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Key Points:11

• Unchanneled surface under spatially non-uniform rainfall shows the same scaling12

structures as catchment13

• The power law exponents remain constant during the surface evolution14

Corresponding author: M. Cheraghi, mohsen.cheraghi@epfl.ch

–2–



Confidential manuscript submitted to Geophysical Research Letters

Abstract15

The scaling relation between the drainage area and stream length (Hack’s law), along with16

exceedance probabilities of drainage area, discharge and upstream flow network length are17

well known for channelized fluvial regions. We report here on a laboratory experiment on18

an eroding unconsolidated sediment for which no channeling occurred. Laser scanning was19

used to capture the morphological evolution of the sediment. High intensity, spatially non-uniform20

rainfall ensured that the morphology changed substantially over the 16-h experiment. Based21

on the surface scans and precipitation distribution, overland flow was estimated with the D822

algorithm, which outputs a flow network that was analyzed statistically. The abovementioned23

scaling and exceedance probability relationships for this overland flow network are the same24

as those found for large scale catchments and for laboratory experiments with observable25

channels. In addition, the scaling laws were temporally invariant, even though the network26

dynamically changed over the course of experiment.27

1 Introduction28

Even with markedly different environmental and geological conditions, catchment29

drainage networks have similar geometrical characteristics that take the form of power laws30

[Rodríguez-Iturbe and Rinaldo, 1997; Rinaldo et al., 2014], as measured for different areas31

[Hack, 1957; Mandelbrot, 1977; Tarboton et al., 1989; Rigon et al., 1996]. Hack’s law [Hack,32

1957] states that the upstream length (l, the longest flow path into each point) and drainage33

area (A) are related via a power law scaling (l = Ah) where the exponent h (Hack exponent)34

was measured in the range of [0.5-0.7] for different river networks [Hack, 1957; Gray, 1961;35

Mueller, 1972; Mosley and Parker, 1973; Montgomery and Dietrich, 1992; Maritan et al.,36

1996; Rigon et al., 1996, 1998], with an average value of about 0.58 [Willemin, 2000]. Also,37

for the fluvial parts of landscapes, power-law relations with exponent ranges of [0.42-0.45]38

and [0.5-0.9] were observed for the exceedance probabilities of drainage area and length,39

respectively [Rodríguez-Iturbe and Rinaldo, 1997; Rigon et al., 1996; Crave and Davy,40

1997; Paik and Kumar, 2011]. Different explanations of these power laws are available [Banavar41

et al., 1999; Dodds and Rothman, 2000; Birnir et al., 2001; Banavar et al., 2001; Birnir42

et al., 2007; Birnir, 2008; Rinaldo et al., 2014], including self-organized dynamic systems43

[Bak et al., 1988; Rinaldo et al., 1993; Marković and Gros, 2014], invasion percolation [Stark,44

1991] and minimum energy dissipation [Rodríguez-Iturbe et al., 1992].45

Catchment drainage networks are essentially static structures in the landscape, i.e.,46

their temporal evolution cannot be readily measured. On the other hand, laboratory-based47

experimental geomorphology has a longstanding tradition [e.g., Schumm and Khan, 1971;48

Flint, 1973; Mosley and Parker, 1973; Parker, 1977] and permits detailed and rapid investigations49

of changes in surface morphology due to rainfall or overland flow [e.g., Crave et al., 2000;50

Brunton and Bryan, 2000; Römkens et al., 2002; Hasbargen and Paola, 2003; Gómez et al.,51

2003; Pelletier, 2003; Turowski et al., 2006; Babault et al., 2007; Yao et al., 2008; Tatard52

et al., 2008; Paola et al., 2009; Bonnet, 2009; Berger et al., 2010; Graveleau et al., 2012;53

Rohais et al., 2012; McGuire et al., 2013; Reinhardt and Ellis, 2015; Sweeney et al., 2015].54

For instance, dynamic changes of a rill network in uncohesive sediment under a constant55

uplift rate were observed by Hasbargen and Paola [2000]. In contrast, rill networks in a56

cohesive sediment evolved along the previously generated rills [Bennett and Liu, 2016] due57

to surface resistance. Singh et al. [2015] generated rill networks in a 0.5-m × 0.5-m experiment58

under spatially uniform but temporally variable rainfall and constant uplift rate. They found59

that the drainage area distribution was described by a power law with an exponent of 0.5.60

Similarly, Bennett and Liu [2016] examined rill formation at the flume scale (7 m × 2.4 m)61

and found an exponent of about 0.5 for Hack’s law.62

In summary, geometrical characteristics of catchment drainage networks have a high63

degree of similarity. These same characteristics are evident in channeled surfaces in laboratory64

studies. Here, we extend these studies by considering the flow network on an unchanneled65

sediment. Specifically, we measured the surface evolution of an unconsolidated sediment66

under non-uniform rainfall and overland flow such that no (observable) rills were formed.67
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However, the surface roughness produces a drainage network representation of the overland68

flow, which is then subjected to geometrical analysis.69

2 Experiment70

A 2-m × 1-m erosion flume with 5% slope (Figure S1) was filled to a depth of 15 cm71

with unconsolidated sediments that had a mean diameter of 0.53 mm (Table S1 and Figure S2,72

where S refers to the Supporting Information). Non-uniform rainfall with an average of73

85 mm h-1 and Christiansen uniformity coefficient [Christiansen, 1942] of 26% was applied74

(Figure 1h). The non-uniform rainfall ensured that the flume drainage network varied both75

spatially and temporally due to non-uniform erosion of the initially planar surface. The flume76

had an impermeable base and was drained by a single, 4-cm wide outlet (Figure S1), located77

at (x = 0, y = 0). The sediment became fully saturated during the first 15 min of precipitation,78

which was accompanied by a rapid elevation drop at the outlet during the first 5 min. A 3D79

laser scanner, with about 4-mm resolution, was used to extract Digital Elevation Models80

(DEMs) at 0.25, 0.5, 1, 2, 4, 8 and 16 h. More details of the experimental setup are available81

in the Supporting Information. With the same design and precipitation distribution, another82

experiment was carried out at 10% slope with an average rainfall of 60 mm h-1 that lasted for83

20 h. The results of this experiment, which are similar to those presented here, are included84

in the Supporting Information (Figures S8-S12).85

3 Results and Discussion86

The elevation change during the experiment is shown Figure 1. The sediment elevation87

was measured from the outlet (z = 0). For convenience, we refer to the ranges z ≤ 60 mm88

and z ≥ 60 mm as the downstream and upstream, respectively. Overall, the morphology89

evolution can be divided into two steps: (i) until t = 4 h, most of the variation occurred at the90

upstream end while the downstream end did not show any considerable evolution, and (ii)91

after t = 4 h, the downstream morphology propagates into the upstream.92

To characterize the morphology, a network was generated based on the measured surface93

scans (Figure 1a-g) and precipitation (Figure 1h). Pit points were removed following Planchon94

and Darboux [2002]. Similarly to large scale river networks, the discharge distributions (Q)95

and drainage area (A) are computed via the D8 algorithm [O’Callaghan and Mark, 1984]:96

Qi =

8∑
j=1

w j i Q j + Ri ∆x ∆y (1)

97

Ai =

8∑
j=1

w j i Aj + ∆x ∆y (2)

where the summation over j refers to the eight cells surrounding the ith cell. The slopes98

from each cell (i) into each of the eight neighbor cells ( j) were calculated, with flow directed99

along the steepest descent. The value of w j i is unity if the cell j flows into cell i, otherwise it100

is zero. Ri (mm h-1) is rainfall intensity at cell i (Figure 1 h) and ∆x (mm) and ∆y (mm) are101

the grid sizes in x and y directions, respectively.102

The distribution of drainage area and discharge at different times are plotted in Figures 2113

and S4, respectively. At t = 0.25 h (Figure 2a), four separate branches depicted by A, B, C114

and D drained into the flume’s outlet (x = 0, y = 0). Then, at t = 0.5 h (Figure 2b), branch115

C joined B and branch BC was generated while a minor change in the network was evident116

in the upper part of the network. After 1 h (Figure 2c), junction A became attached to BC117

and the pathway denoted ABC was formed. At t = 2 h (Figure 2d), the area drained by ABC118

inclined to the right side. Furthermore, branch D drained a greater proportion of the precipitation119

as it assumed part of the upstream area previously drained by ABC. Finally at t = 4 h, the120
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Figure 1. Measured morphology (z) evolution during the 16-h experiment (a-g). Initially, the flume slope

was 5%, with y = 0 the lowest elevation and x being the transverse direction. The flume drained at a single

point, located at (x, y) = (0,0). Due to the spatially non-uniform precipitation (h), the morphology changes

increase from the left side (low precipitation rate area) towards the right (high precipitation rate area).

103

104

105

106
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Figure 2. Drainage area (A) distribution determined using the D8 algorithm and the measured

morphologies shown in Figure 1a-g. Initially, the flow paths, e.g., at t = 0.25 and 0.5 h, reflect the initial

surface condition and central drainage point at the flume exit. The labels A-D identify the main drainage

pathways, which coalesced with ongoing erosion over the course of the experiment. The impact of the

higher-intensity rainfall on the right side of the flume is manifested in the main flow path, which moves to the

right side during the experiment (more details given in the text).

107

108

109

110

111

112
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Figure 3. Sediment surface at t = 0 (a) and t = 16 h (b). The uncohesive sediment had a wide range of

particle sizes. Smaller particles were preferentially eroded during the experiment, leaving the larger particles

as shown in (b). The dynamics of this surface evolution are reflected in the changing drainage networks

computed using the D8 algorithm (Figure 2).

130

131

132

133

network ABCD was generated (Figure 2e). At later times (t = 8 h and 16 h), the high flow121

part of ABCD became more dominant and moved to the right (Figure 2f and g). Variations122

in the drainage area network (and discharge network in Figure S4) mostly occurred in the123

first 8 h of the experiment, similarly to the surface morphology. Changes were less rapid in124

the second 8 h, although the main structure of the network was reinforced and some local125

changes to the low-order pathways took place. The evolution of the downstream (Figure 1e)126

started at the same time as the network (ABCD) was generated at t = 4 h (Figure 2e). The127

network’s width function was computed for each scan to quantify its temporal evolution128

(Figure S5).129

Even though the flow covers the entire surface and is continuous (except perhaps for141

raindrop impacts), the D8 algorithm leads to its description as a network, which was considerably142

reorganized during the 16-h rainfall duration (Figure 2). We recall that these networks do not143

represent observable surface rills, but rather the drainage network derived from the surface144

morphology as captured by the surface scans. As shown in Figure 3, due to shorter erosion145

time scales, the fine sediment particles are rapidly removed while the larger particles move146

slowly down the surface [Hairsine and Rose, 1992a,b; Polyakov and Nearing, 2003; Sander147

et al., 2011; Wang et al., 2014; Kim and Ivanov, 2014; Cheraghi et al., 2016; Lisle et al.,148

2017] or are not moved at all, resulting in a surface partially covered by motionless pebbles.149

Therefore, the network evolution is a result of size-dependent sediment particle transport and150

raindrop-driven rearrangement on the surface.151

We next examine the statistical characteristics of the network. We first consider Hack’s152

law [Hack, 1957], which is a well-known metric used in analyses of large scale river networks153

[Maritan et al., 1996; Rigon et al., 1996; Dodds and Rothman, 2001a]. For our case, the A-l154

distribution was divided into 20 bins on a logarithmic scale. For each bin, the ratio between155

consecutive average moments of length were calculated. The results are plotted in Figure 4156

for the first to four moments of l (n = 1,2,3,4). They show a validation of a finite-size157

scaling framework for the distributions of l, in the form of p(l |A) = l−ξF (l/Ah ) where158

F (x) → 0 for x → ∞ and F (x) → 0 for x → 0, analogous to large scale river networks159

[Rigon et al., 1996]. The power-law relationship is maintained for at least two orders of160

magnitude, with the scaling exponent h in the range of [0.54-0.6]. Upper and lower cutoffs161

affecting the scaling range were expected. Lower cutoffs are basically the limits of detectability.162

Upper cutoffs are associated with the maximum cumulative area or flow rate [Rigon et al.,163
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Figure 4. Ratios of consecutive moments of the upstream length distribution (l) at any point within

subcatchments of area (A) identified by steepest descent directions. The slope of the log-log plot is Hack’s

exponent (h) at different times (t = 0.25-16 h). The A-l distribution was divided into 20 bins on a logarithmic

scale, with the nth moment of (l) for each bin denoted by 〈ln〉. The curves of higher moments (n > 1) are

shifted vertically for the purpose of visualization.

134

135

136

137

138

Figure 5. Plots (a)-(c) show, respectively, exceedance probabilities of discharge (Q), drainage area (A) and

upstream length (l) at different times (t = 0.25-16 h)

139

140
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1996]. Another experiment at 10% slope with an average rainfall of 60 mm h-1 (Figure S11)164

showed a range of [0.51-0.55] for the Hack exponent (h). For both experiments, the Hack165

exponents agree with those found for large scale river networks [Hack, 1957; Gray, 1961;166

Mueller, 1972; Mosley and Parker, 1973; Mueller, 1973; Montgomery and Dietrich, 1992;167

Maritan et al., 1996; Rigon et al., 1996, 1998], which are in the range [0.5-0.7], yet with a168

measured mean of about h = 0.58 [Willemin, 2000] and an analytical value of h = 0.57169

[Birnir, 2008].170

The distributions of (computed) drainage discharge, drainage area and upstream length171

are plotted in Figure 5. In Figure 5a, the flume discharge can be separated into low (q ≤ 1.1×172

104 mm h-1), medium (1.1 × 104 < q < 3 × 106 mm h-1) and high (q ≥ 3 × 106 mm h-1)173

sections. The low discharge region mostly covers the left of the flume (Figure S4) where the174

precipitation rate is lower. The values of P(Q > q) for these regions do not change during175

the network evolution (from 0.25 h to 16 h). For the medium discharge regions, a power-law176

relationship (P(Q > q) = q−ϕ) describes the exceedance probability with an exponent of177

ϕ = 0.49. The high discharge area shows the most temporal variability, which corresponds to178

the changes of the main streams (A-D in Figure S4). Since the D8 algorithm selects a single179

adjacent down-gradient cell to receive water from a given cell, potentially the predicted flow180

becomes more localized than in reality. Also, flow disturbances due to raindrop impact and181

resulting mixing are not accounted for.182

Due to spatial and temporal variations of precipitation in natural settings, the distribution183

of drainage area and upstream length are more commonly used metrics for describing river184

networks at large (spatial) scales. Even though in this study no rills formed, the distributions185

of drainage area and upstream length under this shallow, overland flow cross a number of186

scales characterized by power laws (P(A > a) = a−β and P(L > l) = l−ψ) with β = 0.47187

and ψ = 0.75, respectively (Figure 5b and c). Furthermore, at 10% slope with an average188

rainfall of 60 mm h-1, exponents of 0.49, 0.47 and 0.71 were found for power laws describing189

discharge, drainage area and upstream length distributions, respectively (Figure S12). These190

results are similar to large scale river networks [Mandelbrot, 1977; Tarboton et al., 1989;191

Rigon et al., 1996; Dodds and Rothman, 2001a,b,c; Rinaldo et al., 2014]. In addition, the192

values of these exponents are close to analytical results, β = 1 − h and ψ = β/h, derived by193

Maritan et al. [1996].194

The consistency between the laboratory results in Figs. 4 and 5, and results for catchment195

networks [e.g., Rodríguez-Iturbe and Rinaldo, 1997] points to an underlying governing196

principle operating at different scales, such as the principle of minimum energy expenditure197

[Rodríguez-Iturbe et al., 1992] that applies at equilibrium conditions for river networks.198

Similarly, recent work (Smith 2018) on equilibrium landscapes showed that overland flows199

minimized a Lagrangian function of kinetic and potential energies. For both potential (viscosity200

dominated) and inviscid flows and for fixed boundary conditions, energy dissipation continues201

monotonically until the steady flow configuration is achieved, i.e., energy dissipation is202

a minimum [Lord Rayleigh , 1893]. The energy minimization principle has been shown203

exactly (by re-parametrization invariance arguments, and in the small gradient approximation)204

to correspond to the steady-state solution of the general landscape evolution equation in205

fluvial regions [Banavar et al., 2001]. Deriving scaling properties and self-organization in206

optimal networks is therefore tantamount to analyzing the underlying equations if steady-state207

solutions are sought. Laboratory-scale rill networks were also shown to evolve towards the208

minimum energy expenditure [e.g., Gómez et al., 2003; Berger et al., 2010]. However, for209

unchanneled morphologies, further investigation is needed since our results suggest (approximately)210

time-invariant scaling laws for a rapidly eroding surface.211

The dynamics of eroding surfaces and related overland flow (including raindrop impact)212

can be modeled via different approaches, from mechanistic models that consider coupled213

overland flow and soil erosion [e.g., Nearing et al., 1989; Hairsine and Rose, 1992a,b] to214

catchment scale landscape evolution models (LEMs) [e.g., Willgoose, 1989; Howard et al.,215

1994; Perron et al., 2008; Smith, 2018]. LEMs, which predict channel networks at both the216

catchment and laboratory scales, are relevant to our experimental results. We emphasize that217

our experiment involves continuous overland flow on an unchanneled surface in contrast to218
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channelized flow in a catchment. Nonetheless, characterization of the overland flow on the219

measured morphology via the D8 algorithm results in a network that is geometrically similar220

to a catchment drainage network. The D8 algorithm provides a network representation of221

the overland flow driven by gravity. This representation is an approximation, but allows for222

a direct comparison of the unchanneled surface morphology in our experiments with the223

channeled networks found in catchments and in laboratory experiments.224

These experiments support a notable extension of what was previously thought about225

the kind of recursive features shown by channeled landscapes at much larger scales. Unchanneled226

landscapes were thought to obey diffusive evolution. For splash-dominated erosion studied227

here, the scaling structures were replicas of those occurring at orders of magnitude larger228

scales. It is totally remarkable that the aggregation patterns are independent of the specific229

sediment transport type in erosional patterns. Moreover, the temporal stability of the scaling230

structures we measure here suggests that indeed the planar features of steady states are reached231

almost immediately by erosional surfaces, as was speculated but never shown for real river232

networks. We suggest that the results could provide a test case for LEMs, which are applicable233

at both the laboratory [Sweeney et al., 2015] and catchment scales [Perron et al., 2009] on234

the condition that channels are formed. In the above-mentioned network analysis of Banavar235

et al. [2001], diffusion was ignored, although it is present in LEMs. Since diffusion effects236

will tend to smooth surfaces in LEM predictions, we speculate that our results will prompt237

additional investigations of the role of diffusion in these models. That is, it remains to be238

determined if the scale invariance uncovered in this work can be captured by LEMs.239

4 Conclusions240

An evolving unchanneled surface under a spatially non-uniform rainfall was statistically241

characterized in the same manner as large scale river networks by converting the continuous242

overland flow into drainage area and discharge networks. The measurements show that although243

the surface morphology and the corresponding overland flow network changed markedly244

during the experiment, the system preserved Hack’s law and power laws in distributions of245

drainage area, length and discharge. More importantly, the exponents, the values of which246

are identical to large scale river networks, remained in a narrow range despite the considerable247

change in the surface morphology and the corresponding network structure. This work provides,248

for the first time, experimental support for the self-similar organization of landscapes even249

where observable rills or channels are not formed on the surface.250
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