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Abstract 

Incomplete transformations from ferromagnetic to charge ordered states in 

manganite perovskites lead to phase-separated microstructures showing colossal 

magnetoresistances. However it is unclear whether electronic matter can show 

spontaneous separation into multiple phases distinct from the high temperature state. 

Here we show that paramagnetic CaFe3O5 undergoes separation into two phases with 

different electronic and spin orders below their joint magnetic transition at 302 K.  One 

phase is charge, orbital and trimeron ordered similar to the ground state of magnetite, 

Fe3O4, while the other has Fe2+/Fe3+charge averaging. Lattice symmetry is unchanged but 

differing strains from the electronic orders probably drive the phase separation. Complex 

low symmetry materials like CaFe3O5 where charge can be redistributed between distinct 

cation sites offer new possibilities for generation and control of electronic phase separated 

nanostructures. 

 

Introduction 

Manganites such as La0.7Ca0.3MnO3  and magnetite, Fe3O4,
 share similar physics as both 

have a spin-polarised conducting state near ambient temperature due to double exchange 

between ferromagnetically-aligned Mn3+ and Mn4+ or Fe2+ and Fe3+ spins, respectively. Both 

undergo charge ordering on cooling, which for magnetite is accompanied by a lattice distortion 

below the much-studied Verwey transition at 125 K.1 This was recently found to result from a 

complex ordering of Fe2+/Fe3+ charge states, Fe2+ orbitals, and three-Fe trimeron groups.2 

However, long range phase segregation is observed below charge ordering transitions in many 
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manganites3,4,5 and related perovskites but has not been found in magnetite or related ferrite 

spinels. Spin and charge ordering have recently been explored in non-spinel MFen–1On+1 (n ≥ 

4) ferrites with M = Fe,6,7 Mn,8,9 and Ca,10,11 and our investigation of n = 4 CaFe3O5 has led to 

the present discovery of long range electronic phase separation.  

 

 Results 

Preparation and Characterisation of CaFe3O5. CaFe3O5 was synthesised and 

characterised as described in Methods. The orthorhombic crystal structure consists of FeO6 

octahedra sharing edges to form infinite chains parallel to the a-axis and ribbons of three 

octahedra parallel to the bc-plane as shown in Figure 1a. Magnetisation measurements (Figure 

1b) reveal a sharp magnetic ordering transition at TM = 302 K and a small net magnetisation of 

0.05 µB per CaFe3O5 unit with a moderate coercivity of 0.3 T at 2 K. Ceramic pellets of 

CaFe3O5 are semiconducting with a small magnetoresistance of -1% at 200 K (Figure 1c), 

likely reflecting the small net magnetisation of the sample. 

Evidence for electronic phase separation in CaFe3O5. A single high temperature 

(HT) crystalline phase of CaFe3O5 is observed above TM = 302 K, but both powder synchrotron 

X-ray (Figure 2a,b) and neutron diffraction data (Figure 2c,d) reveal long range phase 

separation as diffraction peaks broaden or split into two components below the magnetic 

ordering transition as shown in Figs. 2a and 2c. The shift of the X-ray (002) peak to lower 2 

at 300 K evidences a small bulk lattice distortion due to spin ordering before separation into 

two phases at lower temperatures. Both low temperature phases have the same Cmcm space 

group symmetry as the HT parent. Crystallographic results are shown in Supplementary Tables 

1-5. Magnetic neutron diffraction peaks observed below TM (Supplementary Fig. 1) show that 

one phase has magnetic propagation vector (½ 0 0) while the other has (0 0 0) (Fig. 2c), and a 

good fit to the data (Fig. 2d) was obtained using the magnetic structure models shown in Figure 

3.  No additional broadening of magnetic peaks was observed showing that both magnetic 

orders have correlation lengths of at least ~200 nm. Both phases have collinear 

antiferromagnetic orders with moments parallel to the c-axis, but an important difference is 

that the (½ 0 0) phase has ferromagnetic alignment of spins within the three-atom ribbons 

parallel to the bc-plane, while the (0 0 0) has ferromagnetic spin chains parallel to the a-axis. 

Although both orders are antiferromagnetic, the observation of a small net magnetisation below 

TM suggests that one or both of the spin structures are canted. The fractions of the two phases 



3 

 

are found to be different in the synchrotron and neutron diffraction experiments (Figure 2a), 

consistent with a strain-driven phase separation being dependent on the thermal history of the 

sample. 

Thermal evolution of lattice parameters from neutron and X-ray fits are respectively 

shown in Figure 4a and Supplementary Fig. 2, and variations of internal structural quantities 

from both studies are shown in Figure 4b-d to emphasise the reproducibility of discovered 

structural differences between the two phases. Two inequivalent iron sites Fe1 and Fe2 are 

present in a 2:1 ratio in CaFe3O5, and in the HT phase they have respective Bond Valence Sums 

(BVSs) of 2.43 and 2.22, equivalent to formal charges of +2.75 and +2.50 when renormalized 

to the average of +2.67. Differing charge redistributions occur below the 302 K magnetic and 

phase segregation transition (Figure 4b). In the phase with magnetic propagation vector (½ 0 

0), the Fe1 and Fe2 BVSs diverge to very different values of 2.67(6) and 2.03(4) at 4 K, 

consistent with charge order (CO) of Fe3+ and Fe2+ respectively. The coexisting phase with (0 

0 0) magnetic order shows the opposite behaviour as the Fe1 and Fe2 BVSs converge to similar 

values of 2.44(8) and 2.29(7) at 4 K showing that the electronic states at the two sites are not 

significantly different, hence this phase is charge averaged (CA).  

Degenerate 3d6 Fe2+ states are subject to Jahn-Teller distortion which leads to tetragonal 

octahedral compression in magnetite,2 corresponding to negative values of the QJT distortion 

parameter. The Fe2 site in CaFe3O5 has a large negative QJT value due to intrinsic distortions 

within the HT structure (Figure 4c), but below TM = 302 K QJT becomes more negative for the 

CO phase, consistent with localisation of Fe2+ states, while the magnitude of QJT decreases in 

keeping with the observed increase in Fe2 site valence for the CA phase. Jahn-Teller distortion 

at the Fe2 site in the CO phase leads to order of the t2g orbital with minority spin electron 

density directed towards the two neighbouring Fe1 sites. Hence this localised orbital has the 

correct orientation to form a trimeron, a linear unit of three Fe ions formed by delocalisation 

of the minority spin electron in the ordered orbital of the central Fe2+ ion,2 as shown in Figure 

3c. Trimeron formation requires ferromagnetic alignment of the three magnetic moments, Fe3+ 

- Fe2+ - Fe3+ charge order, orbital order at the central Fe2+ in the plane of the three atoms, and 

shortening of the Fe-Fe distances within the trimeron.2 All these conditions are observed in the 

Fe1-Fe2-Fe1 ribbons in the CO phase with shortening of Fe1-Fe2 distances below TM observed 

in Figure 4d, but none are fulfilled in the CA structure, so the observed spin orders and 

structural distortions in CaFe3O5 demonstrate that trimeron order is observed only in the CO 

phase. However, a slight shortening of Fe-Fe distances in the ferromagnetic chains parallel to 
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the a-axis is observed in the CA phase (Figure 4d), consistent with a weak bonding effect from 

extended band states of the minority spin electrons. Fe1-Fe1 and Fe2-Fe2 distances are 

constrained to be equal (to a/2) and this is the likely driver for the observed averaging of charge 

states between the two sites in the CA phase so that their minority spin populations become 

more equal.  

The electronic orders in the two phases of CaFe3O5 do not change the structural 

symmetry, but they lead to different cell distortions (Figure 4a) as trimeron formation shortens 

the c-axis parameter in the CO phase, with a and b expanding to compensate, while a-axis 

shortening in the CA phase leads to expansion of c. Although the overall cell volumes for the 

two components remain identical within error at low temperatures, the differing spontaneous 

strains from these lattice distortions are the likely driver for the long range separation as 

proposed for perovskite manganites.12,13,14 Short range phase and strain fluctuations in the high 

temperature phase are evidenced indirectly below 350 K through divergence of zero field- and 

field- cooled susceptibilities in Fig. 1b, and changes in the slopes of b and c lattice parameters 

in Fig. 4a.  

Charge ordering in one of the two low temperature phases is clearly a key driver for the 

long range electronic phase separation in CaFe3O5 and perovskite type oxides15 although in 

CaFe3O5 this leads to the formation of orbital molecules,16 more complex electronic objects 

than simple localised-charge ions. However, phase separation in CaFe3O5 occurs without a 

change of lattice symmetry in either component, demonstrating that strain variations within a 

given lattice are sufficient to drive long range segregation. Band structure calculations (shown 

in Supplementary Fig. 4 and Supplementary Table 6) confirm that these distortions are 

sufficient to stabilise charge order in one structure but not the other for a realistic value of the 

Hubbard U-parameter. Phase separation in manganites usually results from an incomplete 

phase transition where a metallic high temperature ferromagnetic phase is partially transformed 

to a charge ordered insulator, and the high and low temperature phases coexist to base 

temperature. A notable example is Nd0.5Sr0.5MnO3 which on cooling was observed to order as 

a single ferromagnetic (FM) phase at 250 K, then to phase separate into a mixture of FM and 

A-type antiferromagnetic (AFM-A) phases below 220 K, and finally to undergo a further phase 

separation into a mixture of FM, AFM-A and charge ordered AFM-CE phases below 150 K, 

with all three phases extant down to the lowest measured temperature of 15 K.17  CaFe3O5 

undergoes a genuine electronic phase separation in the sense that both of the two low 

temperature CA and CO phases are electronically and magnetically distinct from the HT 
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paramagnetic state, and so is analogous to e.g. the separation of a fluid into a liquid and gas 

below a critical transition. Both low temperature CaFe3O5 phases are magnetically ordered and 

it is remarkable that they appear to share a common magnetic ordering temperature as shown 

in Figure 2c although the spin-spin exchange interactions within the two magnetic structures 

will not be identical.  

Another important difference is that phase separation in manganites is associated with 

substantial intrinsic disorder due to cation mixing, and a recent study has demonstrated that 

chemical ordering of cations in (La1-yPry)1-xCaxMnO3 suppresses long range phase separation.18 

CaFe3O5 is in principle a stoichiometric material although small strain variations due to the 4% 

substitution of Fe for Ca observed in our polycrystalline sample may tip the local balance 

between the energies of the two ground states leading to phase coexistence. The resulting 

disorder in magnetic interactions could also be important in stabilising the phase coexistence 

in a Griffiths-type model.19 All Mn sites are electronically equivalent in the high temperature 

aristotype manganite perovskite structure but CaFe3O5 has a further electronic degree of 

freedom as charge can be redistributed between structurally inequivalent Fe1 and Fe2 sites, 

leading to the observed extremes of charge ordering (CO) in one phase and charge averaging 

(CA) in the other. This charge redistribution mechanism is akin to electronic separation models 

originally proposed for manganites,20,21 although couplings of both the charge redistribution 

degree-of-freedom and trimeron formation associated with charge and orbital ordering to the 

lattice appear to be important factors that drive phase segregation in CaFe3O5.  

 

Discussion 

In conclusion, the present study demonstrates that phase separation of a single high 

temperature paramagnetic state into two distinct low temperature phases with different long 

range spin and electronic orders occurs in CaFe3O5 when cooled below 302 K. Although both 

phases are antiferromagnetic overall, the formation of different ferromagnetic units within 

them is coupled to the electronic orders; one phase has full Fe2+/Fe3+ charge order associated 

with trimeron formation, but charge averaging stabilises ferromagnetic chains in the other 

phase. Weak Fe-Fe bonding driven by the ferromagnetic orders introduces different lattice 

strains into the two phases although no change of structural symmetry occurs, and strain 

variations within the polycrystalline sample tip the local balance between the energies of the 

two phases leading to phase coexistence. CaFe3O5 thus links the trimeron-ordering of magnetite 
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to the microstructural physics of perovskite manganites. CaFe3O5 also demonstrates new 

possibilities for more complex ‘electronically soft matter’22 than in perovskites where orbital 

molecule formation and redistribution of charge between distinct cation sites offer additional 

degrees-of-freedom for generation and potential control of electronic phase-segregated 

nanostructures. 

 

 Methods 

 Sample preparation and characterisation. Polycrystalline CaFe3O5 was prepared 

from stoichiometric quantities of CaFe2O4, Fe2O3 and Fe powders pressed into pellets, sealed 

in evacuated quartz tubes, and heated at 1100 °C for 12 hours. (The CaFe2O4 was synthesised 

at ambient pressure using the ceramic technique outlined by Wan et al,23 where CaCO3 and 

Fe2O3 powders were ground together in 1:1 ratio, pressed into pellets, heated at 850 °C for 4 

hours, reground and repelleted, and finally reheated at 1100 °C for 12 hours.) 

Thermogravimetric analysis heating the sample in air at 10 °C min-1 to 900 °C, as shown in 

Supplementary Fig. 3, gave a mass increase of 2.789%, in agreement with the calculated value 

of 2.781 % for oxidation of CaFe3O5. Powder X-ray diffraction confirmed that CaFe3O5 adopts 

an orthorhombic Sr2Tl2O5 type structure with space group Cmcm as reported previously.10 

 Magnetic and electrical measurements. Magnetic measurements were carried out 

with a Quantum Design MPMS XL SQUID magnetometer. Magnetic susceptibility was 

recorded in zero field cooled (ZFC) and field cooled (FC) conditions between 2 and 400 K with 

an applied magnetic field of 1000 Oe. Hysteresis loops were also measured at 2, 230 and 300 

K. Electrical resistivity measurements were carried out with a Quantum Design PPMS, 

between 180 and 400 K. Magnetoresistance hysteresis loops were also measured at 200 K. 

 Powder synchrotron X-ray and neutron diffraction studies. High resolution powder 

X-ray diffraction data were collected at the ID22 beamline of the ESRF with incident 

wavelength 0.3999 Å. The powder was packed into a glass capillary with an outer diameter of 

0.7 mm and spun during data acquisition with temperatures from 80 to 500 K controlled using 

an Oxford Cryostream system. High resolution neutron diffraction data were collected at the 

D2B beamline of the ILL with incident wavelength 1.5940 Å. 5 g of powder samples were 

packed into a vanadium can and diffraction patterns were collected at temperatures from 4 K 

to 500 K. Crystal and magnetic structures of CaFe3O5 were Rietveld-fitted using the FullProf 

Suite.24 A small amount of Fe at the Ca site was found from both synchrotron X-ray [4.4(3)% 
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Fe] and neutron [4.0(8)% Fe] refinements of cation site occupancies at 500 K. Crystal structure 

refinements of the two phases formed below 302 K in CaFe3O5 was possible with both the 

synchrotron X-ray and neutron powder diffraction data except at temperatures just below the 

transition (275 and 285 K). Magnetic Irreducible Representation analysis was carried out using 

BasIrReps. Bond valence sums for each iron site were calculated using a standard method with 

linear interpolation to estimate mixed charge states between Fe2+ and Fe3+.25,26 The crystal 

structure projection in Figure 1a was generated using VESTA27 and the magnetic structures in 

Figure 3a and 3b were made using FullProf Studio.  

 Electronic structure calculations. DFT+U electronic structure calculations were 

performed using CASTEP28 (v16 and 17) utilising planewaves (650 eV cutoff) and on-the-fly 

pseudopotentials, within the PBE approximation to exchange and correlation. Band structures 

(shown in Supplementary Fig. 4 and Supplementary Table 6) predict metallic charge averaged 

ground states for both the refined CO and CA structures at small values of the Hubbard U 

energy, and insulating charge ordered states for both phases at large U. However, values in the 

range 2.0 < U < 4.0 eV simultaneously predict the charge averaged state for the CA structure 

and the charge ordered state for the CO structure, and hence confirm that this range is realistic 

for Fe oxides.  

 

 Data Availability 

Data that support the findings of this study have been deposited at 

https://datashare.is.ed.ac.uk/handle/10283/838. 
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a)       b) 

  

   c) 

 

Figure 1. Crystal structure and magnetisation studies of CaFe3O5. (a) Polyhedral projection of the 

CaFe3O5 structure showing FeO6 octahedra in red/blue for symmetry inequivalent Fe1/Fe2 sites, and 

Ca within trigonal prismatic tunnels in purple. (b) ZFC (closed symbols) and FC (open symbols) 

magnetic susceptibilities for CaFe3O5, with insert showing magnetisation-field measurements at 2, 230 

and 300 K. (c) Log10 plot of the electrical resistivity of a sintered pellet of CaFe3O5 against temperature 

on cooling and warming, with the discontinuity at 302 K marked. Inset in the top right shows the plot 

against reciprocal temperature with a change in activation energy from 0.61 eV below TM to 0.26 eV 

above the transition. Inset in lower left displays the magnetoresistance MR at 200 K. 
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a)       b) 

 

c)       d) 

 

Figure 2. Electronic phase separation of CaFe3O5. (a) Evolution of the X-ray (002) peak which shifts 

to lower 2 when cooled to 300 K, just below the TM = 302 K transition, with separation into two 

components at lower temperatures. The phase fractions of the charge ordered (CO) phase, obtained 

from synchrotron (X) and neutron (N) diffraction data are shown in the right hand panel. Error bars are 

the estimated standard deviations calculated during profile fitting. (b) Rietveld fit to synchrotron powder 

diffraction profiles for CaFe3O5 at 80 K (R-factors Rp = 9.35 %, Rwp = 11.0 %), with blue and red tick 

marks indicating the two low temperature phases and green marks 2.3% of Ca2Fe2O5 impurity. (c) The 

appearance of the magnetic reflections with propagation vectors of (000) for the CO phase and (½00) 

for the charge averaged (CA) phase below 302 K and the temperature evolution of their magnetic 

moments. (d) The Rietveld fit to neutron powder diffraction profiles for CaFe3O5 at 4 K (R-factors Rp 

= 6.14 %, Rwp = 7.28 %), with structural phases indicated with blue and red tick marks. The green and 

pink tick marks represent the magnetic phases with propagation vectors of (½00) and (000).  
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(a)     (b)         (c) 

 

Figure 3. Magnetic structures for the two phases of CaFe3O5. Fe1/Fe2 spins are shown in red/blue 

and Ca ions in purple. (a) Magnetic structure of the charge ordered (CO) phase CaFe3O5 with 

propagation vector (½ 0 0), with lines showing ferromagnetic order within trimerons. (b) Magnetic 

structure of the charge averaged (CA) phase, with (0 0 0) propagation and lines showing the 

ferromagnetic chain parallel to the x axis. (c) A trimeron unit as found in the CO structure (a) with 

bonding electron density represented as an ellipsoid. The size of the t2g orbitals approximates the atomic 

populations. The atomic displacement arrows indicate the elongation of the four Fe-O bonds 

perpendicular to the Jahn Teller contracted axis and the shortening of the cation-cation distances due to 

weak Fe-Fe bonding interactions.  

 

 

 

  



14 

 

a)       b) 

 

c)       d) 

 

Figure 4. Crystal structure parameters of CaFe3O5. (a) Changes in the lattice parameters relative to 

500 K values obtained from PND (a500 K = 3.03896(1), b500 K = 10.01355(5) and c500 K = 12.67039(7) 

Å). Temperature dependence of the (b) BVS and (c) the amplitude of Jahn-Teller distortion (QJT) of the 

FeO6 octahedra for the two sites in the high temperature (HT), charge ordered (CO) and charge averaged 

(CA) phase, obtained from neutron (N) and synchrotron X-ray (X) diffraction data. (d) The evolution 

of the Fe1-Fe2 bonding distance with temperature, with the lattice parameter (Fe1,2-Fe1,2) as reference. 

Error bars are the estimated standard deviations calculated during profile fitting. 

 

 


