = 2, n = 5, Σii = 1, and Σij = 0.5 for i 6= j. The initial training set size is
t0 = 10 and the threshold is fixed to ε = 0.1. Integration and sampling for expintvar and rand_maxvar are
done as in Section 4.1. The true data mean of θ is [2, 2]T . The mean of the (truncated) Gaussian prior is
a = [5, 5]T and the covariance matrix is B = b2I. We vary b, allowing us to study the impact of prior strength
relative to the likelihood. Figure 5 shows the results, and we see that the proposed acquisition rules perform
consistently well regardless the strength of prior, and focus the evaluations on the posterior modal region.
On the other hand, LCB samples where the discrepancies are small, i.e. in areas of high likelihood, leading
to sub-optimal posterior estimation whenever the prior is also informative. Comparing Figures 5a and 5b
shows that using the expintvar strategy also avoids unnecessary evaluations on the boundary, which is often
undesired also in the Bayesian optimisation methods, see Siivola et al. [2017] for a discussion. Curiously, the
uniform sampling (unif rule) works well when prior information is strong.

4.2.2 High-dimensional test cases

Next we investigate the effect of the dimension p of the parameter space. The settings are as before, except
that now we use uniform priors supported on Θ = [0, 8]p and the threshold is set adaptively to the 0.01th
quantile as described in Section 4.1. Further, n = 15, and the initial training set sizes are t0 = 20 (3d) and
t0 = 30 (6d and 10d). Adaptive MCMC (with multiple chains) is used to sample from the model-based ABC
posterior estimates required in the line 17 of Algorithm 1 and, in the case of expintvar and rand_maxvar,
from the probability density πq(θ). For expintvar we use s = 500 importance samples in 3d and s = 200 in
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Figure 5: Acquired training data locations (black dots) for (a) LCB, (b) expintvar after 70 acquisitions. As
discussed in Gutmann and Corander [2016], the LCB strategy ignores prior information which here leads to
suboptimal selection of evaluation locations. (c) Median TV between the estimated ABC posterior and the
corresponding true posterior as a function of the standard deviation (stdev) of the Gaussian prior over 100
experiments and after 200 evaluations (small stdev corresponds to strong prior information).

6d and 10d. Unlike in the other test problems, the TV distance measures here the average of TVs between
all the marginal densities.

Figure 6 shows the results. With p ≤ 6, the rand_maxvar is the most accurate and slightly better than
expintvar strategy. However, in 10d it suffers from instability in MCMC convergence. Detailed examination
shows that the method often produces multimodal posterior estimates which makes the sampling difficult.
Such densities are likely a result of the random acquisitions. Namely, even if the uncertainty is high in some
region, it can happen that no evaluations occur there during the available iterations, due to the randomness
and the curse of dimensionality. EI also tends to produce multimodal difficult-to-sample posterior estimates
but similar issues were only rarely observed with other strategies. The results suggest that in high dimensions
the strategies that select the acquisition locations deterministically should be preferred over the stochastic
ones.
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Figure 6: Median of the average marginal TVs between the estimated ABC posterior and the corresponding
true posterior over 100 experiments in the 3d, 6d and 10d Gaussian toy simulation model.

4.3 Realistic simulation models
We consider the Lotka-Volterra model and a model of bacterial infections in day care centers to illustrate
the proposed acquisition methods in practical modelling situations.
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Figure 7: Median of the mean absolute error in the (a) ABC posterior mean, and (b) ABC posterior variance
as compared to the true posterior over 100 experiments in the Lotka-Volterra model. Panel (c) shows the
TV distance between the estimated ABC posterior and the true posterior.

4.3.1 Lotka-Volterra model

The Lotka-Volterra (LV) model [Toni et al., 2009] is described by differential equations x′1(t) = θ1x1(t) −
x1(t)x2(t) and x′2(t) = θ2x1(t)x2(t)−x2(t), where x1(t) and x2(t) describe the evolution of prey and predator
populations as a function of time t, respectively, and θ = (θ1, θ2) is the unknown parameter to be estimated.
We use a similar experiment design as in Toni et al. [2009] but with discrepancy ∆θ = log

∑
ij(x

obs
j (ti) −

xmod
j (ti,θ))2, where xobs

j (ti) for j ∈ {1, 2}, i ∈ {1, . . . , 8} denote the noisy observations at times ti, and
xmod
j (ti,θ) are the corresponding predictions. Up to the log transformation, this is the same as used by Toni

et al. [2009]. We also experimented with another discrepancy, where the squared differences were replaced by
absolute differences; however, the results were similar. In comparisons we use the uniform prior with support
on [0, 5]2, and the reference is the exact posterior distribution that can be computed analytically. We set
t0 = 10. The threshold is set to match the smallest observed discrepancy realisations and the integration
and sampling required by expintvar and rand_maxvar are done as in Section 4.1.

The results are presented in Figure 7. We see that the expintvar strategy produces the best posterior mean
estimates (Figure 7a), while the best posterior variance estimates are obtained by LCB and rand_maxvar
(Figure 7b). However, the expintvar strategy clearly produces the most accurate posterior approximations
in terms of TV distance followed by rand_maxvar and the LCB strategy (Figure 7c).

4.3.2 Bacterial infections model

Finally, we show the promise of our method using a simulation model that describes transmission dynamics
of bacterial infections in day care centers. The model has three parameters: an internal infection parameter
β ∈ [0, 11], an external infection parameter Λ ∈ [0, 2] and a co-infection parameter θ ∈ [0, 1]. Full details of
the model and data are described in Numminen et al. [2013]. The true posterior is not available and thus an
ABC posterior computed using PMC-ABC algorithm, which required over two million simulations, is used
as the reference distribution [Numminen et al., 2013]. We use the same experimental setup and discrepancy
as Gutmann and Corander [2016], who used the model to illustrate their approach. Specifically, the initial
training data size is t0 = 20 and the uniform prior is used. Adaptive MCMC is again used to sample from
the model-based posterior estimates and from the probability density πq(θ). For expintvar we use s = 500
importance samples.

Figure 8 shows the results. Unlike in the other test cases, expintvar and rand_maxvar tend to produce
slightly wider credible intervals for the marginal ABC posterior distributions than the other methods. Sim-
ilarly, Gutmann and Corander [2016] obtained conservative estimates of these credible intervals with their
stochastic variant of the LCB acquisition rule. To explain this, we investigated the GP modelling assump-
tions in more detail. Running a high number of additional bacterial model simulations indicates that the
discrepancy is well approximated with a Gaussian in the modal area. On the other hand, the variance of
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Figure 8: Comparison of the 95% credible interval estimates in the bacterial model. The black dashed
lines show the corresponding credible interval estimates (computed using over 2 million model simulations
with ABC-PMC algorithm) by Numminen et al. [2013] and the vertical lines show the 75% interval of the
realisations over 100 experiments. The x-axis shows the iterations t on the log-scale.

the discrepancy, represented by the noise parameter σ2
n in the GP model, is not exactly constant as assumed

in the GP but grows towards the tail areas. This explains why the expintvar and rand_maxvar strategies,
that tend to include more evaluations in the tails than the other methods, have a tendency to over-estimate
the value of σ2

n. This further causes slightly overestimated credible intervals for the marginal ABC poste-
rior distribution, as illustrated by Järvenpää et al. [2017]. We can also see that the expintvar strategy is
more stable than the other methods in the sense that its results are more consistent over the 100 different
realisations of the initial training data sets and simulator outputs than those of the other methods.

The maxvar and (deterministic) LCB produce credible interval estimates that are overall closest to the
ABC posterior computed in Numminen et al. [2013]. However, the credible region for the parameter Λ is
often underestimated possibly due to excess exploitation producing too small variance estimates σ2

n. Using
input-dependent GP model as in Järvenpää et al. [2017] would likely improve the approximation quality
but we do not investigate this possibility here. While the EI strategy appears to work well on average in
this example, it actually has high variability and occasionally produces too narrow posterior estimates and
thus performs poorly overall. Comparing our posterior approximations using both the proposed acquisition
methods as well as the (deterministic) LCB strategy to those in Gutmann and Corander [2016] shows that
our estimates, both expintvar and (deterministic) LCB, are more accurate than the experiment reported in
their paper.

In summary, despite some violations of the GP model assumptions, we were able to obtain posterior
estimates that were very similar to those presented in Numminen et al. [2013] with only a fraction of
simulations (500 vs 2,000,000), and without a need to use a computer cluster. We also showed that the
proposed methods, especially expintvar, work consistently over different simulation model realisations, which
is important with any realistic model where extensive running times may prohibit proper assessment of
stochastic variability.

5 Discussion
In this section we offer guidelines for potential users and discuss some additional details of our algorithms.
While the developed methods worked well, it may not be clear for an end user which method to use in practice.
First of all, if the likelihood can be evaluated, there is usually no reason to consider ABC. Furthermore, if
this is not the case but the simulation is fast, e.g. less than a second, standard ABC techniques may suffice.
If the simulation is slow then the techniques in this paper become useful. Our technique with the expintvar
strategy has a sound Bayesian decision theoretic basis and it performed the best overall, producing consistent
approximation quality in different scenarios. We thus recommend this strategy. However, expintvar required
up to 1 minute of computation time for selecting the next evaluation location in our 6d Gaussian test
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problem while this optimisation step took up to 4s for UCB and EI, and at most 8s for maxvar. The
corresponding time for rand_maxvar was 30s. In our 2d Gaussian case, the expintvar strategy required at
most 10s and all the other methods less than a second. These values are, however, descriptive since the
computational time depends on various settings and the amount of training data. All these times are in any
case negligible compared to the run time of many realistic simulation models which can be hours or days. In
the supplementary material we provide further analysis of computation time using Big O notation and we
further consider an alternative approach where a non-uniform acceptance threshold is used which allows for
slightly faster computations. However, in high dimensions, when p & 10, we recommend maxvar because we
expect the estimated ABC posterior uncertainty to be inflated then anyway.

While not designed for ABC, the LCB criterion still worked surprisingly well overall and offers another
reasonable choice in practice. However, standard LCB is not suitable if the prior is informative and its
accuracy deteriorated in the high-dimensional experiment. EI (and PI) performed poorly and we see little
reason to use them unless the goal is to learn only the maximiser of the discrepancy. Furthermore, unlike the
standard BO strategies such as LCB [with the exception of Shahriari et al., 2016], the developed acquisition
rules do not necessarily require a box-constrained domain. Namely, if the prior is a bounded and proper
density (to ensure that the acquisition functions are bounded and the ABC posterior defines a valid pdf),
the requirement of the bounded support can be relaxed.

In addition to the acquisition strategy, the posterior approximation quality also depends on the GP model
and some other choices. For example, the proposed acquisition strategies and the final posterior estimate
depend on the threshold. We either assumed this value to be known or used a heuristic approach and set
the threshold to the 0.01th quantile of the realised discrepancies. We also considered other choices but
this approach worked well. In principle, the strategy for selecting the threshold could also vary during the
iterations. While some ABC methods bypass selecting the threshold, they may not be applicable when the
budget for simulations is very small. Our framework is also applicable for model-based ABC methods that
do not require the threshold.

We used the zero mean GP model in our experiments. While Wilkinson [2014], Drovandi et al. [2015],
Gutmann and Corander [2016] considered certain parametric mean functions which might help focusing the
simulations on the modal area, our choice is a safe option. Namely, if there is a large region containing no
simulations, the discrepancy tends to zero there. Thus, the uncertainty will be high in the region, attracting
future simulations. Futhermore, even though in some studies [e.g. Snoek et al., 2012], the Matern kernel has
been empirically shown to perform slightly better than the squared exponential, we expect the discrepancy
in many ABC modelling applications to be smooth and, consequently, used the squared exponential kernel.

To demonstrate the framework, we chose to model the discrepancy with a GP. However, this approach
may not be optimal if the Gaussianity assumption is violated [Gutmann and Corander, 2016, Järvenpää
et al., 2017]. Non-Gaussian measurement models can be used but the acquisition criteria in Equation (10) or
(19) may become costly to evaluate. One could also model the log-likelihood directly with a GP and select
the evaluations at the maximiser of the variance of the likelihood function [Kandasamy et al., 2015], which
is similar to our maxvar criterion. One could also model the individual summaries with independent GPs
as in Jabot et al. [2014], Meeds and Welling [2014]. In both of these cases the evaluation locations could be
chosen based on the ideas in Section 2.

An alternative to the proposed stochastic acquisition rule is to sample new evaluation locations from the
current ABC posterior estimate. This approach seems to work well in some scenarios but no systematic
comparison was done. However, the posterior estimate could get stuck to a poor region due to an “unlucky”
discrepancy realisation, after which new evaluations would be focused on this seemingly good region and the
method has little chance to escape from the local optimum.

While our approach is designed for fitting costly simulation models, we note that it can be useful even
when the simulation model is relatively cheap to run. For example, for a developer of a simulation model, it
may be useful to first obtain rough estimates for the model parameters before using costly computations for
final and accurate results. Our derivations are also applicable for estimating the tail probabilities of Gaussian
processes over some parameter domain. An approach similar to ours has also been applied to the problem
of estimating an excursion set by Chevalier et al. [2014]. However, the objective of their work is to identify
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the set of points that are below a fixed threshold instead of learning the corresponding tail probability under
GP surrogate model assumptions.

6 Conclusions
We considered the challenging problem of performing Bayesian inference when the likelihood function cannot
be evaluated and simulating data from the statistical model is costly. We proposed to use another instance of
Bayesian inference to quantify the uncertainty in the approximate posterior due to the limited budget of sim-
ulations and to design the simulations to minimise the expected uncertainty in the posterior approximation.
Such computations can be costly themselves but we chose a loss function that measures such uncertainty
and allowed developing a tractable and practical algorithm for selecting the next evaluation location to
run the simulation model. Notably, compared to many realistic simulation models, the run time of which
can be hours or days, the computational overhead introduced by our approach is negligible. Experiments
demonstrated that the proposed method performs better than or similarly to the commonly used Bayesian
optimisation strategies and other, more heuristic approaches obtained as a by-product of our derivations.
Our approach also takes prior density into account, does not require box-constrained parameter spaces and
has a sound decision-theoretic basis that extends to other ABC surrogate modelling scenarios beyond those
considered in this article.

As future work, other surrogate models and principled approaches for selecting the threshold could
be investigated. We here focused on single acquisitions but our approach in principle extends to batch
acquisitions as well. This enables parallelised inference, which is particularly useful when computationally
very costly simulation models need to be fitted.
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A Proofs
We provide the derivations of Lemma 3.1 and Proposition 3.2 below.

Proof of Lemma 3.1. Using the law of the unconscious statistician, we can write

E(pa(θ)) =

∫ ∞
−∞

Φ

(
ε− f
σn

)
N (f |m1:t(θ), v2

1:t(θ)) df. (28)

Now, using the fact Φ(x) = 1− Φ(−x), a standard result for Gaussian moments derived in Rasmussen and
Williams [2006, p. 74] and E(π(θ)pa(θ)) = π(θ)E(pa(θ)), (which holds because the prior density at θ is a
scalar) one obtains Equation (9).

A formula for the variance of π̃ABC
ε (θ) can be obtained similarly. First we see that

V(pa(θ)) = E(pa(θ)2)− [E(pa(θ))]2 (29)

=

∫ ∞
−∞

Φ2

(
ε− f
σn

)
N (f |m1:t(θ), v2

1:t(θ)) df − [E(pa(θ))]2. (30)
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The first term of Equation (30) can be further written as∫ ∞
−∞

∫ ε

−∞
N (z1 | f, σ2

n) dz1

∫ ε

−∞
N (z2 | f, σ2

n) dz2N (f |m1:t(θ), v2
1:t(θ)) df

=

∫ ε

−∞

∫ ε

−∞

∫ ∞
−∞
N (f | z1, σ

2
n)N (f | z2, σ

2
n)N (f |m1:t(θ), v2

1:t(θ)) df dz1 dz2

(31)

where we have used Fubini-Tonelli theorem to change the order of integration. The integrand can be now
written as an unnormalised Gaussian pdf for f and, after integrating over f and some further calculations,
the resulting formula can be recognised as

Φ2(ε1 |m1:t(θ)1, V1:t(θ)), (32)

where 1 = [1, 1]T and the function Φ2 denotes the bivariate Gaussian cdf with mean m1:t(θ)1 and covariance
matrix

V1:t(θ) =

[
σ2
n + v2

1:t(θ) v2
1:t(θ)

v2
1:t(θ) σ2

n + v2
1:t(θ)

]
, (33)

which is clearly symmetric and positive definite since σ2
n > 0.

Denoting the correlation coefficient ρ(θ) = v2
1:t(θ)/(σ2

n+v2
1:t(θ)), we see that Equation (32) can be further

written as

Φ2

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
1

∣∣∣∣∣0,
[

1 ρ(θ)
ρ(θ) 1

])

= Φ

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)

)
− 2T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

1− ρ(θ)√
1− ρ2(θ)

) (34)

where 0 = [0, 0]T . The equality follows from the connection between bivariate Gaussian cdf and Owen’s
t-function, see Owen [1956] for this fact and its proof. Also, simple calculations show that

1− ρ(θ)√
1− ρ2(θ)

=
σn√

σ2
n + 2v2

1:t(θ)
. (35)

The rest of the result now follows from the derivations above, Equation (9) and the fact V(π(θ)pa(θ)) =
π2(θ)V(pa(θ)).

Proof of Proposition 3.2. We first derive the probability densities for the GP mean and covariance function
after a future observation is obtained. These quantities are random variables because the new discrepancy
realisation ∆∗ is unknown. Given the training data D1:t = {(∆i,θi)}ti=1, the mean function m1:t+1(θ) can
be written as

m1:t+1(θ) = [kθ,θ1:t , kθ,θ∗ ]

[
K(θ1:t) k(θ1:t,θ

∗)
k(θ∗,θ1:t) K(θ∗)

]−1 [
∆1:t

∆∗

]
(36)

= k(θ,θ1:t)K
−1(θ1:t)∆1:t + [k(θ,θ∗)− k(θ,θ1:t)K

−1(θ1:t)k(θ1:t,θ
∗)]

· [K(θ∗)− k(θ∗,θ1:t)K
−1(θ1:t)k(θ1:t,θ

∗)]−1[∆∗ − k(θ∗,θ1:t)K
−1(θ1:t)∆1:t]

= m1:t(θ) + cov1:t(θ,θ
∗)(v2

1:t(θ
∗) + σ2

n)−1(∆∗ −m1:t(θ
∗)), (37)

where we have used a well-known formula for blockwise inversion. According to the current GP model, the
unknown future discrepancy ∆∗ follows a Gaussian density i.e. ∆∗ |θ∗, D1:t ∼ N (m1:t(θ

∗), v2
1:t(θ

∗) + σ2
n) so

that

m1:t+1(θ) ∼ N (m1:t(θ), τ2
1:t(θ,θ

∗)), (38)
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where we have denoted τ2
1:t(θ,θ

∗) = cov2
1:t(θ,θ

∗)/(σ2
n + v2

1:t(θ
∗)).

Similar computations as for the mean function show that

v2
1:t+1(θ) = v2

1:t(θ)− τ2
1:t(θ,θ

∗). (39)

This formula further shows that the change in the GP variance is deterministic and depends only on the
chosen evaluation location θ∗.

Changing the order of integration using Tonelli theorem we obtain

L1:t(θ
∗) = E∆∗ | θ∗,D1:t

∫
Θ

π2(θ)V(pa(θ) |∆∗,θ∗, D1:t) dθ (40)

=

∫ ∞
−∞

∫
Θ

π2(θ)V(pa(θ) |∆∗,θ∗, D1:t) dθN (∆∗ |m1:t(θ
∗), σ2

n + v2
1:t(θ

∗)) d∆∗ (41)

=

∫
Θ

π2(θ)

∫ ∞
−∞

V(pa(θ) |∆∗,θ∗, D1:t)N (∆∗ |m1:t(θ
∗), σ2

n + v2
1:t(θ

∗)) d∆∗︸ ︷︷ ︸
=:g2

1:t+1(θ,θ∗)

dθ (42)

=

∫
Θ

π2(θ)g2
1:t+1(θ,θ∗) dθ, (43)

To simplify the notation in the following formulas, we define m0 := m1:t(θ), m1 := m1:t+1(θ) and similarly
for the variance terms v2

0 and v2
1 . We also define τ2

0 (θ∗) := τ2
1:t(θ,θ

∗). Using these conventions and Equations
(38) and (39) we see that

g2
1:t+1(θ,θ∗)

=

∫ ∞
0

∫ ∞
−∞

V(pa(θ,m1, v
2
1))N (m1 |m0, τ

2
0 (θ∗))δ(v2

1 − v2
0 + τ2

0 (θ∗)) dm1 dv2
1 (44)

=

∫ ∞
−∞

Φ

(
ε−m1√

σ2
n + v2

1 − τ2
0 (θ∗)

)
− Φ2

(
ε−m1√

σ2
n + v2

1 − τ2
0 (θ∗)

)
N (m1 |m0, τ

2
0 (θ∗)) dm1 (45)

− 1

π

∫ ∞
−∞

∫ σn√
σ2
n+2v2

1−2τ2
0 (θ∗)

0

e
− 1

2

(
ε−m1√

σ2
n+v2

1−τ
2
0 (θ∗)

)2

(1+x2)

1 + x2
dxN (m1 |m0, τ

2
0 (θ∗)) dm1 (46)

The integral of Equation (45) can be computed using the equations in the proof of Lemma 3.1 and after
some straightforward computations one obtains

2T

(
ε−m0√
σ2
n + v2

0

,

√
σ2
n + v2

0(θ)− τ2
0 (θ∗)

σ2
n + v2

0(θ) + τ2
0 (θ∗)

)
. (47)

To simplify Equation (46), we use again the Fubini-Tonelli theorem to change the order of integration
and some straightforward (but tedious) manipulations to obtain

− 1

π

∫ σn√
σ2
n+2v2

1−2τ2
0 (θ∗)

0

∫ ∞
−∞

e
− 1

2
(ε−m1)2(1+x2)

σ2
n+v2

1−τ
2
0 (θ∗)

1 + x2
N (m1 |m0, τ

2
0 (θ∗)) dm1 dx (48)

= − 1

π

∫ σn√
σ2
n+2v2

1−2τ2
0 (θ∗)

0

∫ ∞
−∞

√
2πc(x)

1 + x2
N (m1 | ε, c2(x))N (m1 |m0, τ

2
0 (θ∗)) dm1 dx (49)

= − 1

π

∫ σn√
σ2
n+2v2

1−2τ2
0 (θ∗)

0

1

1 + x2

√
σ2
n + v2

0 − τ2
0 (θ∗)

σ2
n + v2

0 + x2τ2
0 (θ∗)

e
− (ε−m1)2(1+x2)

σ2
n+v2

0+x2τ2
0 (θ∗) dx (50)
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where we have defined c(x) := (σ2
n + v2

1 − τ2
0 (θ∗))/(1 + x2) and used again the well-known product rule for

Gaussian pdfs.
Next we define the transformation ψ(z) := z

√
σ2
n + v2

0/
√
σ2
n + v2

0 − τ2
0 (θ∗)(1 + z2). Some analysis shows

that ψ′(z) =
√
σ2
n + v2

0

√
σ2
n + v2

0 − τ2
0 (θ∗)/(σ2

n + v2
0 − τ2

0 (θ∗)(1 + z2))3/2 > 0 so that ψ is strictly increasing
function, and that it maps the interval [0, σn/

√
σ2
n + 2v2

0 ] to [0, σn/
√
σ2
n + 2v2

1 − 2τ2
0 (θ∗)]. Substituting

x = ψ(z) to the integral in Equation (50) and some straightforward computations show that Equation (50)
simplifies to

− 1

π

∫ σn√
σ2
n+2v2

0

0

1

1 + z2
e
− (ε−m0)2(1+z2)

2(σ2
n+v2

0) dz = −2T

(
ε−m0√
σ2
n + v2

0

,
σn√

σ2
n + 2v2

0

)
. (51)

The final result (19) now follows from the equations above.

B Additional derivations and gradients

B.1 Additional derivations
We start by deriving the cdf for the random variable pa(θ) when the uncertainty in the GP hyperparameters
φ is taken into account. The corresponding results for π̃ABC

ε (θ) follow by suitable scaling with the prior pdf
π(θ). The cdf of pa(θ) evaluated at z ∈ (0, 1) is

Fpa(θ)(z) = P(pa(θ) ≤ z) =

∫
P(pa(θ) ≤ z |φ)π(φ) dφ =

∫
P
(

Φ

(
ε− f(θ)

σn

)
≤ z

∣∣∣∣φ)π(φ) dφ

=

∫
P
(
f(θ)) ≥ ε− σnΦ−1(z)

∣∣φ)π(φ) dφ =

∫
Φ

(
σnΦ−1(z) +m1:t(θ |φ)− ε

v1:t(θ |φ)

)
π(φ) dφ,

(52)

it is zero if z ≤ 0, and one if z ≥ 1. In above, the density π(φ) describes our knowledge about the GP
hyperparameters φ given the training data D1:t (conditioning on data is ignored to simplify notation). The
integral in the equations above is taken over the domain of the GP hyperparameters φ. The integral can be
approximated using e.g. CCD as discussed in the main text. If the hyperparameters are fixed and πφ(φ) is
replaced with a point mass, one obtains Equation (14).

A formula for the pdf can be obtained by differentiating the cdf. We first realise that z = Φ(Φ−1(z))
which implies 1 = dz

dz = d
dzΦ(Φ−1(z)) = Φ′(Φ−1(z))(Φ−1)′(z) for z ∈ (0, 1). This fact is used to further show

that

(Φ−1)′(z) =
1

Φ′(Φ−1(z))
=

1

N (Φ−1(z) | 0, 1)
=
√

2πe(Φ−1(z))2/2. (53)

Using the Equation (53) allows to compute

πpa(θ) |φ(z) =
∂

∂z
Fpa(θ) |φ(z) =

1√
2π
e
− (σnΦ−1(z)+m1:t(θ |φ)−ε)2

2v2
1:t(θ |φ)

∂

∂z

σnΦ−1(z) +m1:t(θ |φ)− ε
v1:t(θ |φ)

(54)

=
σn

v1:t(θ |φ)
e

(Φ−1(z))2

2 − (σnΦ−1(z)+m1:t(θ |φ)−ε)2

2v2
1:t(θ |φ) (55)

=


σn

v1:t(θ |φ)e
(ε−m1:t(θ |φ))2

2(σ2
n−v

2
1:t(θ |φ)) e

−σ
2
n−v

2
1:t(θ |φ)

2v2
1:t(θ |φ)

(
Φ−1(z)− (ε−m1:t(θ |φ))σn

σ2
n−v

2
1:t(θ |φ)

)2

, if σn 6= v1:t(θ |φ),

e
− (ε−m1:t(θ |φ))2

2v2
1:t(θ |φ) e

ε−m1:t(θ |φ)

v1:t(θ |φ)
Φ−1(z)

, if σn = v1:t(θ |φ),

(56)

for z ∈ (0, 1) and it is zero elsewhere. Finally, the pdf is obtained by marginalising the GP hyperparameters,
that is

πpa(θ)(z) =

∫
πpa(θ) |φ(z)πφ(φ) dφ. (57)
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The mean and variance for π̃ABC
ε (θ) were presented in Section 3.2 and the corresponding results for pa(θ)

follow by setting π(θ) = 1. The quantiles can be computed as in Equation (15). If the uncertainty in the
GP hyperparameters is taken into account, then numerical root finding such as bisection search is required
for inverting the cdf.

Inspecting the pdf given by Equation (56) shows that if σn > v1:t(θ |φ), then the mode of pa(θ) |φ is at
z = Φ((ε−m1:t(θ |φ))/(σn − v2

1:t(θ |φ)/σn)). Unsurprisingly, if m1:t(θ |φ) is large enough, then there is a
mode near z = 0. However, if σn = v1:t(θ |φ) and m1:t(θ |φ) > ε, then the pdf goes to infinity as z → 0+.
Interestingly, if σn < v1:t(θ |φ), then the pdf goes to infinity both as z → 0+ and z → 1−.

B.2 Gradient of the expected integrated variance acquisition function
We outline the derivation for the gradient of the expected integrated variance acquisition function (Equation
(19)) with respect to the candidate evaluation location θ∗. We consider only the case where either a point
estimate or a fixed value is used for the GP hyperparameters φ. First we define

c(θ,θ∗) :=

√
σ2
n + v2

1:t(θ)− τ2
1:t(θ,θ

∗)

σ2
n + v2

1:t(θ) + τ2
1:t(θ,θ

∗)
. (58)

Because the second term in Equation (19) is constant with respect to θ∗, we obtain

∂

∂θ∗
L1:t(θ

∗) = 2
∂

∂θ∗

∫
Θ

π2(θ)T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
, c(θ,θ∗)

)
dθ (59)

=
1

π

∫
Θ

π2(θ)
∂

∂θ∗

∫ c(θ,θ∗)

0

e
− (ε−m1:t(θ))2

2(σ2
n+v2

1:t(θ))
(1+x2)

1 + x2
dxdθ (60)

=
1

π

∫
Θ

π2(θ)
e
− (ε−m1:t(θ))2

2(σ2
n+v2

1:t(θ))
(1+c2(θ,θ∗))

1 + c2(θ,θ∗)

∂

∂θ∗
c(θ,θ∗) dθ, (61)

where we have used the Leibnitz integration rule twice and where the integrations are applied elementwise.
Differentiating c(θ,θ∗) and some further computations produce

∂

∂θ∗
L1:t(θ

∗) = − 1

2π

∫
Θ

π2(θ)e
− (ε−m1:t(θ))2

σ2
n+v2

1:t(θ)+τ2
1:t(θ,θ

∗)√
σ2
n + v2

1:t(θ) + τ2
1:t(θ,θ

∗)
√
σ2
n + v2

1:t(θ)− τ2
1:t(θ,θ

∗)

∂

∂θ∗
τ2
1:t(θ,θ

∗) dθ, (62)

where

∂

∂θ∗
τ2
1:t(θ,θ

∗) =
2cov1:t(θ,θ

∗)

σ2
n + v2

1:t(θ
∗)

∂

∂θ∗
cov1:t(θ,θ

∗)− cov2
1:t(θ,θ

∗)

(σ2
n + v2

1:t(θ
∗))2

∂

∂θ∗
v2

1:t(θ
∗), (63)

∂

∂θ∗
cov1:t(θ,θ

∗) =
∂

∂θ∗
k(θ,θ∗)− k(θ,θ1:t)K

−1(θ1:t,θ1:t)
∂

∂θ∗
k(θ1:t,θ

∗). (64)

The integral in Equation (62) can be approximated similarly as discussed in Section 3.3.

B.3 Gradient of the maxvar acquisition function
We compute the gradient of the maxvar acquisition function with respect to the parameter vector θ. We
take into account the uncertainty in the GP hyperparameters but if a point estimate is used instead, the
formulae can be simplified by ignoring the summations, setting ωi = ω1 = 1 and replacing φi with the point
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estimate. First we denote

I1(θ) =
∑
i

ωiΦ(a(θ,φi))−

[∑
i

ωi Φ(a(θ,φi))

]2

, (65)

I2(θ) =
1

π

∑
i

ωi
∫ b(θ,φi)

0

e−
1
2a

2(θ,φi)(1+x2)

1 + x2
dx, (66)

where

a(θ,φi) =
ε−m1:t(θ |φi)√
(σin)2 + v2

1:t(θ |φ
i)
, b(θ,φi) =

σin√
(σin)2 + 2v2

1:t(θ |φ
i)
, (67)

so that

π2(θ)V(pa(θ)) ≈ π2(θ)(I1(θ)− I2(θ)). (68)

Differentiating Equation (68) with respect to the parameter vector θ yields

∂

∂θ
π2(θ)V(pa(θ)) ≈ 2π(θ)(I1(θ)− I2(θ))

∂π(θ)

∂θ
+ π2(θ)

(
∂I1(θ)

∂θ
− ∂I2(θ)

∂θ

)
. (69)

Computing the derivatives of I1 produces

∂I1(θ)

∂θ
=
∑
i

ωi
∂

∂θ
Φ(a(θ,φi))− 2

(∑
i

ωiΦ(a(θ,φi))

)(∑
i

ωi
∂

∂θ
Φ(a(θ,φi))

)

=

(
1− 2

∑
i

ωiΦ(a(θ,φi))

)∑
i

ωi
∂

∂θ
Φ(a(θ,φi))

=

(
1− 2

∑
i

ωiΦ(a(θ,φi))

)∑
i

ωie−
1
2a

2(θ,φi)

√
2π

∂a(θ,φi)

∂θ
. (70)

Using the Leibniz integration rule, the gradient of I2 can be written as

∂I2(θ)

∂θ
=

1

π

∑
i

ωi

(
e−

1
2a

2(θ,φi)(1+b2(θ,φi))

1 + b2(θ,φi)

∂b(θ,φi)

∂θ
+

∫ b(θ,φi)

0

1

1 + x2

∂

∂θ
e−

1
2a

2(θ,φi)(1+x2) dx

)
, (71)

where the integration is applied elementwise. The second term in Equation (71) can be further simplified as∫ b(θ,φi)

0

1

1 + x2

∂

∂θ
e−

1
2a

2(θ,φi)(1+x2) dx

= −
∫ b(θ,φi)

0

a(θ,φi)
∂a(θ,φi)

∂θ
e−

1
2a

2(θ,φi)(1+x2) dx

= −a(θ,φi)
∂a(θ,φi)

∂θ
e−

1
2a

2(θ,φi)

∫ b(θ,φi)

0

e−
1
2a

2(θ,φi)x2

dx

= −
√

2π
∂a(θ,φi)

∂θ
e−

1
2a

2(θ,φi)
(
Φ(a(θ,φi)b(θ,φi))− Φ(0)

)
=
√
π/2 e−

1
2a

2(θ,φi)
(
1− 2Φ(a(θ,φi)b(θ,φi))

) ∂a(θ,φi)

∂θ
, (72)
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where on the third line we have recognised the integrand as an unnormalised Gaussian pdf. Finally, straight-
forward calculations show that

∂a(θ,φi)

∂θ
= − 1√

(σin)2 + v2
1:t(θ,φ

i)

∂m1:t(θ,φ
i)

∂θ
− ε−m1:t(θ,φ

i)

2((σin)2 + v2
1:t(θ,φ

i))3/2

∂v2
1:t(θ,φ

i)

∂θ
, (73)

∂b(θ,φi)

∂θ
= − σin

((σin)2 + 2v2
1:t(θ,φ

i))3/2

∂v2
1:t(θ,φ

i)

∂θ
. (74)

Gradients of the GP mean and variance functions m and v2 depend on the chosen covariance function and
are not shown here.

B.4 Gradient of the ABC posterior approximation
The gradient of the posterior approximation with respect to parameter θ is useful if e.g. Hamiltonian Monte
Carlo algorithm is used to sample from this density. The unnormalised approximate posterior is

π̃ABC
ε (θ |xobs) = π(θ) Φ(a(θ)) (75)

where, as earlier, π(θ) denotes the prior density and a is defined as in Equation (67). Differentiating the
logarithm of Equation (75) yields

∂

∂θ
log π̃ABC

ε (θ |xobs) =
∂ log π(θ)

∂θ
+

∂

∂θ
log Φ(a(θ)) =

∂ log π(θ)

∂θ
+

e−
1
2a

2(θ)

√
2πΦ(a(θ))

∂a(θ)

∂θ
, (76)

where the gradient of the term a can be computed as in Equation (73).

C Additional details and experiments
In this section we first briefly discuss the computational cost of our algorithm using Big O notation and then
we provide some further details and results of our experiments.

We consider the cost of evaluating the expintvar acquisition function at b arbitrary points θ∗1, . . . ,θ
∗
b at

the iteration t of Algorithm 1. Computing the Cholesky factorisation on line 8 of Algorithm 1 requires O(t3).
Generating s samples from the proposal πq on line 9 requires computing GP mean and variance functions for
each proposed point by the MCMC algorithm and the total cost is O(st2) when the precomputed Cholesky
is used. We can reuse the GP mean and variance function values and line 10 thus requires O(s̃) where s̃ is
the amount of thinned samples that are used for approximating the integral in Equation (19). We obviously
have s̃ ≤ s. (In fact, the second term of Equation (19) is constant with respect to θ∗ and we may not need
to evaluate it. However, from the previous discussion we can see that the resulting saving would be small
i.e. only O(s̃).) Computing the value of Equation (20) at the s̃ sampled locations and for all b values of
θ∗ can be seen to be O(bs̃t + bt2) when we use the already computed values of k(θ,θ1:t)K

−1(θ1:t) in the
formula of cov1:t(θ,θ

∗). Computing the integral over the first term then requires O(s̃). The total cost is
thus O(t3 + st2 + b(t2 + s̃t)). If we use grid approximation instead of importance sampling to approximate
the integral in Equation (19), we obtain the total cost by setting s = s̃ where s is now the number of grid
points.

We obtain O(t3 + bt2) bound for the cost of LCB, maxvar and expdiffvar and we see that the st2 + bs̃t
term is missing as compared to the corresponding bound of the expintvar acquisition function. There is no
acquisition function to evaluate (or optimise) for rand_maxvar rule since we choose the next point directly
sampling from a density. This can be done in O(t3 + st2). Finally, we want to emphasise that this analysis
is asymptotic and in practice the constant costs of expintvar and its variants due to the need to compute
e.g. the Owens t-function and cdf of the standard Gaussian are slightly higher as compared to e.g. LCB rule.
However, in practice all these GP computation times are negligible when the simulation time dominates the
computation.
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In the rest of this section we show further details and results of the experiments. The synthetic test
problems in Section 4.1 are designed in the following way. In the “unimodal” example, the mean of the
discrepancy is m(θ) = 3σ + θTSθ, where σ is the standard deviation of the additive Gaussian noise, S11 =
S22 = 1 and S12 = S21 = 0.5. In the “bimodal” example we use m(θ) = 3σ+0.2(θ2−θ2

1)2 +0.75(θ2−θ1−2)2.
In the unidentifiable example, the mean of the discrepancy is obtained as m(θ) = 3σ + 0.01θ2

1 + θ2
2. The

“banana” example is produced using m(θ) = 3σ + (1 − θ1)2 + 10(θ2 − θ2
1)2. The discrepancy is assumed to

follow the Gaussian density, that is, ∆θ ∼ N (m(θ), σ2). The resulting probability densities with σ = 2 are
also illustrated in Figure 3.

We present additional results for the 2d experiments in Section 4.1. The settings are the same except that
the threshold is not predefined but is set to the 0.01th quantile of the realised discrepancies, and updated
constantly during the acquisitions. Consequently, the selection of the evaluation locations also affects how
the threshold is chosen. These results are shown in Figure 9. Figure 10 shows the corresponding results
when the threshold is determined using the 0.05th quantile.
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Figure 9: Median of the TV distance between the estimated and the true ABC posterior over 100 experiments.
The 0.01th quantile is used for updating the threshold. The results are similar as in Figure 4.

D Non-uniform acceptance threshold
Instead of using the uniform (i.e. “0-1”) threshold πε(xobs |x) ∝ 1∆(xobs,x)≤ε, other choices are possible.
For instance, one can use “Gaussian threshold” πε(xobs |x) ∝ N (∆(xobs,x) |mε, σ

2
ε), where the threshold

ε is replaced by two new parameters mε and σ2
ε that control the quality of the ABC approximation. The

unnormalised ABC posterior approximation at θ is then given by

π̃ABC
N (θ) = π(θ)

∫ ∞
−∞
N (∆ |mε, σ

2
ε)N (∆ | f(θ), σ2

n) d∆ (77)

= π(θ)N (f(θ) |mε, σ
2
ε + σ2

n). (78)

This approach can be seen as an approximation to the uniform threshold but it could be interpreted also as
additional Gaussian measurement (or modelling) error as described by Wilkinson [2013].
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Figure 10: Median of the TV distance between the estimated and the true ABC posterior over 100 experi-
ments. These experiments are as in Figure 9 except that the 0.05th quantile is used. Larger threshold than
in Figure 9 generally produces slightly worse posterior estimates.

Proceeding similarly as in the proof of Lemma 3.1 and using Gaussian identities in the appendix of
Rasmussen and Williams [2006] to compute the required integrals, the expectation and variance of π̃ABC

N can
be shown to be

E(π̃ABC
N (θ) |D1:t) = π(θ)N (mε |m1:t(θ), σ2 + v2

1:t(θ)), (79)

V(π̃ABC
N (θ) |D1:t) =

π2(θ)

2
√
πσ2
N
(
mε

∣∣∣∣m1:t(θ),
σ2

2
+ v2

1:t(θ)

)
− π2(θ)

[
N (mε |m1:t(θ), σ2 + v2

1:t(θ))
]2
, (80)

where σ2 = σ2
ε + σ2

n. In addition, the expected integrated variance acquisition function can now be written

L1:t(θ
∗) =

∫
Θ

π2(θ)

N
(
mε

∣∣∣m1:t(θ), σ
2

2 + v2
1:t(θ)

)
2
√
πσ2

−
N
(
mε

∣∣∣m1:t(θ),
σ2+v2

1:t(θ)−τ2
1:t(θ,θ

∗)
2

)
2
√
π
√
σ2 + v2

1:t(θ) + τ2
1:t(θ,θ

∗)

 dθ, (81)

where the computations follow similarly as in the proof of Proposition 3.2 and by applying Gaussian identities
to compute the integrals. (Details are left to the reader.)

The advantage of this approach is that one avoids Owen’s t-function evaluations. However, we found
determining the two threshold valuesmε and σ2

ε more challenging than setting the threshold ε for the uniform
threshold and thus focused on the latter approach. On the other hand, while running the simulation model
typically dominates the total computational cost, these formulae may be useful in high-dimensions where
the global optimisation of the acquisition function can also be costly.
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