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ABSTRACT  

Objective: Comprehensively describe the phenotypic spectrum of sporadic Fatal Insomnia (sFI) to 

facilitate diagnosis and management of this rare and peculiar prion disorder. 

Methods: A survey among major prion disease reference Centres in Europe identified 13 patients 

diagnosed with sFI in the past 20 years. We undertook a detailed analysis of clinical and 

histopathological features, and the results of diagnostic investigations.  

Results: Mean age at onset was 43 years and mean disease duration 30 months. Early clinical findings 

included psychiatric, sleep and oculomotor disturbances, followed by cognitive decline and postural 

instability. In all tested patients, video-polysomnography demonstrated a severe reduction of total sleep 

time and/or a disorganized sleep. CSF levels of proteins 14-3-3 and t-tau were unrevealing, the 

concentration of neurofilament light protein (NfL) was more consistently increased, and the real-time 

quaking-induced conversion assay (RT-QuIC) revealed a positive prion seeding activity in 60% of 

cases. EEG and MRI showed non-specific findings, whereas FDG-PET demonstrated a profound 

bilateral thalamic hypometabolism in 71% of cases. Molecular analyses revealed PrP
Sc

 type 2 and 

methionine homozygosity at PRNP codon 129 in all cases. 

Interpretation: sFI is a disease of young or middle-aged adults, which is difficult to reconcile with the 

hypothesis of a spontaneous etiology related to stochastic, age-related, PrP misfolding. The 

combination of psychiatric and/or sleep-related symptoms with oculomotor abnormalities represent 

early peculiar clinical feature of sFI to be valued in the differential diagnosis. Video-polysomnography, 

FDG-PET, and especially CSF prion RT-QuIC and NfL constitute the most promising supportive 

diagnostic tests in vivo. 
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INTRODUCTION 

Human prion diseases are rapidly progressive neurodegenerative disorders pathogenically related to 

structural changes of the cellular prion protein (PrP
c
). In prion disease, PrP

c
 converts to a beta-sheet 

rich, partially protease-resistant form, termed PrP
Sc

, which accumulates in the brain and other tissues.   

Prion diseases uniquely occur in inherited, sporadic or acquired forms and show a broad clinical and 

pathological heterogeneity. Four major phenotypic entities are recognized in humans, namely, 

Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), Fatal Insomnia 

(FI) and variably protease-sensitive prionopathy (VPSPr)
1-3

. The phenotypic spectrum of CJD, by far 

the most common form, largely correlates at molecular level with two major PrP
Sc 

types with distinct 

physicochemical properties, designated as types 1 and 2. Moreover, the genotype at the polymorphic 

methionine/valine (M/V) codon 129 of prion protein gene (PRNP) also plays a role. Accordingly, the 

current classification of sporadic CJD (sCJD) recognizes six major subtypes largely corresponding to 

all possible combinations of the two molecular variables (e.g. MM1, MM2, VV1, VV2, etc.)
4,5

. The 

most significant exception is the MM2 group, which includes two subtypes designated as MM2-cortical 

(MM2C) and MM2-thalamic (MM2T) based on distinctive pathological features
4
.  

Given its striking clinical and neuropathologic similarities with Fatal Familial Insomnia (FFI), a genetic 

prion disease linked to a point mutation at codon 178 (D178N) in the PRNP coupled with methionine at 

codon 129, the MM2T subtype is also known as sporadic Fatal Insomnia (sFI)
6,7

. Transmission studies 

using susceptible transgenic mice have consistently demonstrated that the same prion strain is 

associated with both sFI and FFI
8,9

. 

In contrast to what has been the rule for the most common neurodegenerative disorders, sFI is rarer 

than its genetic counterpart
10

. Indeed, while the recognized patients with FFI are numerous and belong 

to more than 50 families worldwide, only about 30 cases of CJD MM2T and a few cases with mixed 

MM2T and MM2C features (MM2T+C) have been recorded to date
6,8,9,11-23

. 
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Moreover, while the first description of FFI dates back to 1986 and its recognition as a genetic prion 

disease to 1992, the characterization of sFI as a distinct sporadic prion disease subtype was only 

achieved in 1999
6,8

. It is noteworthy, however, that a few cases previously reported under the terms 

thalamic dementia, thalamic degeneration or thalamic form of CJD, either sporadic or familial, likely 

belonged to the same disease entity
1,24-32

.  

Here we describe in detail the clinical findings, results of diagnostic investigations and 

neuropathological features of the largest series of sFI patients reported to date, representing the result 

of 20 years of prion disease surveillance in Europe.  

 

SUBJECTS AND METHODS 

Patient selection. 

After inquiry to the majority of European CJD reference Centers, we identified 13 cases of sCJD 

MM2T or sFI, which were diagnosed in Italy (n=7, patients #1 to 6 and patient #13), the Netherlands 

(n=1, patient #7), Spain (n=1, patient #8), United Kingdom (n=2, patients #9 and 10), Germany (n=2, 

patients #11 and 12), over the past 20 years. Reference laboratories for CJD in France, Austria, Poland, 

Belgium and Denmark did not report any case. A single sCJD MM2T+C, recently reported in Spain
23

 

was not included in the present series. 

The diagnosis of sCJD MM2T was formulated post-mortem, according to neuropathologic consensus 

criteria
33

 in 12 cases. One additional patient (case #13) was diagnosed as probable sCJD MM2T-type 

based on typical clinical features, polysomnographic and fluorodeoxyglucose-positron emission 

tomography (FDG-PET) findings, and the new diagnostic criteria for sCJD (i.e. progressive 

neurological syndrome and positive CSF RT-QuIC assay; 

http://www.cjd.ed.ac.uk/sites/default/files/criteria_0.pdf).  
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Clinical data and diagnostic investigations. 

For each patient, we collected and reviewed data regarding clinical history, neurological examination 

and the specific evaluation of cognitive status, which in the majority of cases, included 

neuropsychological batteries. 

We also reviewed copies and collected data concerning electroencephalographic recordings (EEG) 

(n=13), video-polysomnography (n=4) or long-term video-EEG (n=1), autonomic function tests (n=6), 

neurohormonal assays (n=3), brain magnetic resonance imaging (MRI) (n=13), FDG-PET (n=7) and 

Tc
99m

 HMPAO or ECD cerebral blood flow single photon emission computed tomography (CBF-

SPECT) (n=3). EEG and MRI findings were classified according to established criteria
34,35

. The most 

abnormal result on record considered in cases with serial EEG or neuroimaging examinations. 

In the absence of a standardized protocol, MRI scans variably included T1/T2-weighted scans (n=13), 

fluid attenuated inversion recovery (FLAIR) sequences (n=11), diffusion weighted imaging (DWI) 

(n=11) and/or H
1
-spectroscopy (n=3). 

Video-polysomnographies, tests of autonomic function, neurohormonal assays, brain PET and CBF-

SPECT were performed at the notifying hospitals according to standard procedures. 

CSF biomarker analyses included proteins 14-3-3 (n=12), total (t)-tau (n=10), neurofilament light chain 

(NfL, n=3), and prion seeding activity (n=5). The 14-3-3 protein was measured semi-quantitatively by 

immunoblotting, whereas total-tau and NfL proteins were quantitatively analyzed using commercially 

available kits based on a sandwich ELISA method, as described
36,37

. Prion seeding activity was 

assessed by RT-QuIC as previously described
38

.  

PRNP (Ref. Seq. NM_0003111) open reading frame was analyzed as previously described in 12 

cases
39

. 
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Post-mortem studies.  

Each brain was studied by routine histopathology, PrP immunohistochemistry and PrP
Sc

 typing by 

western blotting at the referring laboratories according to established procedures. However, to facilitate 

the comparison among cases and harmonize the evaluation, we re-processed (H&E staining and PrP 

immunohistochemistry) unstained sections from several brain regions, including, the cerebral cortices 

of each lobe, striatum, thalamus, hypothalamus (N=7), hippocampus, midbrain, medulla (n=8) and 

cerebellum in 10 out of the 12 cases. In the remaining two
9
, one of us (PP) reviewed the original 

stained slides provided by the reference laboratory. For PrP immunohistochemistry, we immunolabeled 

paraffin sections from formalin-fixed, formic acid treated tissue blocks using the monoclonal antibody 

3F4, according to a published protocol
40

.  

We also carried out a semiquantitative evaluation of spongiform change by comparing haematoxylin 

and eosin (H&E) stained sections obtained from eight brain regions. We scored the spongiform change 

as follows: absent: -, mild: +, moderate: ++, severe: +++, and status spongiosus: SS. 
 

Furthermore, we determined the type and relative amount of PrP
Sc

 on 10% brain homogenates, after 

treatment with proteinase K, according to established consensus protocols
41

. 

Patient #1, 5 and 6 were briefly described in previous studies
9,16

.  

We conducted the study according to the revised Declaration of Helsinki and Good Clinical Practice 

guidelines. The protocol for this study received prior approval by the IRCCS-ISNB Institutional 

Review Board. Informed consent was obtained from each subject or next of kin. 

 

RESULTS 

Demographic and clinical features.  

The mean age at symptom onset was 43 years (range 24-80) and the mean duration of clinical disease 

30 months (range 7-96) (Table 1).  
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Family history was unremarkable except for patient #1 who, despite the non-mutated carrier status, 

belonged to a large kindred with several FFI affected members, as previously described
16

. Prominent 

clinical manifestations at onset included psychiatric, sleep, and oculomotor/visual disturbances (Fig 1). 

Among the former, the most frequent symptoms included mood alterations (n=11 patients, 84.6%), 

behavioural and personality changes (n=7, 53.8%), delusions (n=7, 53.8%), and hallucinations (n=2, 

15.4%). Eleven patients (84.6%) complained of sleep disturbances, including drug-resistant insomnia 

(n=10, 76.9%), simple or complex movements during sleep (n=7, 53.8%), diurnal drowsiness (n=5, 

38.5%) and sleep vocalizations (n=3, 23.1%). Moreover, oculomotor dysfunction and/or gaze palsy 

affected 11 (84.6%) patients causing diplopia in seven (53.8%).  

In the full-blown disease, all subjects developed progressive cognitive impairment and postural 

instability associated with retro/lateropulsion and gait disturbances, while only some suffered 

additional motor abnormalities. Specifically, based on the results of consecutive neurological 

evaluations and of administered neuropsychological batteries the most affected cognitive domains 

included memory (12/12, 100%), temporal and/or spatial orientation (9/12, 75.0%), language (9/12, 

75.0%) and executive functions (9/12, 75.0%) and attention (7/12, 58.3%). Moreover, 5/12 (41.7%) of 

patients had agnosia, 4/12 (33.3%) apraxia and 4/12 (33.3%) visuospatial deficits. 

Typical motor features were dysarthria (n=12, 92.3%), cerebellar signs (n=10, 76.9%), pyramidal signs 

(n=10, 76.9%), myoclonus (n=10, 76.9%), diurnal-nocturnal motor hyperactivity (n=8, 61.5%) and 

extrapyramidal signs (n=13, 100%). The latter comprised a hypokinetic-rigid syndrome in 12 patients 

(92.3%), hyperkinetic involuntary movements (mainly chorea) in four (30.8%), and limbs dystonia in 

four (30.8%). 

Finally, five (38.5%) patients showed signs of autonomic hyperactivity, such as systemic hypertension 

(often drug-resistant) (n=3, 23.1%), mild pyrexia (n=3, 23.1%), hyperhidrosis (n=3, 23.1%), 

neurogenic urinary alterations (n=3, 23.1%) tachycardia (n=2, 15.3%), and constipation (n=2, 15.3%). 
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In addition, significant weight loss was reported in five cases (38.4%) (Table 1). Seven patients 

(53.8%) evolved to akinetic mutism, although this may not reliably represent the real frequency of this 

condition given that some medical reports contained only scanty information about the terminal disease 

stage (Fig 1). 

Results of diagnostic investigations  

CSF biomarkers (Table 2)   

The 14-3-3 assay was negative in all examined cases, t-tau was within normal levels in seven cases, 

even when repeated at different clinical stages (patients #5, 12 and 13), moderately increased in one 

(patient 1), and increased at a level compatible with a diagnosis of probable CJD in only one case 

(patient #2). Finally, RT-QuIC was positive in three out of five examined cases. In all tested patients, 

NfL levels were significantly higher than in healthy controls and other dementia groups as previously 

described
37

. 

Genetic analysis 

All cases were methionine homozygous at codon 129 (129M/M). The presence of the D178N mutation 

linked to FFI or any other PRNP mutation was excluded in 12 out of 13 patients by direct sequencing. 

In the only case with the non-sequenced PRNP ORF, PrP
Sc

 typing by western blotting showed that the 

intermediate monoglycosylated PrP
Sc

 glycoform was the most abundant, as in all other sporadic MM2T 

cases. Given that PrP
Sc

 in FFI invariably presents a predominant upper (diglycosylated) glycoform, this 

result indirectly excluded the presence of the D178N mutation also in this case
6
. 

EEG and video-polysomnography  

EEG recordings were either normal (2/13, 15.4%) (cases #10 and 11) or showed a slow background 

activity characterized by dominant theta-delta rhythm (11/13, 84.6%). Periodic sharp-waves complexes 

(PSWC) were only seen in one out of 13 patients (7.7%) (case #2) in a late recording performed only a 

month before death. 
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Video-polysomnographic evaluation or long-term video-EEG monitoring (cases #1, 2, 3, 8 and 13) 

demonstrated a severe reduction of total sleep time and/or a completely disorganized sleep architecture 

and microstructure in tested patients. Specifically, in four out of five of them (80%) (cases #1, 2, 3 and 

13), wakefulness appeared interchangeably alternated with a subwakefulness state (N1 sleep stage, 

light stupor) and, occasionally, with brief recurrent episodes of REM sleep while K-complexes, spindle 

and delta sleep, which are the hallmark of non-rapid eye movement sleep stages N2 and N3, were 

severely reduced or supressed. A reduction of total sleep time was also documented in the fifth case 

(20%) (patient #8), although detailed information about sleep microstructure were not available in this 

case. Hypnic disruption until complete loss of physiological sleep seem to occur progressively in sFI, 

as documented by serial polysomnographic recordings in patient #1 (Fig 2). 

Moreover, episodes of oneiric stupor, a complex motor behaviour arising from subwakefulness, 

characterized by occurrence of stereotyped gestures mimicking daily life activities, were documented 

in two cases (40%) (suppl. Video). Finally, in one patient (20%) (patient #2), polysomnographic 

recording revealed a severe disruption of sleep architecture and microstructure even in absence of any 

subjective complain of sleep disturbance.  

Autonomic function and neurohormonal tests (Table 3) 

Autonomic function and neurohormonal tests were performed in all five cases manifesting signs of 

autonomic overactivity (cases #1, 3, 6, 9 and 13) and in an additional patient (case #8) lacking them. 

The results showed a sympathetic hyperactivity in one patient (16.7%) (case #1), a drug-resistant 

systemic hypertension in another one (16.7%) (case #6), and a normal function in the other four 

(66.6%).  

Neuroimaging 

Single or consecutive MRI exams were unremarkable in five patients (38.5%) (cases #4, 8, 9, 11, 13). 

In all the others, brain MRI showed, mainly in the late disease stages, a mild to moderate atrophy of the 
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brain (8/13, 61.5%) (cases #1, 2, 3, 5, 6, 7, 10, 12), cerebellum (3/13, 23.1%) (cases #3, 5, 6) and/or the 

brainstem at the level of inferior olives and pons (1/13, 7.7%) (case #5). Cortical hyperintensities were 

observed only in one (9.1%) (case #1) out of eleven patients who underwent DWI and/or FLAIR 

sequences (Fig 3A). Finally, a nonspecific leukoencephalopathy was reported in one patient (9.1%) 

(case #6).  

Brain spectroscopy MRI showed metabolic alterations compatible with thalamic and cortical 

neurodegeneration in one case (patient #1), while it was unremarkable in 2 other cases (patients #3 and 

13). 

FDG-PET studies revealed a pronounced bilateral thalamic hypometabolism and scattered 

hypometabolic cortical areas (Fig 3B and 3C) in five out of seven patients (71.4%) (cases #1, 3, 5, 6 

and 13), while they were unremarkable in two (28.6%) (patients #7 and 8).  

Furthermore, 99mTc-HMPAO or ECD-SPECT scans showed abnormal cortical perfusion, but no 

thalamic alterations in two out of 3 patients (66.7%) (cases #2 and 7) and was unremarkable in one case 

(33.3%) (case #8).  

Neuropathological findings  

All brains of 12 definite cases fulfilled the consensus criteria for the histopathological diagnosis of 

sCJD MM2T
33 

(Table 4 and Fig. 4). Overall, the results confirmed the very distinctive traits that define 

the sCJD MM2T histotype, although they also showed a few novel features. Indeed, all cases 

demonstrated a moderate to severe neuronal loss and astrogliosis in the mediodorsal (Fig 4A and B) 

and anterior nuclei of the thalamus and in the inferior olivary nuclei (Fig 4C and D) but a relative 

sparing of striatum (Fig 4I) and hippocampus (CA and subiculum). Moreover, all showed a moderate 

Bergmann gliosis and torpedo formation in the cerebellum (Fig 4H) and most had a mild to moderate 

patchy spongiform change in the cerebral cortex (Fig 4E and F). As previously shown in FFI
42,43

, 

disease duration significantly affected the spread and severity of histopathology. Accordingly, the two 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

cases with a moderate atrophy and most focally distributed changes had the shortest course, while those 

with the most severe thalamic degeneration, extending beyond the most affected nuclei listed above, 

had the longest course. Furthermore, while the two cases with the shortest duration of symptoms (7 and 

8 months) only showed patchy, mild foci of spongiform change in the cerebral cortex with only mild 

neurodegenerative changes, the histopathological changes progressed to status spongiosus and severe 

atrophy in the two cases with the longest course (54 and 96 months) (Fig 4G). Moreover, the striatum 

was relatively unaffected in the cases with the shortest course, but florid spongiform change was 

observed in the case with the longest course, although with limited associated neuronal loss (Fig 4J). 

Finally, in a subgroup of cases with sufficient available material (7/12 patients, Table 4), the 

hypothalamus showed focal pathology characterized by mild to moderate astrogliosis, as previously 

described in FFI
42,43

. 

PrP immunohistochemistry revealed some new features, possibly related to disease duration. Indeed, 

while most cases only had a patchy PrP positivity of synaptic (not shown) or small granular type 

mostly in the superficial layer of the cerebral cortex (Fig 4K), one of the two patients with the longest 

course demonstrated sparse, small plaque-like deposits in the cerebral cortex (Fig 4L).   

PrP
Sc

 typing by Western blot analyses confirmed the presence of type 2 in all definite cases (Fig 4M). 

As previously shown
6
, PrP

Sc
 was characterized in all cases, and at variance with FFI, by a predominant 

monoglycosylated form and the lack of under-representation of the unglycosylated isoform. 

 

DISCUSSION 

We have described clinical findings, results of diagnostic investigations and neuropathological features 

of the largest series of sFI patients reported to date, reflecting the results of about 20 years of prion 

disease surveillance in Europe. The results expand the phenotypic spectrum of the disease and provide 

an update on the clinical impact of current available diagnostic investigations. 
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Age at onset (mean 43 years) in the present series was even younger than previously reported in sFI 

cases (mean 46 years) or in FFI patients carrying MM at codon 129 (mean 51 years) and significantly 

younger than in typical sCJD patients (mean 67 years)
6-9,11-23,44-46

. The result confirms that sFI is a 

disease of young or middle-aged adults rather than of the elderly, which is intriguing since this is 

difficult to reconcile with the current leading hypothesis of a “stochastic” origin of sporadic prion 

disease increasing with age
20

. Furthermore, the comparable or even earlier onset of sFI cases in 

comparison to FFI subjects indicate that age at onset in FFI, and possibly other genetic prion diseases, 

mainly depends on the specific prion strain (i.e. M2T) rather than on the presence of the PRNP 

mutation, as commonly believed.     

The disease duration (mean 30 months) in our series largely overlapped with that previously reported in 

sFI (mean 26 months) and was, therefore, significantly longer than that of FFI carrying MM at codon 

129 (about 10 months)
6-9,11-23,44-46

. Notably, one of the patients reported here had one of the longest 

clinical courses reported to date in sporadic human prion disease (Patient #11, 96 months)
44

. Regarding 

clinical manifestations, a significant and novel finding was the presence of psychiatric symptoms and a 

cognitive impairment, involving mainly memory, spatial and temporal orientation, language, executive 

functions and attention in all patients during the early or middle disease stages, which is more 

consistent with CJD than FFI
20

. Indeed, according to previous reports, FFI patients, especially those 

MM homozygous at codon 129, develop early progressive impairment of attention, vigilance and 

memory, resembling a progressive confusional state, but general intelligence and symbolic functions 

remain substantially intact until late in the disease course
7,45,47

.
 

Besides cognitive impairment, the clinical sFI phenotype invariably comprises oculomotor and gait 

disturbances, dysarthria, myoclonus, extrapyramidal, cerebellar, and pyramidal signs
7,20

. Among them, 

the most distinctive are the oculomotor dysfunction leading to early diplopia and the postural instability 

with latero/retropulsion and gait impairment. The latter is like that previously reported in FFI 
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heterozygotes at codon 129 and is thought to be related to thalamic degeneration leading, directly or 

indirectly, to frontal cortical dysfunction
46

. 

Previously, the peculiar sleep and autonomic disturbances described in FFI were referred as “agrypnia 

excitata” syndrome, whose distinctive features are severe loss of sleep and persistent motor and 

sympathetic overactivity
7,48,49

. In our patient population of sFI, insomnia was an early and prominent 

manifestation in 10 cases, whereas sympathetic and motor overactivity was less common. However, as 

previously remarked in FI
20

, in the absence of a spontaneous subjective complaint, sleep and autonomic 

symptoms may go unnoticed unless an accurate clinical history, video-polysomnographic and 

autonomic evaluation are obtained. This was particularly evident in patient #2, in whom the sleep 

disturbances were discovered at neurophysiological evaluation despite this not being reported by the 

patient. Indeed, in virtually all patients in whom video-polysomnography was performed, we found a 

severe reduction of total sleep time and/or completely disorganized sleep with absence of the 

physiological sleep figures, which characterize non-REM sleep stages N2 and N3 (spindles, K-

complexes and delta waves)
7,45,48

. Moreover, in two cases we documented episodes of oneiric stupor, a 

behavioural state observed in agrypnia excitata, characterized by the recurrence of stereotyped and 

repetitive gestures mimicking the content of dreams (often referring to ordinary daily-life activities), 

and typically arising from subwakefulness (N1 stage)
48,49

. 

The present study provides, for the first time, the results of neurophysiological and biochemical 

evaluations of autonomic function in sFI patients. Multiple tests revealed the presence of sympathetic 

hyperactivity in only one of the cases with clinically reported autonomic signs. Although this 

discrepancy may also be attributed to the relative low sensitivity of the tests performed, or perhaps, to 

interlaboratory variability, taken together, our findings indicate that the clinical phenotype in patients 

with sFI better match that of the FFI heterozygotes MV at PRNP codon 129, which notoriously 

manifest less prominent sleep and autonomic disturbances than the MM homozygotes
7,45,46

. 
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The diagnosis of sFI may be very difficult because of the low sensitivity of currently established 

investigations on which the criteria for probable sCJD are based
35

. Indeed, EEG, brain MRI and CSF 

14-3-3 were all un-revealing in our cohort. Specifically, 14-3-3 was negative in all of our cases, 

consistent with previous reports
6,9,11,13,15,17,18,20,22

. Moreover, only two patients had EEG PSWC or MRI 

cortical hyperintensities suggestive of a diagnosis of probable CJD. Previously, DWI/DTI cortical 

hyperintensities were documented only in mixed MM2T+2C cases
13,19,23

. Prion RT-QuIC showed only 

60% sensitivity for the MM2T subtype, which was similar to that reported in other sCJD subtypes 

linked to abnormal prion protein PrP
Sc

 type 2 and the MM codon 129 genotype
36,38

. In contrast, in all 

cases who underwent CSF NfL analysis, we documented high values of this biomarker
37

. Therefore, we 

strongly recommend the use of both prion RT-QuIC and CSF NfL based on their high specificity and 

sensitivity, respectively. 

Furthermore, 71.4% subjects who underwent a brain FDG-PET study showed a significant bilateral 

hypometabolism in the thalamus in association with variable cortical involvement. These findings 

confirm the usefulness of FDG-PET in the diagnosis of the FI phenotype as previously reported
8,13,20,50

. 

In all definite cases, neuropathological assessment revealed moderate to severe neuronal loss of the 

anterior medial thalamus and inferior olives with a variable degree of cortical spongiform change 

reflecting disease duration, as previously described
6
. Other typical features of this subtype were the 

absence of spongiform change in the cerebellum, despite the significant gliosis and torpedo formation, 

and the relative sparing of striatal nuclei (i.e. caudate and putamen). The patient with the shortest 

duration, case 2, showed only moderate neuronal loss in the thalamus and in the olives, while in one of 

the cases with the longest duration (i.e. case 7) immunostaining revealed a plaque-like deposition in the 

cerebral cortex, cerebellum and striatum, as previously reported
12,14,21,22

. This difference is consistent 

with the evidence from FFI brains that the amount of prion protein deposition in the cortex and the 

degree of cortical pathology strongly depends on disease duration
42,43

. 
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In conclusion, we contributed largest study to date on the clinico-pathological features and results of 

diagnostic investigations in sFI and the first reporting the results of the epidemiologic surveillance of 

sFI in Europe. We have shown that, at variance with FFI homozygotes, in sFI patients insomnia and 

other sleep abnormalities are usually accompanied by cognitive, psychiatric, and motor disturbances. 

Furthermore, we have defined the neuropsychological profile of sFI for the first time, and demonstrated 

a low prevalence of autonomic and neurohormonal alterations, as confirmed by multiple diagnostic 

investigations. The absence of pathognomonic clinical signs, the young age at onset and the relatively 

low sensitivity of classical diagnostic investigations (EEG, MRI, CSF 14-3-3 and t-tau) makes the 

clinical diagnosis of sFI challenging. However, our results indicate that video-polysomnography, brain 

FDG-PET, and especially CSF prion RT-QuIC and CSF NfL are the most promising diagnostic tests in 

vivo. 
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FIGURE LEGENDS  

 

FIGURE 1. Clinical course of sFI. The mean time of appearance (in months) from disease onset is 

indicated for each group of symptoms/signs. *In a minority of clinical reports, the description of late 

symptoms was scanty or lacking; as a consequence, the numbers of patients indicated may not reliably 

represent the real frequency of these symptoms. 

 

FIGURE 2. Results of serial polysomnographies. The figure shows the results of two serial 

polysomnographic recording performed in patient #1. (A) First polysomnography (12 months after 

onset): on the top, the hypnogram discloses a severe sleep loss with alteration of its macrostructure, but 

persistence of N2 and N3 sleep stages and of some brief REM (R) sleep episodes; on the bottom, 

representative epochs of N2 (see K-complex on electroencephalographic traces), N3 (see slow wave 

activity) and R sleep stages. (B) Follow-up polysomnography (16 months after onset): on the top, the 

hypnogram shows a complete loss of physiologic sleep cycles and a continuous oscillation between 

wakefulness (W) and subwakefulness (SW=N1 sleep stage) intermingled with brief episodes of REM 

sleep; on the bottom representative epochs of W, SW/N1 and R sleep stages (R.EOG and L.EOG: right 

and left electrooculogram; chin: superficial electromyography of mylohyoid muscle).  

 

FIGURE 3. Neuroimaging findings. In patient #1 Brain MRI FLAIR sequences showed bilateral 

cortical hyperintensities, especially in the fronto-temporal lobes (A). In patient #1 (B) and #13 (C) 

FDG-PET showed a virtually total absence of metabolic activity within the thalamus and a variable 

hypometabolism of cortical regions. 
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FIGURE 4. Neuropathological findings and PrP
Sc

 typing. Severe neuronal loss and reactive gliosis 

in absence of significant spongiform change in medial-dorsal thalamic nucleus (A) and inferior olive 

(C). Normal controls (B and D, respectively) are shown for comparison. (E) Mild, patchy spongiform 

change (frontal cortex, patient #8). (F) Moderate spongiform change (temporal cortex, patient #8). (G) 

Status spongiosus and cortical atrophy (frontal cortex, patient #7). (H) Mild depletion of Purkinje cells, 

moderate Bergmann gliosis and torpedo formation (cerebellum, patient #1). (I) Absence of significant 

neuropathologic changes in the striatum (H&E, patient #8). (J) Prominent spongiform change in the 

striatum in the patient with the longest disease duration (patient #12). (K) Fine, synaptic/granular 

pattern of PrP
Sc 

deposition in the superficial cortical layers (PrP IHC); the box on the upper corner 

shows a detail at higher magnification). (L) small plaque-like PrP
Sc

 deposits in the deep cortical layers 

(PrP IHC). (M) Western blot analysis of PK-resistant PrP
Sc

 showing a type 2 pattern in all cases. One 

sCJDMM1 and one FFI are shown as controls. Type 2 was also detected in the three patients not shown 

in the figure (case #4: data not shown; cases #5 and 6, see Moda et al. 2012). 
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Table 1. Detailed demographic and clinical features of sFI cases. 

 

 The grey background indicates symptoms in the first quartile of the disease course for each patient 

+: reported symptom; -:  symptom not reported 

*: at least one among: insomnia, diurnal drowsiness, sleep vocalizations, simple or complex 

movements during sleep; ¥: at least one among: oculomotor dysfunction or gaze palsy associated or not 

Patient 

Age at 

onset 

(years) 

Sex 

Disease 

duration 

(months) P
sy

ch
ia

tr
ic

 

S
le

ep
 d

is
o
rd

er
s 

*
 

O
cu

lo
m

o
to

r 
/ 

v
is

u
a
l¥

 

P
o

st
u

ra
l 

a
n

d
 

g
a

it
 d

is
o
rd

er
 

C
o

g
n

it
iv

e 
im

p
a

ir
m

en
t 

A
u

to
n

o
m

ic
 α

  

C
er

eb
el

la
r 

P
y

ra
m

id
a
l 

E
x

tr
a

p
y

ra
m

id
a

l 
β
 

2
4

h
 -

 m
o

to
r 

o
v

er
a

ct
iv

it
y
 

D
y

sa
r
th

ri
a
 

M
y

o
cl

o
n

u
s 

W
ei

g
h

t 
lo

ss
 

1 43 F 24 + + + + + + + + + + + + + 

2 55 M 8 + - + + + - + + + - + + - 

3 27 F 36 + + + + + + + + + + + + + 

4 47 F 12 + + + + + - + + + + + + - 

5 24 F 28 + + + + + - + + + + + + + 

6 32 F 26 + + + + + + + + + - + - + 

7 39 F 54 + - + + + - - - + + + + - 

8 49 F 23 + + + + + - + + + - + - - 

9 52 M 23 + + - + + + - + + - + + - 

10 38 M 19 + + + + + - - - + + - + - 

11 25 M 96 + + + + + - + - + + + - - 

12 80 M 7 + + - + + - + + + - + + - 

13 47 M 

39 (still 

alive) 

+ + + + + + + + + + + + + 
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with diplopia; α
:
 at least one among: systemic hypertension (often drug-resistant), tachycardia, slight 

pyrexia, hyperhidrosis, neurogenic urinary alterations or constipation;
 β

: at least one among: 

hypokinetic-rigid syndrome, hyperkinetic involuntary movements (mainly chorea) or limbs dystonia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

 

Table 2. Results of CSF biomarker assays. 

N° 

Time from 

onset (months) 

14-3-3 t-tau NfL 

Prion      

RT-QuiC 

1 11 Negative 630 12100 Positive 

2 7 Negative 2350 - - 

3 12 Negative - - - 

 16 Negative 102 7959 Negative 

4 6 Negative 126 - - 

5 13 Negative 170 - - 

 16 Negative 148 - - 

 20 Negative 150 - - 

6 9 Negative 167 - - 

7 12 Negative - - - 

8 12 Negative - - - 

 16 Negative - - - 

9 16 Negative - - Negative 

11 7 Negative 163 - Positive 

12 

24 

NA 

NA 

NA 

Negative 

Negative 

Negative 

Negative 

317 

167 

188 

134 

- 

- 

- 

- 

-- 

- 

- 

- 

13 11 Negative 226 - - 
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 15 Negative 275 6695 Positive 

        -: not performed; NA: not available 

Table 3. Results of autonomic function tests and neurohormonal assays. 

Patient 

Clinically 

reported 

autonomic 

signs 

Time from 

onset (months) 

Results of autonomic function and neurohormonal tests
α
 

1 Yes 

11 

Tachycardia and exaggerated overshoot (60 mmHg) at Valsalva 

manoeuvre (standardized cardiovascular reflex tests*); normal 24 h-

BcT°, BP and HR circadian rhythms; slight increase in 24h-urinary 

noradrenaline and dopamine. 

17 

Systolic-diastolic hypertension and non-dipper pattern (24 h-BP and HR 

circadian rhythms); normal 24 h-BcT° circadian rhythm; slight increase 

in serum cortisol. 

23 

Cardiovascular sympathetic hyperactivity (standardized cardiovascular 

reflex tests*); normal BcT° rhythm but with increased values (daytime 

mean: 38.1°C, nighttime mean: 36.7°C) (24 h-BcT° circadian rhythm); 

slight increase in blood cortisol and 24h urinary cortisol and adrenaline. 

3 Yes 12 

Normal values (SSR and blood cortisol, ACTH, PRL, FSH and LH 

levels) 

6 Yes 10 Normal values (standardized cardiovascular reflex tests*) 

8 No 12 Normal values (R-R interval variability; SSR) 

9 Yes 9 Persistently raised systolic BP values (24 h-ambulatory BP monitoring) 

13 Yes 

15 Normal values (standardized cardiovascular reflex tests*) 

17 Normal values (blood cortisol, ACTH, PRL, FSH, LH, noradrenaline 
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and adrenaline levels) 

 

BcT°: body core temperature; BP: blood pressure; HR: heart rate; SSR: sympathetic skin response; α: 

performed tests are reported in brackets; *: head-up tilt test, Valsalva manoeuvre, deep breathing, hand 

grip and cold face 

 

  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

Table 4. Neuropathologic findings in the 12 definite cases. 

Case 12 2 4 10 8 9 1 6 5 3 7 11 

Duration (months) 7 8 12 19 23 23 24 26 28 36 54 96 

Frontal Ctx. 

SP 

GL 

NL 

-* 

+ 

- 

-/+ 

+ 

- 

+ 

+ 

+ 

++ 

++ 

+/++ 

-/+ 

+ 

+ 

++ 

++ 

++ 

++ 

++ 

+/++ 

++ 

++ 

++ 

+/++ 

++ 

++ 

++/SS(F) 

++/+++ 

++ 

SS 

+++ 

++ 

SS 

+++ 

+++ 

Temporal Ctx. 

SP 

GL 

NL 

-* 

+ 

+ 

-/+ 

+ 

-/+ 

-/+ 

+ 

-/+ 

++ 

++/+++ 

++ 

++ 

++ 

+/++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++/SS(F) 

++ 

++ 

++/SS 

++/+++ 

++ 

SS 

+++ 

++ 

Occipital Ctx. 

SP 

GL 

NL 

- 

+ 

-/+ 

+/++ 

+/++ 

+/++ 

- 

- 

- 

+ 

++ 

+ 

-/+ 

+ 

-/+ 

+ 

+ 

+ 

+ 

+ 

+ 

NA NA 

+ 

++ 

+ 

SS 

+++ 

++ 

SS 

+++ 

++ 

Striatum 

SP 

GL 

NL 

- 

- 

- 

- 

-/+ 

- 

- 

-/+ 

- 

+ 

+ 

+ 

- 

-/+ 

- 

-/+ 

+ 

-/+ 

-/+ 

+ 

-/+ 

-/+ 

+ 

-/+ 

-/+ 

+ 

-/+ 

+ 

+ 

+ 

+/++ 

+ 

+ 

++ 

+/++ 

+ 

Hippocampus 

(CA) 

SP 

GL 

NL 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

+ 

- 

- 

+ 

- 

- 

+ 

- 

Thalamus^ 

SP 

GL 

NL 

- 

++ 

++ 

- 

++ 

++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

- 

+++ 

+++ 

Hypothalamus
§
 

SP 

GL 
NA 

- 

+ 
NA 

- 

+/++ 

- 

+ 

- 

+/++ 

- 

++ 
NA 

- 

+/++ 

- 

++/+++ 
NA NA 

Inferior Olives 

SP 

GL 

NL 

- 

++/+++ 

++/+++ 

- 

++/+++ 

++/+++ 

- 

+++ 

++ 

NA 

- 

++/+++ 

++/+++ 

NA 

- 

+++ 

++/+++ 

NA NA NA 

- 

+++ 

+++ 

- 

+++ 

+++ 

Cerebellum 

SP 

GL** 

NL 

- 

+/++ 

+ 

- 

+/++ 

+ 

- 

+/++ 

+ 

- 

++ 

+ 

- 

+/++ 

+ 

- 

+/++ 

+ 

- 

+/++ 

+ 

- 

++ 

+ 

- 

+/++ 

+ 

- 

++ 

++ 

- 

++ 

++ 

- 

++ 

++ 

 

+: mild, ++moderate, +++severe changes; -: absent; *: a few vacuoles limited to the superficial cortical 

layers; ^: Dorsomedial nucleus; §: at various levels along the extension of paraventricular nucleus; 

neuronal loss was not assessed due to the heterogeneity of the available anatomical level among cases 

and the complexity of the neuronal hypothalamic cytoarchitecture **: in the molecular layer 
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(Bergmann‟s astrogliosis); CA: Hammon‟s horn; SP: spongiform change; GL: astrogliosis; NL: 

neuronal loss; SS: status spongiosus; NA= not available. F: focal changes.  
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