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A model of operant learning based on chaotically

varying synaptic strengthI

Tianqi Weia,b,∗, Barbara Webba

aSchool of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8
9AB, United Kingdom

bSchool of Engineering, University of Edinburgh, King’s Buildings, Alexander Crum
Brown Road, Edinburgh, EH9 3FF, United kingdom

Abstract

Operant learning is learning based on reinforcement of behaviours. We pro-
pose a new hypothesis for operant learning at the single neuron level based on
spontaneous fluctuations of synaptic strength caused by receptor dynamics.
These fluctuations allow the neural system to explore a space of outputs. If
the receptor dynamics are altered by a reinforcement signal the neural sys-
tem settles to better states, i.e., to match the environmental dynamics that
determine reward. Simulations show that this mechanism can support oper-
ant learning in a feed-forward neural circuit, a recurrent neural circuit, and a
spiking neural circuit controlling an agent learning in a dynamic reward and
punishment situation. We discuss how the new principle relates to existing
learning rules and observed phenomena of short and long-term potentiation.

Keywords: Dynamic Synapse, Operant learning, Chaos, Receptor
Trafficking

1. Introduction1

Operant learning (also called operant conditioning or instrumental con-2

ditioning) is a type of learning in which a new behaviour is increased, or an3

existing behaviour is suppressed, by pairing it with reward or punishment.4

For example: (a) In a Skinner box, when a rat occasionally presses a lever, it5
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gets some food. After a while, it increases the rate of lever pressing (Jensen,6

1963). (b) In a flight simulator, a fruit fly is heated when it generates yaw7

torque to one side and released from heat when it generates yaw torque to the8

other side. In minutes the fly learns to maintain its torque in the range that9

is without punishment (Wolf and Heisenberg, 1991) . (c) When an Aplysia10

produces a bite, the esophageal nerve can be stimulated in vivo to mimic the11

food signal. After training, it produces more bites than a yoked control that12

has received the same stimulation without the coupling to its own actions13

(Cash and Carew, 1989; Brembs, 2003).14

Some of this research, e.g. in Aplysia (see review in Nargeot and Sim-15

mers (2011)), implies that mechanisms at the single neuron level can play16

important roles in operant learning. There are some existing single neuron or17

synapse models intended to account for operant learning. For example, the18

Hedonistic Synapse is a spike-based synapse model with stochastic synap-19

tic transmissions, where the probability of transmitter release (the synaptic20

strength) is updated continuously according to the correlation between the21

transmitter fluctuation and a reward signal (Seung, 2003). Learning models22

based on modulated spike-timing-dependent plasticity (MSTDP) have also23

been applied to operant learning, using a reward signal to alter the weight of24

synapses that have been tagged by STDP as contributing to the output that25

produced the reward (for a review, see Frémaux et al. (2010)). These models26

only apply to spiking neural networks, and moreover, they have to introduce27

some arbitrary mechanism, such as a random number generator, to explore28

output space (i.e. generate different actions). Use of random number gen-29

erators leads to the exploration of discrete output spaces with ever-present30

unpredictability.31

An alternative option for generating exploration of the output space is32

chaos. Chaotic motion, which is a type of irregular motion that can exist in33

simple systems, has very complex, unpredictable and ergodic solutions (Tél34

et al., 2006; Eckmann and Ruelle, 1985). Chaos is widely found in biological35

systems (for a review, see Cavalieri and Koçak (1994)), including neurons36

and neural circuits. In a neuron, the dynamics of membrane potential and37

ion flows can be chaotic, as has been verified in several models, such as38

Nobukawa et al. (2014), Storace et al. (2008) and Canavier et al. (1990), and39

observed in the Nitella intermodal cell (Hayashi et al., 1983). Simulations40

of neural circuits also show chaos can exist at the circuit level, e.g. Sussillo41

(2014) and Angulo-Garcia and Torcini (2014). A chaotic system can be a42

source to generate unpredictable, continuous and ergodic actions for operant43
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learning or reinforcement learning. This idea has been applied to algorithms44

for robot learning, such as a Fish-Catching Robot that uses a chaotic gener-45

ator for unpredictable motion planning to avoid fishes adapting to repetitive46

motions (Inukai et al., 2015) and a hexapod robot with a chaotic Central47

Pattern Generator (CPG) that produces chaotic signals for exploration of48

new motions to free its leg from a hole in the floor (Steingrube et al., 2011).49

The signals generated by a chaotic process are more continuous and more50

suitable for controlling a robots (or animals) interaction with the physical51

world than the signals generated by a random number generator, which are52

usually discrete white noise. Chaos in a physical system usually results in a53

more continuous and smooth variation of states than a random system. This54

property allows a transient delay of reward and modulator, which is common55

in learning in the real world. In principle, continuous and smooth trajectories56

can be obtained from a random number generator using interpolation, but,57

unlike chaos, the system will be predictable during the interpolation.58

Although chaos is widely found in biological systems, the potential for59

chaos in synaptic dynamics and how this could support learning has not60

been previously considered. Here, we hypothesise that the following ‘Dy-61

namic Synapse’ mechanism could underly operant learning (Fig 1). A neuron62

(Fig 1 (left)) has multiple input synapses, for which the synaptic strengths63

spontaneously fluctuate with uncorrelated phases (Fig 1 (right) green curve)64

around the centre of oscillation (Fig 1 (right) blue curve). We argue in more65

detail below that this could be caused by receptor trafficking. The neuron66

recieves inputs (e.g. from sensors or other neurons), and the inputs are multi-67

plied by the synaptic strengths, summed up and passed through a non-linear68

function to determine the output. The output of the neuron causes some69

outcome (e.g. for an agent in an environment) which results in release of a70

neuromodulator according to a value function (Fig 1 (right) red curve). The71

modulator acts to bias the centre of the synaptic strength oscillation towards72

the instantaneous synaptic strength, and to decrease the amplitude of oscil-73

lation. Thus the synaptic strengths will converge to match the input-output74

properties of the neuron to the value function.75

Is there a plausible biological mechanism that could produce the hypoth-76

esised synaptic strength fluctuation? The number of neurotransmitter recep-77

tors (from now on we will refer simply to receptors) embedded in the mem-78

brane of a post-synaptic dendritic spine is a key factor in synaptic strength79

(Sheng and Hoogenraad, 2007). Enlargement of a dendritic spine increases80

its capacity for anchoring structure, including scaffold proteins and cytoskele-81
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Figure 1: Basic concept of how operant learning works with a Dynamic Synapse. (Left):
A neuron has multiple inputs, and its output is the sum of the inputs multiplied by
the synaptic strengths, passed through a non-linear function. Because the synapses are
dynamic, their values continuously change, and thus the output will explore a space of
possible outputs. A value function on the output controls the release of a modulator
which alters the synaptic strengths. (Right): Illustrating the dynamic synaptic strength
of one synapse. During learning, the centre of synaptic strength oscillation is shifted
towards the instantaneous synaptic strength that coincides with increased modulator, e.g.,
as illustrated, the modulator (red) is high when the instantaneous strength (green) is high,
so the centre of synaptic strength is gradually increased (blue). The modulator also affects
the damping of the oscillation, so the amplitude of oscillation decreases, and the learning
can converge. An observer can infer the effective synaptic strength by low-pass filtering
on the instantaneous synaptic strength (black) but note this is only an approximation of
the actual centre of oscillation which cannot be directly observed.
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Figure 2: Decoupling between changes in spine size and synaptic strength under certain
conditions. The membrane is formed mainly by the lipid bilayer and proteins. Cytoskele-
ton supports the shape of the dendrite spine. There are two forms of receptor trafficking.
Lateral movement of receptors is observed as Brownian motion on the membrane. Endoso-
mal trafficking carries receptors driven by motor protein along the cytoskeleton. Scaffold
proteins can help receptors to anchor, increasing the capacity of the dendrite spine to
hold the receptors. On the left, the size of neural spine stays the same, but the synaptic
strength (number of receptors) varies. On the right, the size of dendrite spine varies, but
the synaptic strength stays the same. Modified from Cingolani and Goda (2008)

ton, and thus the number of neurotransmitter receptors it can accommodate82

(Allison et al., 1998). However, the size and the capacity are not closely83

coupled (Cingolani and Goda, 2008). As shown in Fig 2, under certain con-84

ditions, synaptic strength can change without changes in spine size, and spine85

size can change without changes in synaptic strength.86

The number of receptors in the membrane of a spine is also affected by two87

broad types of movement between synaptic and non-synaptic pools: lateral88

movement, which is mainly passive diffusion on the cell membrane; and endo-89

somal trafficking, which is active transportation (Lau and Zukin, 2007). The90

lateral movement is affected by the cytoskeleton, which restricts or guides the91

diffusion (Jaqaman et al., 2011). In particular, the actin cytoskeleton has an92

active contribution to the regulation of postsynaptic receptor mobility both93
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in and out of synapses (Cingolani and Goda, 2008). The endosomal traf-94

ficking includes endocytosis of receptors from cell membrane to endosome,95

intracellular transportation of endosome, and exocytosis of receptors from96

endosome to the cell membrane (Roth et al., 2017). Endosomal trafficking97

can recycle receptors, transporting them between different regions (Petrini98

et al., 2009). There are also ongoing processes of receptor synthesis and99

degradation (Triller and Choquet, 2005).100

The timescale of these receptor dynamics can be relatively fast. Recep-101

tors move from synaptic to extrasynaptic regions and vice versa usually with102

periods of up to a few minutes (Triller and Choquet, 2005). The size of a103

post-synaptic dendrite spine and the amount of actins in it oscillate in a time104

scale from tens of seconds (in immature dendrite spine) to a half hour (in a105

mature synapse)(Koskinen and Hotulainen, 2014; Honkura et al., 2008). Re-106

ceptors anchored to the actin cytoskeleton (Hausrat et al., 2015) can move107

with the actin flow (Sergé et al., 2003). Post-synaptic receptor dynamics have108

been modelled at a mesoscopic level treating the regulation of numbers of the109

receptors and scaffold proteins as quasi-equilibrium based on thermodynamic110

theory (Sekimoto and Triller, 2009). The model proposed in Haselwandter111

et al. (2011) describes formation and stability of synaptic receptor domains112

as a reaction-diffusion system. We note these models are dynamic, but not113

chaotic. We propose i) that the complexity of post-synaptic dynamics (Cho-114

quet and Triller, 2013), especially receptor trafficking (Triller and Choquet,115

2005) can support chaos and ii) that this can provide a mechanism for oper-116

ant learning as described in Fig 1.117

It is notable that dopamine has been shown to affect the same receptor118

trafficking dynamics (Sun et al., 2008). This supports the possibility that, in119

an operant learning paradigm, the relationship between the current synaptic120

strength (changing chaotically due to receptor trafficking) and a reward (sig-121

nalled by neurotransmitter release) is a basis for learning.The possible role of122

alteration in postsynaptic receptor distribution and size of dendritic spines in123

learning (particularly in short-term and long-term potentiation (STP & LTP)124

protocols) is well established (Isaac et al., 1995; Kauer et al., 1988; Shepherd125

and Huganir, 2007). In Shouval et al. (2002), Shouval et al. proposed a126

thermodynamic model of AMPA receptor endosomal trafficking to explain127

bi-directional synaptic strength variation during LTP and long-term depres-128

sion (LTD). Xie et al. (1997) proposed a synapse level model in which AMPA129

receptors are attracted toward NMDA receptors during STP, and some of the130

AMPA receptors become anchored near the NMDA receptors while others131
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diffuse again during LTP. The plausibility that such changes in receptor dis-132

tribution could alter synaptic efficiency has also been demonstrated (Allam133

et al., 2015).134

In the learning model presented here, we do not include any Hebbian135

process (see discussion). Instead, we allow chaotic synapses in a neuron to136

explore possible synaptic strengths; the neuron thus becomes a function on137

its inputs with chaotic coefficients, generating unpredictable output signals138

to explore action spaces. If the consequences of the action are reflected in a139

reinforcement signal delivered to the synapses, the parameters of the chaos140

can be altered to centre around synaptic strengths that optimise the output.141

We show through simulation the learning functionality of such a system in142

several different scenarios.143

2. Result144

Our model simplifies the structure of a neuron to consist of multiple input145

synapses and a dendrite, which together comprise the dendritic tree (Fig 3).146

We do not model the soma and axon of the neuron but simply calculate the147

somas input as the sum (across the dendritic tree) of the synaptic inputs148

multiplied by their respective synaptic strengths, then calculate the somas149

output by passing the input through a non-linear function. The number of150

receptors in a synapse represents the synaptic strength of the synapse. Re-151

ceptors in the dendrite do not contribute any synaptic strength. Because of152

the receptor trafficking dynamics, the synaptic strength fluctuates sponta-153

neously. In the methods we provide an abstracted mathematical model for154

receptor trafficking, but summarise here the key properties needed to support155

learning:156

1. Spontaneously and smoothly varying synaptic strength wi around an157

oscillation centre wci;158

2. The phases of the oscillations are not locked159

3. The oscillation centre wci and amplitude depend on properties of the160

dendrite tree that can be altered by a learning signal.161

When a neuron or network of neurons with such synapses produces out-162

put in a way that meets a specific requirement (given by a value function),163

modulator representing reward is released. The modulator affects the cen-164

tre of synaptic strength oscillation, which shifts towards the instantaneous165

synaptic strength at the time of the modulator release. The simplest way166
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Figure 3: (Left) A dendrite tree consists of a dendrite (in dark brown) and multiple
synapses (in light brown). (Right) A schematic diagram of the dendrite tree. Receptors
can move between dendrite and synapse to dynamically modify the synapse strength wi

around some centre Wci.

to implement this is as a learning rule depends only on the current cen-167

tre of synaptic strength oscillation, the instantaneous synaptic strength and168

amount of the modulator:169

ẇci = kw(wi − wci)nM (1)

where nM is amount of the modulator, and kw is a coefficient controlling170

the learning rate. By this learning rule, a circuit with dynamic synapses171

can conduct operant learning, as the instantaneous synaptic strength is near172

or in the range that satisfy a criterion when modulator is released (note in173

the experiments that follow we use a slightly altered rule (equation 23 in174

Methods) to compensate for a biased drift in synaptic strength). To allow175

learning to converge, the learning rule should also reduce the oscillation am-176

plitude (equation 24). Conceptually, we relate the centre of oscillation to the177

capacity of a dendritic spine to hold receptors (Fig 2; and the amplitude of178

oscillation to the damping of the receptor movement dynamics. We assume179

these can result from changes in spine size or to the scaffold cyto-skeleton180

complex, but do not model these explicitly.181

2.1. Simulation of a dendrite tree182

In Fig 4, we show in simulation that our receptor trafficking model pro-183

duces apparently chaotic and unpredictable oscillation of the synaptic weights.184

The simulated dynamic synapse system has six synapses, and the trajectory185

of the first three is plotted: it can be seen that it samples relatively evenly186

in the space of synaptic weight values. Fig 4 (right) shows how the range of187

exploration can be controlled. If the damping factor of a synapse increases,188

oscillation in the corresponding dimension of the plot will be narrower. If the189

capacity of a synapse changes, the centre of oscillation of the corresponding190
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dimension in the plot will translate. These properties are the basis of the191

principle by which the system can learn and converge. In this example, the192

periods of the oscillations are from 10 s to 20 s. With different parameters,193

the periods can be in a different range, such as in tens of minutes or hours,194

and the oscillations still appear chaotic after the equivalent of several days of195

simulated time. It is important for learning in our model that the synaptic196

dynamic timescale matches the causal dynamics of the learning situation.197

That is, when the reward is delivered, the state of the synapse should still198

be near the state that caused the action that resulted in reward. However,199

the timescale cannot be too long or else the generation of new actions will be200

limited, and the learning might converge to a local minimum. We note there201

may be other factors that produce unpredictable synaptic strengths, such as202

Brownian movement of receptors due to thermal noise, but suggest that these203

may be subsumed within the higher level dynamics described above, and it204

is not necessary to include them as a source of noise to support learning.205

2.2. Applying learning in a simple linear example206

In this experiment we test learning in a single neuron with reward pro-207

vided when the output is higher than a threshold and increasing. The neuron208

is a linear neuron, i.e. its output is the sum of the product of input values209

and their synaptic strengths. During the simulation, the input values of210

the neuron are constants ranging from 0-5 as shown in Fig 5. The reward211

function is:212

nm =

{
km1 ẏ(y − y0) if ẏ > 0 ∧ y − y0 > 0

0 otherwise
(2)

where nm is the amount of modulator, km1 a coefficient, y the output of213

the neuron, and y0 a threshold of y to trigger the release of modulator.214

Fig 6 (a) shows the instantaneous synaptic strengths, and the labels of215

lines show the constant input value of corresponding synapses. The equi-216

librium synaptic strengths, which are also average synaptic strengths, are217

shown in Fig 6 (b). Note that the later equilibrium synaptic strengths have218

the same ordering from highest to lowest as input strengths. The neuron has219

a fixed total of receptors, for which it finds an efficient distribution across220

the synapses to maximise. Fig 6 (c) shows the output of the neuron. In the221

first half of the learning process, the output decreased a little because the222

initial value is high but not stable. In the second half, the output gradually223
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Figure 4: Trajectories of synaptic strengths. (Left): all synapses have the same damping
factors. (Right): synapse one has a higher damping factor than others. (a) & (b) show
the change over time of the synaptic strengths (the proportional number of receptors in
each synapse); (c) & (d) plot the trajectory formed by the first three synapses (for (d)
the synapse on the X-axis has higher damping); (e) & (f) are Poincaré maps, i.e., sections
of (c) and (d) when the instantaneous synaptic strength passes the plane defined by the
centre of oscillation for one synapse (blue and green are for two different directions, and
time of intersection is indicated by the intensity). It can be seen that synaptic strength
oscillates chaotically and unpredictably, tracing out a search space. With higher damping
factors, the amplitude of the oscillation for that synapse is decreased, reducing the search
space. The periods of the oscillations can be different with different parameters.
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Figure 5: A linear neuron with dynamic synapses and several constant inputs. Its output
is the sum of the inputs, each weighted by the respective synaptic strength.

increased. Fig 6 (d) shows the trajectory of first three synaptic strengths.224

The trajectory starts by exploring a large volume then gradually converges.225

2.3. Tuning the period of a central pattern generator226

A Central Pattern Generator (CPG) is a type of Recurrent Neural Net-227

work (RNN) which exists in many animals to control rhythmic motions, such228

as walking and heartbeat. It is also applied in legged robot control as an alter-229

native to explicit motion planning (Ijspeert, 2008; Xia et al., 2017). However,230

online training of a CPG is difficult. People often have to tune it by hand231

or by offline parameter optimisation, such as brute force search or Genetic232

Algorithms. Our approach has a potential advantage in tuning or training a233

CPG because it can train a CPG online. This experiment shows an example234

of tuning a CPG to change its period. The CPG model is modified from235

the model described in Mori et al. (2004). The CPG is symmetric, and the236

synapses are replaced by Dynamic Synapses (as shown in Fig 7). The initial237

values of dynamic synaptic strengths were set to be the original synaptic238

strengths, and the initial amplitude of oscillation of synaptic strengths are239

scaled by an exponential function to be in the nearby order of magnitude of240

the original synaptic strengths.241

wicpg = wi0β
wi−0.5 (3)

where wiCPG
is CPG synapses weights, wi0 the ith initial synaptic weight of242

the CPG, β is a base of exponentiation that scales the weights. As the CPG243

is symmetric, in the model, the state of dynamic synapses of one neuron is244
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Figure 6: Simulation results of the simple linear example. The value function determining
modulator release is that the output is higher than a threshold and increasing. (a) The
instantaneous synaptic strengths, the labels of lines show the input value of corresponding
synapses (b) the central synaptic strengths (c) the output value of the neuron (d) trajectory
of the first three synaptic strengths. Note that the statistical output value starts to increase
after unstable initial fluctuation. At the end of the learning, the centre of the oscillation
of the synaptic strength shifts so that the order of strengths is the same as the order
of the input values, and the synaptic strength of the synapse with highest input value
increased while the others declined, which is the most efficient way to get higher output
with conservation of the total number of receptors.
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Figure 7: A CPG with the learning rule. Two neurons with spontaneous firing inhibit
each other’s firing alternately. The simulation aims to tune the period of oscillation, using
the same operant learning rule to alter the synaptic strengths.

a mirror of the other one. When the output of the CPG crosses zero, the245

error between the target period and the actual period is calculated, and the246

modulator is released at a speed that is proportional to the decline of the247

error compared with the previous error. If the error increased, no modulator248

is released:249

εi = ωi − ωobj (4)
250

nmi
=

{
km2(|εi−1| − |ε|) if |εi−1| − |ε| > 0

0 otherwise
(5)

where ωi is the period of the CPG from ith to i+ 1 th zero crossing, ωobj the251

target period, εi is the error between them, nmI
the amount of modulator252

released.253

The CPG originally had a period of about 0.5 seconds. The target254

of training is to alter the period to be 2 seconds by tuning the synaptic255

strengths. The results are shown in Fig 8. Using the same operant learn-256

ing rule as before, the period of the CPG converges to the target period.257

The period of the output of CPG and the synaptic strength is nonlinear258

and dynamic synapses have no prior knowledge of the CPG, but the simple259

neural circuit still finds and learns the parameters of the target effectively.260

The experiment shows that the Dynamic Synapse can be applied to an RNN261

without requiring any specific analysis of the properties of the network.262

2.4. Reinforcement learning in Puckworld263

The Dynamic Synapse model was tested in a game named PuckWorld,264

available as part of the Python Learning Environment. The game has a265

planar environment with three agents (Fig 9): a player that is controlled by266

a reinforcement learning algorithm, a reward source that changes its location267
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Figure 8: Results of tuning CPG with Dynamic Synapse. (a) Before learning the period
of oscillation is about 500ms. (b) After learning the period of oscillation is about 2000ms.
(c) The instantaneous synaptic strengths before scaling by the exponential function. As
the model is symmetric, the two neurons share same states of dynamic synapses. Hence,
only two synapses are plotted. Same in (d) and (e). (d) The centre of synaptic strength
oscillation before scaling by the exponential function. (e) The error between the period
of the output of the CPG and the target period during simulation. (f) the trajectory of
chaotic exploration of the synaptic strength, which converged on the bottom left.
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Figure 9: The environment of PuckWorld. The green point is the reward source, the blue
point is the player, the red point is the punishment source, and the dark magenta circle is
the range the punishment source effects.

after a specific period, and a punishment source that chases the player and268

decreases the reward if the player is within a specific range of the punishment269

source.270

In the game, the player can move in 4 directions: left, right, down and up.271

The states of the player and the environment can be observed (Fig 10). The272

states are the velocity of the player, the locations of the player, the position273

of the reward source and the position of the punishment source. The states274

are pre-processed then used as sensor input. In this instance, the sensory275

inputs are the velocity of the player, the distance to the reward source, and276

the shortest distance the player is from the edge of the range of the punish-277

ment source (the distance to escape). As the game codes the states using an278

absolute coordinate system, the player does not have orientation. To trans-279

form the potentially negative values and direction of distance information280

in absolute coordinates into positive sensor values, the player is assumed to281

have sensors in 4 directions that correspond to the positive and negative282

directions of the x- and y-axis of the coordinate system, and the sensor on283

the side of the agent information coming from is positive, while the other284

side is zero (Fig. 10). As the player has a symmetric structure, the neural285

circuits are designed in a symmetric structure: four integrate-and-fire motor286

neurons control the motion in the four directions, respectively. Each neuron287

gets three types of sensory inputs (as outlined above) in the four directions.288

Each sensory input feeds into the neuron through a dynamic synapse. Also289

because of the symmetry of the structures and motions, to simplify and accel-290

erate the training, the dynamic synapses of each motor neuron from sensors291

in the same direction relative to that motor neuron are treated as the same292

(have the same dynamics and parameters during the learning).293
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Figure 10: Sensors and neural circuits model for PuckWorld. (a) Velocity (v) sensors,
distance to reward source (dr) sensors and distance to escape (de) sensors get input from
four directions; a motor neuron gets all of the sensory inputs by Dynamic Synapses. (b)
There are four sets of neural circuits in the player; because the neural circuits, agents
and the environment are symmetric, all homologous synapses are assumed to share the
same dynamics and synaptic strengths to accelerate the learning. (c) The sensors indicate
distances by orthogonal decomposition; when a measured object is in the direction that can
be projected to the positive direction of a sensor, the sensory value is positive, otherwise
0.

The function of the motor neurons is:294

v̇ =
n∑

i=1

wisi (6)

295

if v > vthreshold v = vrest (7)

where v is membrane potential, si the ith sensory input, vrest the rest mem-296

brane potential and vthreshold the threshold of firing.297

The reward of the game is the weighted sum of the normalised distance298

to the reward source and the normalised distance into the range of the pun-299

ishment source:300

R =

{
−(dr + 2de) if player is in punishment range

−dr otherwise
(8)

where R is reward, dr the distance between player and reward source, de the301

distance between player and the edge of punishment range.302

The reward is fed into a firing rate neuron with an adaptive current,303

which releases the modulator. With the adaptive current, the neuron is304

sensitive to the change of the reward but insensitive to the value of the305

reward. The adaptation speed factor from low to high is higher than the306
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adaption speed factor from high to low, thus the neuron has a trend to307

increase the expectation of the reward:308

˙Iadapt =

{
(krR + Iadapt) kadapt1 if R > Iadapt

(krR + Iadapt) kadapt2 if R < Iadapt
(9)

where Iadapt is the current intensity, kR a factor from reward to current in-309

tensity, kadapt1 and kadapt2 are factors of adaption speed. Thus modulator310

amount nm is given by:311

nm = 2/(1 + e−kmI(kRR− Iadapt)− 1 (10)

where kmI is a factor to map the current after adaption to an appropriate312

range.313

As this is a single layer circuit, the ability of a player controlled by the314

circuit is simple and limited. Hence, we can analyse the possible best so-315

lution of the synaptic strengths and compare it with the solution obtained316

by operant training with dynamic synapses. Treating the single layer circuit317

as a linear function, the whole system can be interpreted as a second-order318

system. For an appropriate solution, the interactions of the elements in the319

system should work as though (1) there is an extension spring connecting320

the player and reward source; (2) the punishment range is an elastic ball321

that pushes the player away; and (3) the elastic coefficient of the elastic ball322

is higher than the elastic coefficient of the spring so the player will avoid323

punishment even when the reward is inside the punishment range. Because324

of (1), the synaptic strengths of positive y distance to reward input should325

be higher than the synaptic strengths of negative y distance to reward in-326

put; because of (2), the synaptic strengths of positive y distance to escape327

input should be higher than the synaptic strengths of negative y distance to328

escape input; and because of (3) the synaptic strengths of positive escape329

input should be higher than the synaptic strengths of positive reward input.330

The simulation results are shown in Fig 11. The simulation result was331

largely consistent with the analysis above, as shown in Fig 11 (a) and (c).332

However, surprisingly the highest synaptic strength is for negative x distance333

to reward input (line 4 in Fig 11 (a)) are higher than other lines, which334

means the agent would go forward when the reward source is on its left side.335

The positive y velocity (line 3) is also higher than negative y velocity (line 2),336

which means the agent tends to accelerate. These appear to be two strategies337

to avoid chasing by the punishment source.338
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Figure 11: The simulation results of Dynamic Synapse in PuckWorld. The relationships
between the labelled number of synapses and the sensor a synapse connects to are: 0,1:
x-velocity; 2,3 y-velocity; 4,5 dr in x; 6,7 dr in y; 8,9 de in x; 10,11 dein y; in each case odd
numbers are the inputs in the positive direction as explained in the text. (a) Instantaneous
synaptic strength of 12 synapses. (b) The trajectory of the first 3 synaptic weights; the
explored range gradually converges. (c) The centres of synaptic strength oscillations; (d)
The damping factors of instantaneous synaptic strength oscillation. All lines overlap. (e)
A Poincaré map of Dynamic Synapse. It is a section of (b) when instantaneous synaptic
strength passes its centre of oscillation. Each point is an intersection of the trajectory
and the plane defined by the centre of oscillation. The blue and green points show the
intersections from two different directions. The intensity of colour indicates the time of
intersections. (f) shows the reward R, adaption current Iadapt and Reward after adaption.
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In addition, Fig 11 (b) shows the exploration of 3 instantaneous synaptic339

strengths. Fig 11(d) shows the damping factor of the oscillation of the in-340

stantaneous synaptic strengths. Fig 11 (e) is a Poincare map of the Dynamic341

synapse, i.e. the section of (b) when the instantaneous synaptic strengths 0342

passed the centre of synaptic strength oscillation. It shows that the explo-343

ration is chaotic and unpredictable, and that the region of sampling shrinks344

during learning and the density of sampling increases during learning. (f) The345

line labelled Reward is the value R returned by the simulation enviroment346

by the reward function; The line labelled Filtered Reward is the low-pass-347

filtered R which shows the overall trend; the line labelled Reward Adaption348

is the adaption current Iadapt; the line labelled Reward after Adaption is the349

value of kRR − Iadapt, which determines the modulator release and is more350

sensitive to variations of the reward than to the absolute value of the reward.351

The source code for simulations of the model and experiments is available352

online https://github.com/InsectRobotics/DynamicSynapsePublic.353

3. Discussion354

We have proposed a model of operant learning based on continuous un-355

predictable synaptic strength fluctuations, with dynamics that are altered356

in response to a reinforcement signal. We illustrate the application of this357

principle to optimise the output, for given inputs, first in a simple linear358

neuron model, then to tune a recurrent CPG network to a target period,359

and finally to enable a spiking neural circuit embedded in an agent to im-360

prove performance in a continuous environment with dynamic reward and361

punishment.362

An important property of our approach is that the source of variation363

that supports operant learning is continuous, unlike reinforcement learning364

algorithms that are based on random number generators, which have either365

discrete random outputs, or are partially predictable because of interpolation.366

By defining a system that has chaotic dynamics we can generate continuous367

motion without interpolation, so the unpredictability is continuous on any368

scale. An additional advantage over alternative synapse-level models for369

operant learning, such as the Hedonistic Synapse (Seung, 2003), are that370

the applications are not limited to a specific type of neural circuit or neural371

network. We have shown we can use our Dynamic synapse in both spiking372

and firing rate neural circuits, and the method can also be suitable for general373

online parameter optimisation, as it acts to scale the synaptic strength value374
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to the suitable ranges. It can also be applied to discrete systems by adjusting375

the time step to an appropriate range or by sampling. We plan to further376

explore the application of this model to a range of problems in robot learning377

and reinforcement learning.378

A key difference between our model and previous models is that our379

model learns in parameter space but not action space. Previous models usu-380

ally alter the synaptic strength based on the pattern of synapse activities381

(i.e. those conveying signals that led to reward), but our model directly382

learns the synaptic strengths that led to reward. As the synapse dynamics383

reflect recent states of the synapse, exploring parameter space enables our384

model to solve the credit assignment problem without an eligibility trace,385

which is necessary for some previous models, such as extended STDP mod-386

els by Izhikevich (2007); Gurney et al. (2015). As the time scale of synaptic387

strength fluctuations is longer than synapse activity dynamics, the model can388

function with temporally distant reward. Exploring parameter space means389

that the learning concerns the overall function instead of the specific outputs390

of the neural circuits, so our model allows remodelling of synaptic connec-391

tions independently from action potentials of neurons, which is a potentially392

powerful tool for neural computation.393

We have proposed a possible grounding for the chaotic dynamics in the394

phenomena of receptor movement in dendritic spines. The model is inspired395

by recent evidence concerning the extent and mechanisms of these dynamics,396

but abstracted from the level of individual proteins to the level of the receptor397

flows between a dendrite and synapses as an integrated system. By focussing398

on postsynaptic receptor dynamics, our model can be related to synaptic399

mechanisms of short and long-term potentiation and depression (STP/LTP,400

STD/LTD). For example, the relations between STP and LTP as well as STD401

and LTD are similar to the relation in our model between the instantaneous402

synaptic strength and the centre of synaptic strength oscillation. The model403

can be expanded to explicitly explain some phenomena during STP, LTP,404

STD or LTD. For example, in STP-LTP model proposed in Xie et al. (1997),405

AMPA receptors are attracted toward the activated NMDA receptors when406

neurotransmitter is released, then a proportion of AMPA receptors diffuse407

again. This learning rule can be implemented by adding kw1nT into the408

function describing the change of the amount of receptors in a synapse:409
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ẇi =





(vi + kw1nT ) cd if vi > 0

(vi + kw1nT )
wi

Vi
if vi < 0

(11)

Where nT is amount of the synaptic transmitter, kw1 is a coefficient. In410

this extended model, when neurotransmitter is released, the instantaneous411

synaptic strength (the number of receptors) will tend to increase, resulting412

in STP. When the instantaneous synaptic strength is higher than the centre413

of the oscillation, if modulator is released, the capacity of the synapse to414

contain receptors will increase. Because of the oscillation of the amount of415

receptors in the synapse, some of the receptors diffuse again. Because the416

capacity is increased, more receptors are held in the synapse, resulting in417

LTP.418

The model in this paper represents postsynaptic dynamics in a simplified419

form, at the statistical level of receptor trafficking, allowing it to emulate420

some features of receptor flow dynamics and synapse dynamics. Modelling421

individual receptors is out of the scope of this study because it would not be422

relevant at the level of learning. However, the mathematical functions for the423

receptor dynamics in our model are not exclusive. As long as the receptor424

dynamics has the features of chaotic oscillation, and the centre of oscillation425

is controllable by our learning rule, our learning rule could work for alterna-426

tive formulations. The model could be be extended to include more detail.427

For example, the receptor trafficking within the dendrite is assumed to be428

fast enough (compared to dendrite to synapse trafficking) to ignore its time429

constant. In reality, variations of AMPA receptor numbers on neighbouring430

dendrite spines are usually in the same direction (Zhang et al., 2015). This431

phenomenon could be modelled by taking account of the speed of receptor432

trafficking in the dendrite, which would have the consequence that neigh-433

bouring synapses would tend to have a similar concentration of receptors in434

the dendrite. Hence the receptor oscillation in neighbouring synapses would435

have a higher probability to be in similar phases than in distant synapses.436

Our model depends on several hypothetical assumptions, such as the form437

of the dynamics of receptor trafficking, dynamics of capacity to contain re-438

ceptors, and the equilibrium point of receptor oscillation, which are not yet439

directly supportable from biological research. To understand the dynamics of440

receptor trafficking requires continuous observation of the collective motion441

of receptors and concentration change of receptors in dendrites and synapses442
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on timescales from seconds to hours. Similarly, understanding the dynamics443

of capacity to contain receptors requires continuous observation of actin flow444

between synapses and dendrites, size change of synapses and size change445

of postsynaptic density on similar timescales. Both types of observations446

are difficult but becoming experimentally more plausible, e.g. approaches of447

video microscopy in Zhang et al. (2015) and Esteves da Silva et al. (2015)448

continuously recorded the motions of proteins that can be observed as a449

group enabling the concentrations and flows to be understood. Observation450

of the phase relations between the oscillation of the receptors or structural451

components would be helpful for validating our model. In our model, we452

assume that the instantaneous weight leads the change of equilibrium point453

of receptor oscillation when the modulator is present. This could be tested454

by transplanting receptors to or from a synapse and giving modulator treat-455

ment, then observing if the synapse size or postsynaptic density changes.456

Thus several predictions arise from our model which we hope may be tested457

in future experiments.458

However, the key concept presented here is not crucially dependent on459

the details of receptor trafficking. Other models of chaotic neurons or neu-460

ral circuits suggest chaos exists in the membrane potential, and alternative461

chaotic processes in an animal could also possibly contribute to the genera-462

tion of actions and learning with the same desirable properties of continuous463

unpredictability. Rather, the key properties are that the learning mechanism464

is entirely local to the synapse, and does not require an explicit tag for the465

Hebbian correlation of pre- and post-synaptic activity but rather allows this466

property to emerge from the behavioural or output consequences caused by467

the recent state of the circuit. That is, synapses that contribute to obtaining468

reward are strengthened; but this does not depend on the firing of either469

the pre- or post-synaptic neuron, except insofar as this is necessary to cause470

behavioural outputs that result in reward.471

It is nevertheless interesting to consider a simple variation on the learning472

rule we have used to make synapses with active presynaptic neurons (neurons473

that have released neurotransmitter, indicating they have fired) learn actively474

(c.f. Eqs. 1 and 24):475

ẇci = kw2 (wi − wci)nMnT (12)
476

ḃ = kbbnMnT (13)

where nT is amount of the synaptic transmitter. With nT , variation of synap-477

tic strength of a synapse is proportional to the presynaptic neuron activity,478
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Figure 12: Schematic Diagram and Symbols of Dynamic Synapse. A schematic diagram
of the dendrite tree; the main variables and parameters of the model are indicated. For
the meaning of the symbols, see Table 1

which can help to improve the pertinence of learning to the inputs. For ex-479

ample, a neuron gets multiple inputs but only a small set of them is activated480

by a specific stimulus, and with this rule, the synaptic plasticity only applies481

between the neuron and these activated inputs. Note this is a 3-factor learn-482

ing rule, depending on the correlation between the amount of the synaptic483

transmitter, the amount of modulator, and the difference between instanta-484

neous synaptic strength and the centre of the oscillation. When the absolute485

value of the correlation is higher, the variation of the centre of the oscillation486

is more significant.487

However, another possible learning rule could use the weighted aver-488

age, rather than the product, of the synaptic transmitter and instantaneous489

synaptic strength:490

ẇci = kw3 (q(kw4nT − wci + α) + (1− q) (wi − wci))nM (14)

where kw4 is a coefficent to fit the amount of transmitter to synaptic strength,491

q a proportion representing the relative weighting of these two factors, and α492

a constant. Notably, this rule can potentially account for Pavlovian classical493

conditioning, where the stimulus and reinforcer (neuromodulator) are pre-494

sented together irrespective of the output. When q = 1, the learning rule is495

Pavlovian learning; when q = 0, the learning rule is operant learning. When496

q is close to 1, the learning process might look like classical conditioning with497

noise. Thus, classical and operant learning may coexist in the same neuron498

and even in the same synapse.499

4. Methods500

4.1. Overview501

We first present a verbal description of how our model represents the al-502

teration of synaptic strength in terms of the dynamic movement of receptors,503
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and then provide a precise mathematical formulation of the principle.504

Two forms of receptor trafficking can move receptors between the synapses505

and the dendrite. Lateral diffusion creates a passive flow along a gradient506

from a high concentration region to lower concentration region. Endosomal507

trafficking acts as an active flow that can move receptors against the gra-508

dient. The active flow is formed by endosome transportation which carries509

numbers of receptors. Our model has a minimal form to capture the key510

phenomena. Endosomal trafficking is active transportation and is modelled511

with a positive feedback term which provides motive force, and two nega-512

tive feedback terms which limit the speed of transportation. The negative513

feedbacks are the receptor concentration gradient, which is proportional to514

the concentration difference between a synapse and dendrite, and friction of515

endosome transportation, which is proportional to the endosome transporta-516

tion speed. These properties together produce dynamic oscillation of the517

number of receptors in each synapse. Because of the concentration gradient,518

the equilibrium point of the dynamics of endosome transportation of a sin-519

gle synapse is when the concentration of receptor in the synapse is same as520

the concentration in the dendrite. It is also the equilibrium point of lateral521

diffusion. Note that because effects of receptor synthesis and degradation on522

receptor concentration are slower than receptor trafficking, they are assumed523

to have a negligible contribution to the dynamics. The proportion of recep-524

tors in endosomes is also ignored. Hence, in our model the total number of525

receptors in a dendritic tree is constant.526

There are two factors in addition to receptor trafficking that could af-527

fect the concentration of receptors in each synapse: the size of the synapse528

and the number of receptors per unit area the synapse can accommodate.529

The size of the synapse is affected by the activity of actin. The number of530

receptors per unit area a synapse can accommodate is affected by scaffold-531

cytoskeleton complex. The two factors are not distinguished in the model532

but are jointly represented as the ‘capacity’ of the region to hold receptors.533

Thus, the equilibrium point of receptor motion can be altered by altering the534

capacity. The mechanism of learning in our model is to alter the capacity535

according to the following rule: whenever a neuromodulator signalling re-536

inforcement is present, the instantaneous number of receptors in a synapse537

determines a change in its effective capacity, establishing a new equilibrium538

point nearer to that instantaneous value.539
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Figure 13: Justification for a continuous representation of the effects of receptor location
between dendrite and synapse. The boundary between a synapse and dendrite can be
considered wide and smooth, and as a receptor approaches the synapse, it can receive
more neurotransmitters and contribute more to the synaptic strength. Rather than model
the boundary area explicitly, we associate synaptic strength with the ‘amount’ of receptors
a synapse contains, treated as a continuous variable.

4.2. Mathematical model540

When the number of receptors per synapse is sufficiently large, their dy-541

namics can be modelled statistically using differential equations (Holcman542

and Triller, 2006), e.g. like gas, which consists of free-moving molecules and543

uncertain intermolecular distance. However, even for a smaller number of544

receptors per synapse, we note their contribution to synaptic strength can545

be proportional to their distance from the centre of the synaptic cleft, due to546

diffusion of neurotransmitter (Fig 13). Thus, rather than explicitly represent547

discrete receptors and their positions, we represent the number of receptors548

in a synapse that currently contribute to its synaptic strength as a continuous549

‘amount’.550

In the following equations, constants are represented by normal font and551

variables by italics (except v for membrane potential of integrate-and-fire552

neurons). The meanings of the symbols are shown in Table 1. The unit of553

time is millisecond.554

The model assumes that the capacity of the dendrite to contain receptors555

is proportional to the number of synapses:556

Vd = NVs (15)

Where Vd is the capacity of a dendrite, N the number of synapses, and Vs a557

constant factor, which is the average capacity of a dendrite per synapse.558

The concentration of receptors in the dendrite, cd, is given by:559

Cd = Wtotal −
n∑

i=1

wi/Vd (16)
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where wtotal is the (fixed) total amount of receptors in the dendrite tree; wi560

is the amount of the receptors in the ith synapse; and Vd is the capacity of561

the dendrite.562

We model the continuous flow of receptors between synapses and dendrite563

as a movement rate times the concentration of receptors on the source side:564

ẇi =




vicd if vi > 0

vi
wi

Vi
if vi < 0

(17)

where wi is the amount of receptors of the ith synapse, wi/Vi is concentration565

of receptors of the ith synapse, cd the concentration of receptors in the den-566

drite, and vi is the bidirectional movement rate, which is affected by lateral567

diffusion, endosomal trafficking and friction as described in the overview:568

v̇i = 1/r
(
cd − wi/Vi + a sign(V i)× 2

√
|Vi| − bvi

)
(18)

where vi is bidirectional movement rate from dendrite to synapse (the di-569

rection from dendrite to synapse is positive); r is movement rate inertia570

, which represents factors (e.g. properties of actin) that drive receptors to571

keep their direction of flow; Vi is the capacity of ith synapse, which is affected572

by wci; cd − wi/Vi is a term that represents the concentration difference be-573

tween synapse and dendrite, which causes motion of receptors by diffusion;574

a sign(V i)× 2
√
|Vi| is positive feedback term of the movement, with positive575

feedback coefficient a; −bvi is a damping term with represents friction during576

the motion, with damping factor b.577

As shown in Fig 12, the receptors also move between neighbouring den-578

drite regions by diffusion:579

ċdi = qd
(
cdi−1

+ cdi+1
− 2cdi+1

)
(19)

where qd is a coefficient from concentration difference to concentration vari-580

ation rate. In practice, we found that when the number of synapses is less581

than 33, modelling this this diffusive process has little effect. Hence, in the582

simulations in this paper, the diffusion is treated as instantaneous. For larger583

numbers of synapses, neglecting the dendritic diffusion can result in collapse584

of the chaotic dynamics, but these can be recovered if we run simulations585

with limited diffusion (results not included here).586
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As receptors diffuse in the dendrite tree, there is an equilibrium point587

when the concentration of receptors in a synapse and its neighbouring den-588

drite region are same. The equilibrium point forms the centre of synap-589

tic strength oscillation, while the instantaneous synaptic strength oscillates590

around this point. We consider the effective strength of the synapse to be its591

equilibrium point, which can be established as follows. We assume that the592

receptors take a shorter time to diffuse between a synapse and its neighbour-593

ing region of the dendrite than to diffuse to regions in the neighbourhood of594

other synapses. Thus, in a short time interval, there is conservation of the595

amount of receptors in a synapse and its neighbourhood, and the equilibrium596

point is given by:597

cciVi/cciVi + cciVs = wci/wi + cdiVs (20)

Where cci is the equilibrium concentration of receptors in ith synapse, wci is598

the equilibrium amount of receptors in ith synapse, wi is the instantaneous599

amount of receptors in ith synapse, Vi is capacity of the ith synapse, cdi600

is concentration of the receptors in ith dendrite region and Vs is average601

dendrite capacity per synapse.602

To set or alter the strength of a synapse, we alter wci . Solving the above603

equation for Vi, we get:604

Vi = Vswci/cdVs + wi − wci (21)

By updating Vi according to this function, the amount of receptors will con-605

verge to the given equilibrium value. Thus, we can define (or alter) the centre606

of synaptic strength oscillation. We can also alter the amplitude of oscillation607

around this centre by changing the damping factor b in equation 18.608

These equations describe a system which contains multiple coupled second-609

order systems. A second-order system, such as a spring-mass-damper system,610

usually has the property of oscillation. When coupled together, they usually611

end in phase-locked oscillations, which means they have a fixed trajectory612

of oscillation. However, when the second-order systems include appropriate613

nonlinear functions, the system oscillates chaotically. In the model, the re-614

ceptor trafficking between a synapse and dendrite is a second-order system.615

Multiple synapses are coupled by a dendrite, and updating of Vi is a nonlin-616

ear function. As we illustrate, the resulting oscillation appears to be chaotic.617

Because chaotic motion has a very complex, unpredictable and ergodic solu-618

tion, the chaotic changes in synaptic strength can explore an output space619

for a neuron or neural circuit. Simulations are shown in the Results section.620
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Figure 14: The bias of oscillation at different centre of oscillation. The curves are instan-
taneous synaptic strength, which oscillate around centres of synaptic strength oscillation
(shown as straight lines).

As described in the Results section, a simple learning rule for this system621

is:622

ẇci = kw(wi − wci)nM (22)

where nM is amount of a neuromodulator that represents reward, and kw623

is a coefficient controlling the learning rate. In practice we need to slightly624

modify this rule to compensate for a biased drift in synaptic strength. If,625

during an oscillation period, the integrated values of the differences between626

instantaneous synaptic strength and the centre of oscillation on each side is627

not equal (as shown in Fig 14, the sizes of adjacent yellow and blue coloured628

areas), uncorrelated modulator release (e.g. the release experienced by a629

synapse that is not making any useful contribution to satisfying the value630

function) can cause the centre of oscillation to become biased during long631

training times. During learning, if the centre of oscillation changes in a small632

range, the rate of bias can be approximated as a constant. To compensate633

it, a learning rule with compensation can be applied:634

ẇci =

{
kw (wi − wci)nM (1 + kwc) if wi > wci

kw (wi − wci)nM else
(23)

where kwc is a constant factor to compensate the bias. However, if the centre635

of oscillation changes in a larger range, the bias is variable, and cannot be636

compensated using the above rule. In our model, this bias is towards positive637

values for a centre of oscillation above 0.5, and negative values below 0.5. As a638

consequence there can be a positive feedback effect that accelerates learning.639
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To allow learning to converge, the learning rule should also reduce the640

oscillation amplitude. When the modulator is present, damping factors also641

increase:642

ḃ = kbbnM (24)

where b is the damping factors, kb a coefficient.643
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Table 1: Symbols in the equations .

Symbol Explanation Typical value

N Number of synapses on a dendrite tree an integer, > 3
Vd Capacity of a dendrite NVs

Vs Average capacity of a dendrite per synapse 1
Vi Capacity of the ith synapse
wtotal Total amount of receptors in the dendritic tree
Di Occupation of a receptor in ith synapse 0 to 1
p The constant coefficient for dimension conversion of

the amount of receptors
wi Instantaneous Synaptic strength of ith synapse usually from 0.01 to 1
wci Balance point of ith synapse usually from 0.01 to 1
cdi Concentration of the receptors in ith dendrite region
wi

Vi
Concentration of the receptors of the ith synapse

vi Bidirectional movement rate from dendrite to synapse
r Movement rate inertia 3.5× 106 to 2.5× 107

a The positive feedback coefficient of movement rate 170 to 850
b The damping factor of movement rate 14000 to 2.6× 107

qd The coefficient from concentration difference between
neighbouring dendrite regions to receptor diffusion flux

nM Amount of the modulator usually from 0 to 1.5
kw A coefficient of balance point update speed usually from 0.0003

to 0.002
kwc A constant factor to compensate the bias 0.4
kb A coefficient of damping factor update speed usually from 10−7to10−8
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