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Abstract 34 

The immune composition of the tumour microenvironment has been shown to regulate processes 35 

including angiogenesis, metastasis and the response to drugs or immunotherapy. To facilitate the 36 

characterisation of the immune component of tumours from transcriptomics data, a number of 37 

immune cell transcriptome signatures have been reported, i.e. lists of marker genes that together 38 

are indicative of the presence a given immune cell population. The majority of these gene signatures 39 

have been defined through analysis of isolated blood cells. However, blood cells have been shown 40 

not to reflect the differentiation or activation state of similar cells within tissues, including tumours, 41 

and consequently perform poorly on tissue data. To address this issue, we generated a set of 42 

immune gene signatures derived directly from tissue transcriptomics data using a network-based 43 

deconvolution approach. We define markers for seven immune cell types, collectively named ImSig, 44 

and demonstrate how they can be used for the quantitative estimation of the immune content of 45 

tumour and non-tumour tissue samples. The utility of ImSig is demonstrated through the 46 

stratification of melanoma patients into immuno-subgroups of prognostic significance and the 47 

identification of immune cells from single-cell RNA-Seq data of derived from tumours. ImSig is 48 

available as an R package (‘imsig’). 49 

 50 

Introduction 51 

Modulating the activity of the immune component of the tumour microenvironment holds great 52 

potential in the treatment of cancer. Checkpoint inhibitors are perhaps the most exciting advance in 53 

cancer therapy in the past decade, with anti-PD1 and CTLA4 antibodies, in particular, demonstrating 54 

remarkable therapeutic results in some patients (1). However, multiple factors within the tumour 55 

microenvironment are recognised to influence the response to immunotherapy, in particular, the 56 

immune infiltrate prior to treatment (2). Immunohistochemistry and flow cytometry have 57 

conventionally been used to study the immune status of tumours, but are limited by the fact that 58 

histological analyses are limited to small areas of tissue and a small numbers of markers, and flow 59 

cytometry requires tissue disaggregation, which may not always be practical. To overcome these 60 

limitations, computational methods have been developed to estimate the immune content of blood 61 

and tissue samples from transcriptomic data (3). Two main approaches are currently used to infer 62 

the relative proportion of cell types from transcriptomic data. A first type of approach fits reference 63 

gene expression profiles from sorted cells to the data in question (4-7) and a second approach, 64 

employs cell-type specific genes to indicate the presence of certain cell populations (8-11). Both 65 

approaches rely on sets of gene markers (gene signatures), however in the first case these genes are 66 



not necessarily cell type-specific in their expression and use supervised learning algorithms to 67 

leverage the additional power needed to distinguish between cell types. 68 

A number of computational frameworks, leveraging these approaches have been described to 69 

estimate the contribution of different immune cell types to the tissue transcriptome (5,10-14). 70 

Across these studies, the range of immune cell types that each method report to detect varies 71 

considerably. For instance, collectively the published studies report gene signatures for 22 T cell 72 

subtypes. Among the signatures that define marker genes, numerous markers are used 73 

interchangeably to define different subtypes and many are expressed by non-immune cell types. 74 

Another, shortfall of these signatures is that they are all derived from cultured or blood-derived 75 

cells. The expression profiles of the same immune cell from blood (PBMC’s) and tissues are 76 

significantly different (15) which compromises the predictive value of signatures (16). 77 

Genes that contribute to a common biological process or define a given cell type are frequently co-78 

regulated, i.e. coexpressed giving rise to expression modules (17,18). We have previously validated 79 

gene correlation network (GCN) analysis of large gene expression datasets from human (including 80 

cancer), mouse, pig and sheep, as a means to define such expression modules (19-21). Here we have 81 

analysed a broad range of human tissue transcriptomic data to identify a set of robustly co-82 

expressed marker genes representing seven immune cell types and three cellular pathway processes 83 

present in many tissue data. We have named this set of signatures, ImSig. We demonstrate the 84 

advantages of ImSig over other reported signatures derived from the comparison of isolated blood 85 

cells and its utility in characterising the immune microenvironment of tumours. 86 

Methods 87 

Derivation of ImSig  88 

Eight publically available expression datasets derived from human tissue were sourced from the 89 

Gene Expression Omnibus (GEO) database (22) (GSE11318, GSE50614, GSE75214, GSE38832, 90 

GSE23705, GSE24383, GSE58812, GSE65904), based on the criteria that the unprocessed data files 91 

were available, they included a variety of normal and diseased samples, represented a variety of 92 

array platforms and contained >20 samples (median size 114 samples). The datasets was chosen 93 

such as to include the diverse variety of immune cell types and differentiation states. Raw Affymetrix 94 

data was processed using oligo package (23) and Illumina data was processed using lumi package 95 

(24) in R. The signal intensities were normalised using the robust multi-array average (RMA) and 96 

genes with multiple probes were summarised into one by choosing the probe with maximum 97 

intensity across samples.  98 



The resultant expression matrix was loaded into the network analysis tool Graphia Professional 99 

(Kajeka Ltd., Edinburgh, UK), previously known as BioLayout Express3D (25,26). Within the tool, a 100 

correlation network was generated (an r value was chosen so as to include approximately 10,000 101 

genes in the analysis) for each dataset and clustered using the Markov Clustering (MCL) algorithm 102 

(27). Clusters were manually annotated based on domain knowledge and with the help of Gene 103 

Ontology (GO) and Reactome pathway enrichment analyses (28,29). The gene modules representing 104 

immune cell types and biological processes were identified for each of the eight datasets. The genes 105 

within the modules were consolidated into a list of genes for seven immune cell types and three 106 

biological processes. In order to identify the core set of genes that represents each cell type or 107 

processes, these genes were further refined/filtered using eight independent validation datasets 108 

(GSE9891, GSE14580, GSE38832, GSE14951, GSE15773, GSE7305, GSE22619, GSE52171) by the 109 

following procedure: Robust cell type/pathway signatures were identified by excluding genes that 110 

were poorly co-expressed using an unbiased approach. Each dataset was loaded into Graphia (r 111 

values were selected so as to include approximately 10,000 genes in the analysis) and clustered 112 

using the MCL algorithm. To model the contribution of noise by random genes within signatures, 0 113 

to 100% of genes within every MCL cluster were replaced with random genes (using the R function 114 

‘sample’) in a stepwise manner, in 2% increments. For each of these replacements, the resultant 115 

median correlation of every cluster was noted. The combined data points were fitted to a sigmoidal 116 

curve using the nonlinear least squares method. Based on this model, we estimated the number of 117 

genes that might contribute to noise within the signatures, and should be filtered out. To facilitate 118 

such inverse estimation, the ‘investr’ package in R was used. For example, based on the median 119 

correlation of signature genes, if the model suggested 30% of genes represented noise, then 30% of 120 

genes exhibiting the poorest median correlation were discarded. This process was repeated for each 121 

signature across the eight validation datasets and the set of genes that survived the filtration 122 

process were defined as ImSig. In essence, the approach sought to identify the most robustly 123 

correlated genes across datasets to arrive at the final list of genes for the individual ImSig signatures. 124 

TopGo was used to identify the five most enriched GO Biological Process (GO_BP) terms associated 125 

with each gene set (28) and p-values were generated using the Fisher-exact test. 126 

Comparison of ImSig with other published signatures 127 

Seven published immune signatures were sourced from the literature (5,8,10-14). To visualise the 128 

concordance between the immune genes defined by the different studies, a chord diagram was built 129 

using circlize package (30) in R. Only genes reported as markers of immune cells were used – ImSig 130 

includes pathway signatures, other studies included signatures for other cells, e.g. fibroblast, 131 

endothelial cells etc. Due to the sheer variety of T cell subtype signatures, these were further 132 



explored to identify gene usage between them. Genes that were present in two or more studies and 133 

ascribed to a T cell or one of its subtypes were identified. Using these genes, a graph was 134 

constructed using Cytoscape (31) and visualised with a circular layout. The size of nodes 135 

representing individual signatures was adjusted according to the number of connections each 136 

signature had with others.  A Jaccard similarity index was also calculated between all signatures. For 137 

the Newman et.al signature genes that were not common between cell types were only considered. 138 

For visualisation of the results, genes pertaining to cell subsets (Treg, Th1) were all pooled to 139 

represent the parent population (T cells) and the Jaccard similarity index was re-calculated. 140 

Comparative analysis of gene signatures in the context of a tissue dataset 141 

Seven immune signatures were sourced from the literature (5,8,10-14). The LM22 signature (5) did 142 

not provide an absolute signature, i.e. same genes may represent multiple cell types and so only a 143 

subset of genes that were unique to cell types was used for this analysis. The median correlation of 144 

the signature genes was calculated within the context of a dataset (GSE20436) generated from 145 

swabs taken from the eyes of children with symptoms of trachoma or controls (32). The dataset 146 

contains transcriptomics data generated from samples taken from three patient subgroups; 20 147 

controls with normal conjunctivas; 20 individuals with clinical signs of trachoma but that tested 148 

negative for the bacteria C. trachomatis (possibly who were in the resolution stage); and 20 149 

individuals with symptoms and active infections. This dataset was chosen due to the well 150 

documented immune infiltration associated with this disease and the presence of all immune 151 

populations defined by ImSig. To be able to directly compare with ImSig, genes pertaining to cell 152 

subsets were all pooled to represent the parent population. In addition, analysis of the median 153 

correlation of non-pooled signatures, i.e. marker sets representing sub-populations of cells, were 154 

also analysed in the context of these data. 155 

To validate ImSig in tumours, transcriptomic data from single-cell suspensions from lymph nodes of 156 

four metastatic melanoma patients were analysed (GSE93722) for which cell type proportions (CD4 T 157 

cells, CD8 T cells, B cells, NK cells) measured with flow cytometry was available. In order to perform a 158 

direct comparison proportions of CD4 and CD8 T cells were summed to estimate total T cell content. 159 

The average expression of ImSig genes were calculated to determine the relative abundance of 160 

immune cells in each patient. The predicted and observed abundance were then scaled between 0 161 

and 1 to be comparable. This analysis also served to validate the applicability of ImSig to RNA-Seq 162 

data. To assess the ability of ImSig to define known clinical differences between patient subgroups 163 

and to illustrate the explorative power of a network-based analysis, we used the trachoma dataset 164 

described above. In order to estimate the relative abundance of immune cells across patient groups, 165 

the average expression of the ImSig signature genes was computed. A two-tailed, unequal variance 166 



t-test was conducted between groups to obtain P-values. To explore the wider context of the 167 

immune environment and extrapolate immune subsets, a GCN (r >0.7) was visualised in Graphia. By 168 

visual inspection of the network graph, immunologically relevant genes (subtype/differentiation-169 

specific) were identified in the vicinity of the ImSig modules and their average expression profile 170 

across patient groups plotted. 171 

Pan-cancer analysis of tumour data (TCGA) 172 

Pre-normalised (level 3 data) transcriptomic data from 12 cancers were downloaded from the TCGA 173 

database. For each cancer type, the patients were ordered based on the average expression of the 174 

individual ImSig signatures and split into two groups based on the median expression value of the 175 

signature genes. In cases such as Brain Lower Grade Glioma (LGG), Kidney Renal Clear Cell Carcinoma 176 

(KIRC) and Uterine Corpus Endometrial Carcinoma (UCEC), B cell signature genes were not co-177 

expressed indicating the likely absence or low abundance of these cells and so were not included in 178 

the survival analysis. A univariate Cox-proportional hazard ratio analysis was performed for the rest 179 

using the survcomp package in R (33). P-values are based on the log-rank test. 180 

Molecular subtyping (patient stratification) of melanoma 181 

RNA-Seq data for the SKCM (human skin cutaneous melanoma) was downloaded from the TCGA 182 

data portal. Using the expression data of ImSig genes, a sample-to-sample correlation plot (r > 0.85) 183 

was generated. MCL clustering (inflation value: 1.7) of the sample-sample correlation plot, grouped 184 

the patients into 5 clusters. These groupings were mapped as a class-set onto the complete GCN to 185 

study the expression patterns of immune cells between groups. A univariate Cox-proportional 186 

analysis was also performed using the survcomp package (33) in R between the groups in various 187 

combinations. The P-value was calculated using the log-rank test.  188 

An independent melanoma dataset- GSE65904 (51) was used for validation. The dataset was 189 

produced on the Illumina HumanHT-12 V4.0 microarrays and composed of samples from 214 190 

melanoma patients. Samples that did not contain necessary information such as disease-specific 191 

survival, gender and sample type were removed. After processing and normalisation using the lumi 192 

package (24) in R, samples that were not present in the network graph (r ≥ 0.8) were also removed 193 

and the remaining samples (210) were processed as described above for the TCGA dataset. 194 

Processing and analysis of single-cell RNA-Seq data 195 

Single-cell transcriptomics data (log2 [(TPM/10)+1]) for melanoma (34) and head and neck cancer 196 

(HNSCC) (35) were downloaded from The Broad Institute single-cell portal 197 

(https://portals.broadinstitute.org/single_cell). As computation of the relative abundance of cell 198 

types is based on the average expression of ImSig genes, missing values in single-cell data can affect 199 



the results. Therefore, to compensate for dropouts, a diffusion-based imputation method was used 200 

to impute missing values (36).  201 

To validate the cell type specificity of ImSig, the average expression of B, T, NK cell and macrophage 202 

signature genes were calculated from the melanoma cell data dataset and compared to the average 203 

expression of the other immune-related ImSig genes. To evaluate the concordance between 204 

estimated abundance and measured number of cells, the average expression of signature genes for 205 

10 patients were computed (estimated abundance). Correlation between estimated abundance and 206 

measured number of cells was calculated and P-values were attained by building a linear regression 207 

model. To visually illustrate the concordance of relative proportions, both the estimated abundance 208 

and measured number of cells were scaled using the formula [x-min(x)/max(x)-min(x), where x is the 209 

cell abundance value] and plotted as a stacked bar plot scaled to 100%.  210 

In order to predict immune cell types in the HNSCC dataset using the SVM-based algorithm 211 

Cibersort, a reference matrix (ImSig as features) was first generated using the melanoma single-cell 212 

data as per the requirements. The algorithm was run with the generated reference matrix and 213 

HNSCC single-cell data, uploaded on to the Cibersort web portal (https://cibersort.stanford.edu). 214 

The output contained a score of B cell, T cell and macrophage for each sample and an associated P-215 

value. P-values of <0.05 and a score of >0.75 (upper quartile) were set as defining correct 216 

predictions, e.g. a T cell score of >0.75 in a T cell with a P-value of <0.05 was judged as a correct 217 

prediction. 218 

R implementation of ImSig 219 

We implemented ImSig as an R package called “imsig”. Users should call the “imsig” function, which 220 

takes a normalized gene expression matrix (HUGO symbols in rows and samples in columns) as its 221 

first argument and a correlation threshold (r) as its second argument. Users can also generate 222 

network graph of ImSig genes and perform survival analysis using the package. A short tutorial is 223 

available at https://github.com/ajitjohnson/imsig. 224 

This package is available at CRAN (https://cran.r-project.org/web/packages/imsig/). 225 

 226 

Results 227 

Derivation of ImSig 228 

Using a network-based approach, a set of co-expressed gene modules associated with human tissue 229 

immune cell populations and frequently observed biological processes were identified from eight 230 

independent tissue transcriptomics datasets. An illustrative example of a gene correlation network 231 

https://cibersort.stanford.edu/
https://cran.r-project.org/web/packages/imsig/


(GCN) is shown in Fig. 1A. These initial gene signatures were further refined and validated by testing 232 

for co-expression of the genes associated with each signature across an additional eight 233 

independent datasets (Fig. 1B). The result was 569 marker genes representative of seven immune 234 

populations (B cells (37 genes), plasma cells (14), monocytes (37), macrophages (78), neutrophils 235 

(47), NK cells (20), T cells (85)) and three biological processes (Interferon response (66), translation 236 

(86), proliferation (99)), named collectively ImSig (Table 1,2 & Supplementary Table S1). The data-237 

driven definition of each immune signature is internally-validated by the association of many well-238 

known markers with the specific signatures, e.g. CD3D and CD3E (T cells), CD19, CD22 and CD79 (B 239 

cells), CD14 (monocytes), CD68 and CD163 (macrophages), KIR family (NK cells) and immunoglobulin 240 

family members (plasma cells). Furthermore, GO enrichment analysis of the gene signatures and 241 

extensive reference to the literature, supported the association of the majority of markers identified 242 

with the relevant cell types and processes. The top 5 enrichment terms for all signatures are listed in 243 

Supplementary Table S2 and the top term is given in Fig. 1C. In contrast to a number of the 244 

published immune gene signatures, we did not define signatures for immune cell sub-types, such as 245 

sub-populations of T cells or activation states of macrophages. Across the diversity of tissue 246 

datasets, we found no support for distinct modules of co-expressed markers describing T cell or 247 

macrophage subpopulations. This is consistent with previous analyses of isolated human 248 

macrophages responding to different stimuli, which did not support the existence of distinct 249 

activation states of macrophages but rather a continuum of difference states depending on the 250 

stimulus (37). Where present, ‘activation-specific’ transcripts such as receptors, cytokines or 251 

transcription factors, tend to form part of the overall cell expression module. By inference, if a 252 

particular gene is strongly co-expressed with a particular cell type-specific signature in the context of 253 

a particular dataset, one can conclude that either it is likely expressed by those cells or at least a sub-254 

population of them. 255 

Comparison between ImSig and published immune signatures 256 

The gene content of seven published immune signatures, all derived from the comparison of isolated 257 

blood cells (5,8,10-14), were compiled and compared, excluding signatures for non-immune cell 258 

types, e.g. endothelial cells, fibroblast etc. When ImSig was added to the list it contained 3,658 259 

genes (Supplementary Table S3). To compare these the gene signatures a Jaccard similarity index 260 

was calculated (Supplementary Table S4) and highlights the poor concordance between signatures 261 

(Supplementary Table S4 and Supplementary Fig. S1). The highest observed similarity was between 262 

ImSig’s and Becht et al.’s B cell signature, Jaccard score = 0.26, which in itself is a not a high Jaccard 263 

score. Fig. 2A illustrates the lack of consensus between published signatures and ImSig, and 264 

highlights the fact that 76.3% of genes are only associated with a single study. Of these 2,794 genes, 265 



only a small proportion described unique populations, e.g. erythroblast (297 genes) and 266 

megakaryocyte (259) described by Watkins et al. The poor conservation of immune marker genes 267 

across studies is likely due to a number of technical and statistical artefacts. For example, 268 

proliferation-related genes were identified as part of the signature for activated CD4 (12) and T cells 269 

(10). The mitotic index of resting versus activated T cells may be a true difference between them, 270 

but cell cycle genes are expressed by all proliferating cells (38) and are therefore poor markers of cell 271 

type. Notably, of all signatures proposed, ImSig contains the fewest unique genes (only 60 ImSig 272 

genes have not been previously been included in other signatures), suggesting a high degree of 273 

consensus with other studies overall, but not particularly with any previous signature alone. 274 

It is also interesting to note the association of certain genes with different cell types in different 275 

studies. Of the 729 genes proposed to represent distinct T cell states, none were common to all 276 

seven studies and only 98 were listed by two or more studies. As Fig. 2B illustrates the assignment of 277 

markers to cell types across studies is highly complicated. For example, LRRN3, was used to define 278 

resting cytotoxic T cells by Abbas et al. and as a Th1 marker by Bindea et al. CTLA4 is annotated as 279 

either a marker of Tregs, Th1 and CD4 T cells and by Angelova et al., Bindea et al., and Watkins et al., 280 

respectively. CTLA4 can also be expressed on CD8+ T cells (39). There are many such examples of 281 

discordance between marker gene/cell type assignations. The ImSig T cell signature, which was 282 

designed to be subtype agnostic, exhibited the greatest overlap between all T cell signatures 283 

(displayed by the relative node size in Fig. 2B) and includes genes defined as subtype-specific by 284 

other studies but for which we found no support as a separate co-expression module. To compare 285 

the co-expression of the ImSig signatures to previous signatures, the median correlation of each set 286 

of signature genes were calculated within the context of a dataset derived trachoma patients. This 287 

was selected as one of the few examples we could find of a dataset derived from a tissue, where all 288 

immune cell types defined by ImSig are present, these being recruited in response to a bacterial 289 

infection. For comparison with previous signatures, those modules representing sub-populations, 290 

e.g. T cell subsets were collated into one, e.g. T cells. Their median correlation in the context of the 291 

trachoma dataset is shown in Fig. 2C. A non-collated version of the results is provided in 292 

Supplementary Table S5. Regardless of whether they were aggregated by broad cell type, or 293 

considered separately; none of the blood-derived modules were strongly co-expressed across the 294 

set of trachoma patient samples. In contrast, all of the ImSig signatures displayed a high median 295 

correlation (co-expression) value. Of the other signatures examined, Becht et al. (8) performed next 296 

best. The bacterial infection that gives rise to the pathology of trachoma leads a significant increase 297 

in the recruitment of immune cells to the site of infection (32). In order to evaluate the ability of 298 

ImSig to estimate the relative abundance of immune cells, the average expression of each gene 299 



signature was used as a proxy for immune cell number in the trachoma dataset. As seen in Fig. 2D, a 300 

significant increase in all immune populations is associated with patient groups relative to controls, 301 

particularly in those patients with an active infection. 302 

Finally, to validate the applicability of ImSig on RNA-Seq data and in the context of tumour biology, 303 

we computed the relative abundance of immune cells in four metastatic melanoma patients for 304 

which single-cell suspensions were collected from lymph nodes. A fraction of the cell suspension was 305 

used to measure cell type proportions by flow cytometry and the other fraction was used for bulk 306 

RNA sequencing. We observed a good agreement (r = 0.91, RMSE = 0.1 and P value = 2.74E-05) 307 

between predictions of relative cell number made using ImSig and experimentally determined cell 308 

numbers (see also Supplementary Fig. S2). This indicates that the relative cell numbers were 309 

accurately predicted for all cell types, as confirmed by the low root-mean-square error (RMSE). 310 

Deconvolution of tissue data 311 

In the context of GCN analyses, the ImSig signatures can be used to identify other context-specific 312 

genes expressed by immune populations. For example, the T cell and macrophage signatures were 313 

correlated with each other, consistent with an immune-mediated inflammatory process, and many 314 

immune-related genes were co-expressed with ImSig genes in the context of the trachoma data (Fig. 315 

3A). The expression profile of genes such as IFNG, LAG3, CD44, FOX03, FOXP3, CD80, IL20, STAT4, 316 

IL17A etc. was correlated with T cell signature genes, indicating that the T cell population included 317 

Th17, Treg and Th1 subtypes (Fig. 3B). Similarly, genes associated with the macrophage signature 318 

contained many classical M1 markers. Network analysis also supports the wider appreciation of the 319 

transcriptional signatures of other cell types present in clinical samples, i.e. when examining the 320 

dataset as a whole, many other GCN clusters can be assigned to other cell populations or processes.  321 

Satisfied with the performance of ImSig in the context of tissue transcriptomics data in general, we 322 

set out to explore its utility in the analysis of transcriptomics data derived from cancer. 323 

Analysis of immune infiltrates in cancer 324 

Our previous analysis of the cancer transcriptome showed that expression signatures of immune 325 

cells can be extracted from large cancer datasets, however, this analysis was not correlated with 326 

outcomes (20). To test the use of ImSig in the study of the tumour microenvironment, the twelve 327 

largest TCGA cancer datasets were examined and hazard ratios were computed between high and 328 

low immune cell infiltrate groups (Fig. 4A). Whilst the survival analysis was not adjusted for 329 

potentially confounding variables (such as tumour stage, grade, age or treatment), the findings were 330 

largely consistent with the literature. In melanoma (SKCM), we reaffirmed the known association 331 

between tumour infiltrating lymphocytes (TIL) and a good prognosis (40,41). Breast cancer (BRCA) is 332 



not as immunogenic as melanoma, but several studies have associated TIL’s with a good prognosis as 333 

observed here (42). A negative association between TIL’s and prognosis was evident in low-grade 334 

glioma (LGG) (43,44) and lung squamous cell carcinoma (LUSC) (45,46) in accordance with the 335 

previous literature. A novel finding was of the potential prognostic value of the interferon response 336 

in low-grade glioma. Another surprising observation was that a high rate of proliferation is 337 

associated with a good prognosis in LUSC and colorectal cancers (COAD). This observation has been 338 

reported previously in colorectal cancer (47), but not in LUSC. Analysis of individual proliferation-339 

related genes in LUSC also supported this observation (log2HR: G2E3- 0.66; MND1- 0.56; CHEK2- 340 

0.53; RFC4- 0.51; CEP192- 0.48; CDKN3- 0.47; CENPA- 0.47; CCND2- 0.47; CDC7- 0.46: p < 0.05). One 341 

possible explanation for this counter-intuitive observation is that the mitotic signal in these tissues 342 

originates from proliferating immune cells, not from cancer itself (48,49).  343 

Extending the analysis above, a molecular subgrouping of melanoma based on ImSig was performed 344 

i.e. only the signature genes were used in the grouping of patient samples. Unsupervised clustering 345 

based on the immune profile revealed five groups of patient samples (Fig. 4B). Clinical features such 346 

as the tissue of origin and tumour type (metastatic or primary) did not affect the subtyping. Nearly 347 

half the patients were in cluster-1, characterised by a low level of immune infiltrate (Fig. 4C). Hazard 348 

ratio (HR) analysis between these low immune (cluster-1) and high immune infiltrate (clusters-2 and 349 

-3) tumours revealed a significant difference in survival (HR: 0.38, p = 3E-9). The median survival of 350 

patients in the high immune group was 10 years greater than that of patients in the low immune 351 

subgroup (Fig. 4D). Within the high immune subgroup, cluster-2 appeared to have a higher level of B 352 

cells and plasma cells in contrast to cluster-3 (Fig. 4C) but overall survival (HR) was not significantly 353 

different between the two groups (Fig. 4D). Cluster-4 samples displayed higher levels of the 354 

interferon response genes and also showed improved survival compared to the low immune group 355 

(Fig. 4D). Finally, patients in cluster-5 had a low immune infiltrate but were enriched for keratin 356 

related genes and presented the worst survival rates (median survival = 2.34 yr). Whilst patients in 357 

clusters-2 and cluster-4 did not show a significant difference in hazard ratio compared to those in 358 

cluster-3, they could potentially show other features, such as differing responses to treatment. 359 

Following an analogous analysis, we were able to reproduce the five patient groupings on an 360 

independent validation dataset (GSE65904) which showed a similar infiltration pattern 361 

(Supplementary Fig. S3A) and survival analysis on the same exhibited similar prognostic pattern 362 

(Supplementary Fig. S3B). High immune and keratin subgroups have been identified and described 363 

previously in melanoma (50,51) but these studies did not describe the type and variation in the 364 

immune infiltrate in melanomas. Our analysis provides a greater degree of granularity as to the 365 



exact nature of the immune landscape of these tumours and consequently improved the prognostic 366 

power. 367 

Use of ImSig in identifying immune cells in single-cell data 368 

To extend these analyses and further validate the ImSig signatures in the context of single-cell data, 369 

we examined single-cell data derived from melanomas (34). The immune component of the 370 

melanoma single-cell analysis included 515 B cells, 126 macrophages, 52 NK cells and 2,069 T cells. 371 

Cell-type specific expression of ImSig markers was observed (P < 7E-15) as illustrated in Fig. 5A. For 372 

each patient, the estimated proportion of immune cells was compared to the true proportion. The 373 

estimated proportion displayed a high degree of concordance with the measured number of cells (p 374 

< 0.05), with the poorest observed correlation being r = 0.97. Randomised permutation analysis with 375 

the same sized gene sets produced no significant correlation (Fig. 5B). Fig. 5C illustrates the 376 

concordance between the measured and estimated number of cells.  377 

The single-cell community depends on gene markers/signatures and clustering algorithms, to define 378 

cell types. Here we have attempted to show the utility of ImSig when used in association of 379 

classification algorithms, such as support vector machine (SVM), to predict cell types from single-cell 380 

RNA-Seq data. To demonstrate such potential for automation, we used the SVM-based 381 

deconvolution tool Cibersort (5) with a reference profile generated with ImSig to predict immune 382 

cells within a single-cell dataset from head and neck tumours (HNSCC) (35). The immune component 383 

of the HNSCC dataset contained 1,473 cells. Prediction using ImSig yielded a high degree of accuracy 384 

for B cells (88.4%), macrophages (98.8%) and T cells (99.8%) (Table 3). 63 immune cells failed to be 385 

categorised into one of the cell types described above (p-value > 0.05). With respect to the other 386 

4,087 cells, i.e. myocytes, mast cells, malignant cells, fibroblast, dendritic cells and endothelial cells, 387 

only 2.2% of cells were misclassified as macrophages, B or T cells. In contrast, Cibersort’s default 388 

blood-derived signature (LM22) showed limited ability to identify immune cell types in these data, 389 

with an accuracy rate for B cells of 15.2%, macrophages, 0% and T cells, 75.3%. However, LM22 390 

signature was not designed to deconvolute single-cell data and its poor performance is likely a 391 

cumulative outcome of using a blood-derived signature and a reference gene matrix based on 392 

microarrays. 393 

 394 

Discussion 395 

Cellular heterogeneity is a hallmark of cancer, both in terms of the tumours themselves and the 396 

normal cells that both support and control their growth. There is now a wealth of transcriptomics 397 

data generated from cancer samples and there have been a number of previous studies that report 398 



approaches to deconvolute these data in an attempt to define the set of cell types present therein. 399 

However, we and others (16) found that immune signatures derived by comparing the expression 400 

profile of immune cells isolated from blood, do not perform optimally when applied to tissue data.  401 

The current work is based on the observation that genes associated with a specific cell population or 402 

biological process form highly connected cliques of nodes (Fig. 1A) when large collections of 403 

transcriptomics data are subjected to network-based correlation analysis (18,52). Whilst the main 404 

goal of this study was to define immune gene signatures for the deconvolution of cancer data, we 405 

have derived ImSig from a range of tissue pathologies and platforms to ensure its applicability across 406 

different data types and sources. Our aim in defining ImSig was to choose the most robustly co-407 

expressed genes for each cell immune cell type directly from the analysis of tissue data, thereby 408 

defining a ‘core’ or invariant cell type-specific signature.  409 

In any given tissue, a gene may be expressed by multiple cell types present therein or a cell type may 410 

not be present, hence the need to explore a wide variety of tissue data. We also chose to include 411 

signatures for interferon signalling, proliferation (mitosis) and translation, as these are commonly 412 

observed co-expression modules in tissue and act as additional controls. Validatory analysis of the 413 

resultant ImSig signatures showed the gene signatures to be highly enriched with appropriate GO 414 

terms (Fig. 1C) and manual inspection of the lists with reference to the literature, also supported the 415 

validity of the selected genes. This was further confirmed by the observed co-expression of the ImSig 416 

signatures across a wide range of datasets not used for their derivation and their average expression 417 

following changes in immune cell numbers, where known, e.g. in trachoma.  418 

As the current study is by no means the first to attempt to define sets of signatures for immune cells, 419 

we sought to compare ImSig with other published signatures, both in terms of gene content and 420 

performance. Definition of cell signatures is not trivial, nor is simple to compare signatures across 421 

studies. In the first instance, the published gene signatures all vary in terms of the number of genes 422 

they include and the cell populations and sub-populations they seek to define. Secondly, there is no 423 

benchmark dataset where the number and nature of immune cells are known in the context of a 424 

tissue environment. Comparison of the signatures showed many to include gene markers only 425 

defined by that study, and where common to more than one study, there was a highly complex 426 

relationship between the assignation of genes to cells across studies; in other words, there is little 427 

consensus across published immune marker lists (Figs. 2A&B). What was apparent is that of all the 428 

signatures, ImSig contained the fewest unique genes (65), suggesting that rather than the gene 429 

content of ImSig being particularly novel, it represents more of a consensus view of other studies, 430 

despite being derived independently from them. The comparison of the performance of signatures 431 



again represented a challenge. Where multiple subtypes of cells were defined, the genes associated 432 

with subtypes were either analysed separately or collapsed into a single signature. We chose to 433 

compare the performance of these summarised signatures in the context of the trachoma dataset, 434 

where we knew all immune cell types to be present and that their relative level increases during 435 

active infection (32). In this context, the degree of co-expression between genes associated with 436 

individual ImSig signatures was in many cases dramatically better than others (Fig. 2C). Furthermore, 437 

the average expression of ImSig signatures mirrored the known increase in immune cell infiltrate 438 

during across patient groups (32) (Fig. 2D). 439 

Ever since the first description of major types of immune cells, researchers have sought to define 440 

sub-types, i.e. sub-populations and activation states associated with different tissues, developmental 441 

stages and pathologies. Whilst heterogeneity amongst immune cell populations undoubtedly exists, 442 

the number of markers that definitively identify them outside of the context of flow cytometry and 443 

immunohistochemical experiments or comparison of isolated populations, is limited. For instance, 444 

tissue macrophages are named differently depending on their tissue of origin (microglia, Kupffer 445 

cells etc.) or activation state (M1, M2 etc.) and in other cases are referred to as dendritic cells 446 

(53,54). Across the previous studies referred to here, signatures for 22 T cell subsets are reported 447 

and this does not include all T cell subsets that are defined in the literature (55). In addition, in a 448 

given pathological state multiple cellular subtypes or populations whose biology is adapted to 449 

different niches are likely to be present. We would argue that it is unrealistic to expect to be able to 450 

categorically identify their individual signatures from bulk tissue data, especially when the 451 

differences between them are more likely to be a spectrum than a series of absolute states (37). 452 

Even amongst different myeloid populations, i.e. monocytes, macrophages and neutrophils, we have 453 

found very few markers that are entirely specific to one population or another, and the markers 454 

selected to define the presence of these populations, do so more by their co-expression than 455 

absolute expression in the context of tissue. 456 

Whilst we suggest that many immune subtype markers are too poorly defined to reliably distinguish 457 

immune cell subsets in the context of transcriptomics data derived from tissue, network analysis can 458 

provide a comprehensive picture of the immune microenvironment. By examination of the genes 459 

that closely correlate with the core signature genes (Fig. 3B), even if one cannot with any degree of 460 

certainty assign their expression to one cell type or another, it is possible to capture the overall 461 

profile the immune microenvironment of a tissue in health or disease. It may after all be the sum of 462 

the individual parts that matter. How one translates these finding into immune subset identification 463 

we leave to the individual analyst, with the cellular subtypes they recognise and the marker genes 464 

that define them. 465 



After satisfying ourselves of the validity of ImSig and its superiority over other signatures in defining 466 

immune populations in tissue data, we used it to analyse a broad spectrum of large transcriptomics 467 

datasets derived from 12 cancer types. In each case, the majority of signature genes were tightly co-468 

expressed, apart from instances where we believe the target cell was not present or there in low 469 

abundance. When the samples for each tumour type were ranked according to their immune cell 470 

content (as defined by the average expression of the signature genes), we were able to demonstrate 471 

a clear variation in the immune microenvironment between tumours and the association of specific 472 

immune cell populations with a good or poor prognoses (Fig. 4A). Despite an established association 473 

between the immune system and survival in melanoma (56), there has been little effort to subgroup 474 

patients based upon specific immune cell types present, previous studies merely defining tumours as 475 

having a high or low immune content (51,57). We, therefore, explored the use of ImSig in the 476 

molecular subtyping melanoma patients. The analysis demonstrated a greater heterogeneity in the 477 

immune infiltrate of melanoma than previously reported (50,51) with tumours that have: high levels 478 

of T cells, macrophages (cluster 3); a high interferon enrichment (cluster 4); and tumours with high B 479 

cell infiltration (cluster 2). This analysis highlights the fact that by treating the immune infiltrate of 480 

tumours as an overall signature, loses the potential to identify prognostically significant subgroups. 481 

In other cases merging the immune infiltrate into one immuno-subgroup might result in opposing 482 

survival differences cancelling each other out, e.g. if T cells were associated with a good prognosis 483 

and macrophages a bad prognosis. Understanding the immune heterogeneity tumours may also be 484 

key in predicting their response to immunotherapy (58,59). 485 

The advent of single-cell transcriptomics and its application to understanding the microenvironment 486 

of cancer promises to facilitate the profiling of all the cells of a tumour as never before possible (60) 487 

and may eventually circumvent the need to deconvolute tissue data, as described here. The 488 

technology to perform these analyses is improving rapidly and may in the future answer many of the 489 

questions about immune cell heterogeneity. However, at the present time, the data available is 490 

limited and the droplet-based RNA sequencing methods being widely used may not provide a 491 

sufficient depth of sequencing to go beyond the identification of cell type. Here we demonstrate 492 

how ImSig was able to define the type and relative abundance of immune cells in single-cell data 493 

derived from melanoma, and head and neck cancer with a high degree of accuracy. This both further 494 

validates the signatures and demonstrates how they may be used in this context. As the quantity 495 

and quality of single-cell cancer datasets improve and we understand the expression profile of these 496 

cells in many contexts is better appreciated, perhaps then reliable markers may be defined that are 497 

able to differentiate between immune subtypes or activation states, specifically in the context of the 498 

tumour microenvironment. 499 



ImSig is the first immune signature to be directly derived from tissue data. Although its gene content 500 

is not necessarily novel in the context of those reported previously, we believe it to be superior to 501 

published immune signatures in terms of being a robust, subtype agnostic means to estimate the 502 

relative abundance of these cells across tissue samples. We also demonstrate the ability of ImSig to 503 

be a powerful companion for the identification of novel biomarkers when applied in the context of 504 

network co-expression analyses. We anticipate that ImSig will prove to be a valuable resource for 505 

studying immune cell variation in tumour samples and how they respond to therapy, aiding in the 506 

discovery of novel predictive biomarkers. 507 

 508 
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Tables 681 

Table-1: Table of ImSig genes (Immune Signatures) 682 

Signature Genes 

B cells 
 

AFF3, BANK1, BLK, BTLA, CCR6, CD180, CD19, CD22, CD37, CD72, CD79A, CD79B, 
CR2, EBF1, FAM129C, FCRL1, FCRL2, FCRL3, FCRL5, FCRLA, HLA-DOB, IGHV5-78, 
KIAA0125, LINC00926, LOC100507616, LY9, MS4A1, P2RX5, PAX5, PNOC, POU2F2, 
S1PR4, SNX22, STAP1, TCL1A, TLR10, VPREB3 

T cells 
 

AMICA1, APBB1IP, ARHGAP15, ARHGAP25, ARHGAP9, BIN2, BTK, C1orf162, CCL19, 
CCR7, CD2, CD27, CD28, CD3D, CD3E, CD3G, CD48, CD52, CD6, CD8A, CD96, 
CORO1A, CRTAM, CXCL9, CXCR6, CYTIP, DOCK10, DOCK2, DOCK8, DPEP2, EVI2A, 
EVI2B, FAM26F, FLI1, FYB, FYN, GAB3, GIMAP2, GIMAP4, GIMAP5, GIMAP6, 
GIMAP7, GMFG, GPR171, GPR18, GZMK, HCST, HMHA1, HVCN1, ICOS, IL10RA, IL16, 
IL23A, IL7R, ITGAL, ITK, KLHL6, KLRB1, LCP1, LY86, NCF1B, NLRC3, PARVG, PRKCH, 
PSTPIP1, PTPRCAP, PVRIG, RASSF5, RCSD1, RGS18, RHOH, SASH3, SH2D1A, SIRPG, 
SLA, SP140, TARP, TBC1D10C, TNFRSF9, TRAC, TRAF3IP3, TRAT1, TRGC2, TRGV9, 
UBASH3A 

Macrophages 
 

ADAMDEC1, ADORA3, AOAH, ARRB2, ATP8B4, BCL2A1, C1orf54, C1QA, C1QB, C2, 
C3AR1, C5AR1, CCR1, CCRL2, CD163, CD300A, CD4, CD68, CD74, CD86, CECR1, 
CLEC7A, CMKLR1, CSF1R, CTSB, CTSS, CYBB, CYTH4, DPYD, EMR2, FCER1G, FCGR1A, 
FCGR1B, FCGR2A, FCGR3B, FPR3, GPNMB, HK3, HLA-DRB6, IFI30, IGSF6, ITGAM, 
ITGAX, ITGB2, LAIR1, LAPTM5, LILRB4, LIPA, LY96, MAN2B1, MFSD1, MNDA, 
MS4A4A, MS4A7, MSR1, MYO1F, NCKAP1L, NPL, NR1H3, PLA2G7, PLEKHO2, 
SCPEP1, SLAMF8, SLC15A3, SLC31A2, SLCO2B1, SNX10, SPI1, TBXAS1, TLR8, 
TMEM140, TNFAIP2, TNFRSF1B, TNFSF13B, TRPV2, TYMP, TYROBP, VSIG4 

Monocytes 
 

AGTRAP, AIF1, C10orf54, CD14, CD300LF, CD33, CD93, CTSD, EMILIN2, FCN1, FES, 
FGR, GNS, GRN, HCK, HMOX1, KIAA0930, LILRA6, LILRB2, LILRB3, LRRC25, LST1, 
NFAM1, NOTCH2, PILRA, PLXDC2, PRAM1, PSAP, PYCARD, RHOG, SERPINA1, SLC7A7, 
TGFBI, THEMIS2, TIMP2, TPP1, VCAN 

Neutrophils 
 

ACSL1, ALPK1, AQP9, BASP1, BCL6, CD97, CEP19, CFLAR, CSF3R, CXCR2, DENND5A, 
DYSF, FAM65B, FCGR2C, FPR1, GLT1D1, GPR97, IFITM2, IL17RA, KCNJ2, KIAA0247, 
LILRA2, LIMK2, LINC01002, MGAM, MOB3A, NAMPT, NCF4, PADI2, PHC2, PHF21A, 
PLXNC1, PREX1, RALB, RNF149, S100A8, S100A9, SLC25A37, SNORD89, SSH2, STAT3, 
STAT5B, THBD, TLR2, TLR4, TMEM154, TNFRSF1A 

NK cells 
 

KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DS1, KIR2DS2, KIR2DS3, 
KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3, KLRC2, KLRC3, KLRC4, KLRD1, PRF1, SAMD3, 
SH2D1B, TBX21 

Plasma cells 
 

GUSBP11, IGH, IGHG3, IGJ, IGKC, IGKV1D-13, IGLC1, IGLJ3, IGLL3P, IGLV@, IGLV1-44, 
MZB1, TNFRSF17, TXNDC5 
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Table-2: Table of ImSig genes (Pathways Signatures) 690 

Interferon 
 

APOL1, APOL6, BATF2, BST2, C19orf66, C5orf56, CMPK2, DDX58, DDX60, DHX58, 
DTX3L, EPSTI1, FBXO6, GBP1, GBP4, HELZ2, HERC5, HERC6, HSH2D, IFI16, IFI35, 
IFI44, IFI44L, IFI6, IFIH1, IFIT1, IFIT2, IFIT3, IFIT5, IFITM1, IRF7, IRF9, ISG15, LAMP3, 
LAP3, MX1, MX2, OAS2, OAS3, OASL, PARP10, PARP12, PARP14, PARP9, PHF11, 
PML, PSMB9, RNF213, RSAD2, RTP4, SAMD9, SAMD9L, SHISA5, SIGLEC1, SP110, 
STAT1, STAT2, TAP1, TRAFD1, TRIM21, TRIM22, TRIM5, UBE2L6, USP18, XAF1, 
ZNFX1 

Proliferation 
 

ANLN, ASPM, AURKA, AURKB, BIRC5, BUB1, BUB1B, CASC5, CCNA2, CCNB1, CCNB2, 
CCNE2, CDC20, CDC6, CDCA2, CDCA3, CDCA5, CDCA7, CDCA8, CDK1, CDKN3, CDT1, 
CENPA, CENPE, CENPF, CENPL, CEP55, CKS1B, DEPDC1, DEPDC1B, DLGAP5, 
DONSON, DTL, E2F8, ECT2, EZH2, FAM72C, FANCI, FBXO5, FOXM1, GINS1, GINS2, 
GMNN, HJURP, HMGB3, HMMR, KIAA0101, KIF11, KIF14, KIF15, KIF18B, KIF20A, 
KIF2C, KIF4A, MAD2L1, MCM10, MCM2, MCM4, MCM6, MELK, MKI67, MND1, 
MTFR2, NCAPG, NCAPG2, NDC80, NEK2, NUF2, NUSAP1, OIP5, PARPBP, PBK, PCNA, 
PLK4, POLE2, POLQ, PTTG1, RACGAP1, RAD51, RAD51AP1, RRM1, RRM2, SHCBP1, 
SKA1, SMC2, SPC25, STIL, STMN1, TCF19, TK1, TOP2A, TPX2, TRIP13, TTK, TYMS, 
UBE2C, UHRF1, ZWILCH, ZWINT 

Translation 

EEF1A1, EEF1B2, EEF1D, EEF1G, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3K, FAU, 
GNB2L1, NACA, PFDN5, RPL10, RPL10L, RPL11, RPL12, RPL13, RPL13A, RPL14, 
RPL15, RPL17, RPL18, RPL18A, RPL19, RPL21, RPL22, RPL23, RPL23A, RPL24, RPL27, 
RPL27A, RPL28, RPL29, RPL3, RPL30, RPL31, RPL32, RPL34, RPL35, RPL35A, RPL36A, 
RPL37, RPL37A, RPL38, RPL39, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPLP0, 
RPLP2, RPS10, RPS11, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, 
RPS2, RPS20, RPS21, RPS23, RPS25, RPS27A, RPS28, RPS29, RPS3, RPS3A, RPS5, 
RPS6, RPS7, RPS8, RPS9, RPSA, SNHG6, SNHG8, SNRPD2, UXT 

 691 

Table-3: Identification of immune cells within single-cell data. ImSig was used in conjunction with 692 

the SVM based classifier Cibersort, to identify immune cells within the head and neck tumour 693 

(HNSCC) single-cell data. The table shows the accuracy of identification. 63 immune cells were 694 

unassigned as its p-value was greater than 0.05. 695 

 Cells Correct 
prediction 

Wrong 
prediction 

Accuracy 
(%) 

Error 
(%) 

B cells 122 16 88.4 11.6 

Macrophages 84 1 98.8 1.2 

T cells 1185 2 99.8 0.2 

Other cells (4087 
cells) 

  93   2.3 

 696 

Figure Legends 697 

Figure 1: Derivation of ImSig. (A) An illustrative example of a correlation network generated from a 698 

tissue dataset where nodes represent unique genes and edges represent correlations between them 699 

above a defined threshold. Groups of nodes sharing the same colour represent gene modules 700 

(obtained by MCL clustering), those highlighted being associated with a given immune cell type or 701 

biological process. (B) Example plots from the approach used to refine the gene signatures. Blue 702 



points represent genes that were kept, i.e. they were highly correlated with other genes in the 703 

preliminary signature and red represents genes that were discarded. This approach was applied to 704 

eight tissue datasets (only 2 shown here), the most robustly coexpressed genes across the datasets 705 

being used to define ImSig. (C) Bar plot depicting the number of genes within each marker gene 706 

signature comprising ImSig and the top GO enrichment term for each signature. 707 

Figure 2: Comparison of ImSig with other published signatures. (A) Chord diagram showing the 708 

overlap between marker genes across studies. In most studies, a significant proportion of genes 709 

were unique to the signatures defined by them, while ImSig showed the best overlap (81%) with 710 

other studies. (B) Network diagram showing the relationship between T cell subtype-specific genes 711 

among six studies and ImSig. Only genes that were present in two or more studies are represented 712 

(98 genes i.e. 13.4%) for this plot. Nodes are sized relative to the number of shared genes between 713 

one signature and others. ImSig was found to be inclusive of genes describing various subtypes and 714 

was the most conserved set among all studies compared. (C) Heatmap of the median correlation 715 

between genes from published signatures as assessed in the context of the trachoma dataset 716 

(GSE20436). Where a cell type signature was split into subsets, subset signatures were combined to 717 

represent the parent population. The median correlation values of signatures without combining 718 

them into parent population is also available (Supplementary Table S4). (D) Bar plots of the average 719 

expression of signature genes (estimated relative abundance) across the dataset, each bar 720 

representing the average expression of signature genes in an individual patient sample. Samples are 721 

ordered according to T cell content, low-high, (left-right) and this order is maintained for other plots. 722 

Figure 3: Coexpression of other immune genes with ImSig core signatures. (A) Correlation network 723 

of genes associated with the immune clusters during trachomatis infection. ImSig genes are coloured 724 

according to the different immune cell types they represent, while the genes co-clustering with the 725 

ImSig immune genes are shown as nodes without colour and reduced in size. Highlighted with a 726 

greater node size and label are a few well known immune modulatory genes present in the 727 

immediate vicinity of the signature genes. (B) Bar plots of the average expression intensity of a few 728 

well known immune modulatory genes across the three patient groups.  729 

Figure 4: Application of ImSig to tumour data. (A) Prognostic map of 12 cancer types based on 730 

immune cell content. The average expression of each ImSig signature was calculated for each 731 

sample/tumour type. Samples were then ordered according to each signature (low-high, black plot 732 

in each square) and the hazard ratio calculated between the lowest and highest expressing samples. 733 

Blue represents a good prognosis with increased expression of the signature genes and red a poor 734 

prognosis. * = a HR P-value < 0.05. BCLA-Bladder Urothelial Carcinoma, BRCA-Breast invasive 735 



carcinoma, COAD-Colon adenocarcinoma, HNSC-Head and Neck squamous cell carcinoma, KIRC-736 

Kidney renal clear cell carcinoma, LGG-Brain Lower Grade Glioma, LUAD-Lung adenocarcinoma, 737 

LUSC-Lung squamous cell carcinoma, PRAD-Prostate adenocarcinoma, SKCM-Skin Cutaneous 738 

Melanoma, THCA-Thyroid carcinoma, UCEC-Uterine Corpus Endometrial Carcinoma. (B) Sample-739 

sample correlation plot based on expression of ImSig genes in melanoma patients and clustered 740 

using MCL algorithm. Here every node is a patient and the edges correspond to the correlation 741 

between them. (C) Expression profile of ImSig related genes within the various clusters/grouping as 742 

defined in B. Here the y-axis is the average expression of the signature genes and x-axis are the 743 

patient groupings as shown in B. (D) Univariate Cox proportional analysis between the patient 744 

groups as defined in B. 745 

Figure 5: Validation of ImSig using single-cell RNA-seq data from melanoma samples. (A) The 746 

immune component of the melanoma single-cell data displayed as a correlation network, each node 747 

representing a cell from melanoma. Box plots display the average expression of cell type-specific 748 

ImSig genes in their respective cell types compared to the average expression of other ImSig genes. 749 

Process-specific ImSig signature genes (proliferation, interferon and translation) were omitted in this 750 

analysis. (B) Linear regression plots showing the concordance between the estimated and measured 751 

abundance of immune cells in ten patients. For five patients (P1, P3, P5, P7, P9), the regression line 752 

was also calculated using a random set of genes to highlight the specificity of ImSig genes. (C) 753 

Stacked bar plots showing the concordance between measured and estimated proportions of 754 

immune cells. 755 
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