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Abstract 

 

Pelvic morphology is highly reflective of both sex and age changes in humans, making it a 

popular research focus in forensic anthropology. Relevant studies range from traditional 

descriptive to more complicated approaches involving statistical modeling, with the latter 

having become excessively popular in the last decades. The present study examines the 

performance of Bayesian statistics in age estimation based on the morphological changes 

observed on the iliac auricular surface. The aim is two-fold: a) to test whether a Bayesian 

approach can improve age-at-death estimation compared to the original Lovejoy et al. 

(1985a) and Buckberry and Chamberlain (2002) methods, and b) to explore the impact of 

adopting different samples as informative priors as well as for obtaining the transition 

analysis parameters. For this purpose, two modern Greek documented collections have been 

used, the Athens and the Cretan Collection. Our results found no clear improvement in age 

prediction when adopting Bayesian age estimation, with only one exception: Athenian males 

for the Buckberry and Chamberlain (2002) method. The choice of samples for transition 

analysis and as informative priors affected the results but this effect was statistically non-

significant.   
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Introduction 

 

Age-at-death estimation is a key parameter in forensic anthropological analysis as age is one 

of the three main variables in establishing an individual’s biological profile, along with sex 

and stature (Byers 2017; Dirkmaat 2012). Despite its importance, age-at-death estimation for 

adults is problematic due to the fact that skeletal age and chronological age become more and 

more disassociated as the individual grows older due to the cumulative impact of multiple 

factors on skeletal degeneration, such as pathology, activity and diet (Nawrocki 2010). A 

large number of methods focused on different anatomical parts of the skeleton have been 

proposed for age estimation in adult remains (e.g. Brooks and Suchey 1990; Meindl and 

Lovejoy 1985). Validation studies of these methods in different assemblages have produced 

mixed and often discouraging results, stressing the high level of inter-population variation in 

the ageing process and the need for different approaches (Falys et al. 2006; Hershkovitz et al. 

1997; Michopoulou et al. 2017; Saunders et al. 1992; Xanthopoulou et al. 2018).  

 

Additionally to the limitations of each ageing method, an important general problem 

highlighted by Bocquet-Appel and Masset (1982) is ‘age mimicry’, that is, the fact that the 

ages estimated in a target sample will be biased by the demographic profile of the reference 

sample used in order to develop each skeletal ageing method. In particular, traditional ageing 

methods associate specific morphological skeletal changes with a mean age in the reference 

population. However, this mean age largely depends on the age structure of the reference 

population; therefore, the age distribution of the reference sample will largely affect the age 

distribution of the target sample in which the method is applied (Bocquet-Appel and Masset 

1982, 1995; Konigsberg and Frankenberg 1992). 

 

Another serious limitation of traditional ageing methods is that few of them allow the 

combination of skeletal ageing markers from different anatomical structures. This is a serious 

issue since, as highlighted by Milner and Boldsen (2012), looking simultaneously at 

anatomical structures across the skeleton can improve age estimates because each structure 

will be informative about a single transition at some point in adulthood. Among the proposed 

approaches for combining traditional age indicators are the Complex and Multifactorial 

Methods (Acsádi and Nemeskéri 1970; Ferembach et al. 1980; Lovejoy et al. 1985b); 

however, these do not appear to provide better results than the individual age indicators they 

are based on (Milner and Boldsen 2012).  
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Bayesian age estimation, that is, transition analysis (TA) coupled with Bayesian statistics, has 

been proposed as a potential solution to the above problems. TA estimates the age of 

transition between successive stages of an age marker and, when combined with Bayesian 

analysis, the age intervals estimated for each stage of transition control for biased age-at-

death estimates (Boldsen et al. 2002; Konigsberg et al. 2008). The past years have witnessed 

an increase in the number of papers using Bayesian age estimation, while the popularity of 

this approach is further attested by the imminent integration of the ADBOU software for age 

estimation using Bayesian statistics (Boldsen et al. 2002) into Fordisc, a computer program 

that employs statistical methods for sex, ancestry, and stature estimation, widely used by 

forensic anthropologists. Among the studies examining the performance of Bayesian age 

estimation, some found it to outperform traditional approaches by providing more realistic 

mortality profiles (Bullock et al. 2013) or higher accuracy of the generated age ranges 

(Godde and Hens 2012; Hens and Godde 2016). In addition, a number of scholars have 

proposed new ageing methods or adaptations of existing ones using Bayesian analysis. 

Methods for age estimation from the clavicle (Langley-Shirley and Jantz 2010), the first rib 

(DiGangi et al. 2009), dental wear (Prince et al. 2008), the development of the third molars 

(Tangmose et al. 2015), or a revised version of the Suchey-Brooks method (Berg 2008) are 

some examples of this trend. Even though most studies acknowledge the importance of 

Bayesian age estimation and many note its superior performance compared to traditional 

methods for age-at-death estimation, serious concerns have also been expressed with regard 

to the suitability of the reference populations used in the estimation of the TA parameters 

(e.g. Schmitt et al. 2002), the effectiveness of the anatomical structures used in capturing age-

at-death changes (Milner and Boldsen 2012) and the overall potential of this approach to 

provide accurate age estimates (Lottering et al. 2013).  

 

The aim of the present paper is to examine the extent to which Bayesian age estimation can 

improve age estimation based on the auricular surface of the ilium in two different modern 

Greek assemblages, one from Athens and the other from Crete. Previous validation studies of 

traditional ageing methods on these two assemblages have produced contradictory results. 

Xanthopoulou et al. (2018) found the auricular surface of the ilium to produce the most 

accurate age estimates in the Athens Collection compared to the pubic symphysis and cranial 

sutures. In particular, the authors noted that the Lovejoy et al. (1985a) method gives the 

highest rates of correct age classifications when adopting expanded age ranges (78% to 83%), 
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while the Buckberry and Chamberlain (2002) method gave the most accurate results 

compared to all methods in the older age groups (56% in the total sample, 80% to 82% in 

individuals over 51 years). Similarly, Moraitis et al. (2014) found the Buckberry and 

Chamberlain (2002) method to work well in the Athens Collection and in their study the good 

performance of this method was identified also among younger adults. In contrast, 

Michopoulou et al. (2017) found the Buckberry and Chamberlain (2002) method to perform 

very poorly in the Cretan Collection (19% to 23% correct age classifications). We should 

stress that in the Xanthopoulou et al. (2018) study, the use of Bayesian age estimation by 

means of the ADBOU software produced even lower correct age classifications (28% to 44% 

for the auricular area of the ilium) compared to the original Lovejoy et al. (1985a) and 

Buckberry and Chamberlain (2002) methods.  

 

In order to examine whether the performance of the auricular surface of the ilium as an age 

marker can improve further in these two Greek collections, most notably in the Cretan one, 

we applied Bayesian analysis on the Lovejoy et al. (1985a) and Buckberry and Chamberlain 

(2002) methods and experimented with different informative priors and populations for the 

derivation of transition analysis parameters. In this context, we provide a complete package 

of R functions with detailed instructions for their use so that even a novice scholar can easily 

apply this technique in a customized manner, using his/her own TA samples and informative 

priors. This code along with detailed instructions for its use are given as supplementary 

material (R_Instructions_for_Bayesian_age_estimation and 

R_BayesianAgeEstimationFunctions). 

 

 

Bayesian age estimation 

 

The Bayesian approach for age estimation computes the conditional probability Pr(a|c) that 

the skeletal remains are from an individual who died at age = a given that the observed age 

marker is c via Bayes’ Theorem (Boldsen et al. 2002; Konigsberg et al. 2008): 

 

Pr(𝑎|c) =
Pr(c|𝑎)f(𝑎)

∫ Pr(c|x)f(x)dx
∞
𝑠ℎ𝑖𝑓𝑡

      (1) 
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where Pr(c|a) is the probability of observing an age marker c given that the individual died at 

age = a, f(a) is the age-at-death distribution of a reference population called informative 

prior, and shift is the minimum age in the informative prior. It is seen that the application of a 

Bayesian approach for age estimation presumes the estimation of the age-at-death distribution 

function f(a) of the informative prior as well as the conditional probabilities Pr(c|a). The 

function f(a) is estimated using survival analysis, whereas the conditional probabilities 

Pr(c|a) may be obtained using transition analysis. Then Equation (1) is adopted to produce 

probability density functions that can be used to estimate the highest posterior densities 

(HPD) and highest posterior density ranges (HPDR), which approximate confidence ranges. 

 

According to the conventions outlined in the “Rostock Manifesto” (Boldsen et al. 2002), f(a) 

must be estimated before Pr(c|a) can be assessed and, ideally, f(a) is the probability 

distribution of lifespans in the target population. Since it is not always possible to estimate 

f(a) in the target population, we select an informative prior that reflects a similar age 

distribution to the target sample. f(a) may be estimated from the function (Konigsberg et al. 

2008; Prince et al. 2008; Wood 2011): 

 

f(x) = h(x)S(x)  (2) 

 

where h(x) is the Gompertz model: 

 

ℎ(𝑥) = 𝑎3𝑒
𝑏3𝑥                                      (3) 

 

and S(x) the survival function: 

 

𝑆(𝑥) = exp⁡[
𝑎3

𝑏3
(1 − 𝑒𝑏3𝑥)]                  (4) 

 

i.e. the function that describes the survivorship rate in the informative prior. Here, a3 is 

known as the baseline mortality, whereas b3 is the senescent component. These parameters 

may be estimated as follows: From the sample of the ages of the informative prior we 

compute the survivorship rate, for example using the survival library of R, and fit the model 

of Equation (4) to these data. This option involves a non-linear fitting. Alternatively, we may 

maximize the sum of all log(f(x)) values computed over all ages (Konigsberg et al. 2008). 
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Note that in all these computations as well as when f(a) is applied in Equation (1), the 

minimum age in the informative prior (shift) is subtracted from the x values.  

 

As already pointed out above, the conditional probabilities Pr(c|a) necessary for the 

application of Equation (1) are obtained using TA. TA is a statistical method for estimating 

the age (age-at-transition) at which an individual moves from one age stage to the next higher 

stage. To estimate these ages-at-transition, we may use probit regression models for ordinal 

responses to fit the ordinal variable c that codes the age stages (dependent variable) to the log 

of the real ages (Konigsberg et al. 2008 and 

http://faculty.las.illinois.edu/lylek/TransAna/TransAna.htm). The relationships that express 

these models are: 

 

probit(Pi) = ai + b*log(age)   (5) 

 

or    

 

probit(Pi) = ai + bi*log(age). (6) 

 

depending on whether the fitting models exhibit a common slope, b, or different slopes, bi. In 

the above equations i = 1, 2, … (J-1), where J is the number of factors of the ordinal variable. 

It is seen that the fitting procedure yields (J-1) intercepts, a1, a2, …, a(J-1) and, depending on 

the researcher choice, either (J-1) slopes, b1, b2, …, b(J-1), or one common slope, b. At the age-

at-transition from stage i to (i+1) on average half of the observations will fall at stage i and 

the other half at stage i + 1. Therefore, at the mean age-at-transition, i, between stages i and 

(i+1), Pi = 0.5, probit(Pi) = probit(0.5) = 0 and from Equation (5), we obtain 0 = ai + 

b*log(i), which yields log(i) = |ai/b|. Similarly, from Equation (6), we obtain log(i) = 

|ai/bi|. In addition, from the properties of the probit function, it arises that when log(age) = 

log(μi) + σ, then Pi = 0.841. Therefore, probit(0.841) = 1 and eventually σ = 1/b. For σi, we 

similarly have σi = 1/bi.  

 

It is seen that the ratio (absolute value) |ai/bi| or |ai/b| gives the mean age-at-transition, i, 

between stages i and (i+1), and 1/bi or 1/b is the standard deviation, σi or σ, of the distribution 

curve of the age-at-transition. Thus, based on the above equations, TA estimates the log of 

http://faculty.las.illinois.edu/lylek/TransAna/TransAna.htm
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ages-at-transition and their common (or not) standard deviation, σ. These quantities may be 

used to compute the conditional probability Pr(c|a) in Equation (1). According to Konigsberg 

et al. (2008), the conditional probability Pr(c|a) can be estimated from:  

 

Pr(c=i|a) = (log(age), i-1, ) - (log(age), i, ),   i = 2, 3, …, J-1 (7) 

 

where  is the cumulative distribution function of the normal distribution, age is measured in 

years, and i is the age-at-transition from phase c = i to c = i+1. When c = 1 or c = J, Pr(c|a) 

can be estimated from the following expressions:   

 

Pr(c=1|a) = 1 - (log(age), 1, ) and Pr(c=J|a) = (log(age), J-1, ) (8) 

  

The above analysis concerns just one trait. If the ageing method involves m traits, Boldsen et 

al. (2002) proposed the following expression: 

  

𝑃𝑟(𝑎|𝑐) =∏𝑃𝑟(𝑎|𝑐𝑘)

𝑚

𝑘=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

 

where Pr(a|c) is the conditional probability that the skeletal remains are from an individual 

who died at age = a given that the observed age marker c is in fact c1 for trait 1, c2 for trait 2 

… cm for trait m. Thus, we multiply all the distributions of the individual traits and divide by 

the integral of this product to create a proper probability density function.  

 

The Bayesian age estimation described above is a standard approach developed in order to 

improve age prediction (Boldsen et al. 2002; Konigsberg and Frankenberg 1992; Konigsberg 

et al. 2008) and constitutes a basic tool for age-at-death estimation for the last two decades. 

However, as any statistical technique, the accuracy of its predictions depends upon the 

fulfilment of the various assumptions on which it is based. The first source of problems 

comes from the Bayes theorem, Equation (1), and refers to the selection of the informative 

prior. In particular, the informative prior and the target sample should reflect similar age 

distributions (Hoppa and Vaupel 2002). However, the age distribution of the target sample is 

not known in bioarchaeological assemblages, and this is a serious issue in palaeodemography 

as the population age structure is precisely what one wants to discover when looking at 
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skeletons. This issue may be addressed by using a uniform, or uninformative, prior 

distribution. This is a conservative approach in the sense that a specific population’s age-at-

death pattern is not imposed onto the ages being estimated, but it may not yield particularly 

good results (Milner and Boldsen 2012). In modern assemblages the age distribution of the 

target sample may be known but there is a problem when the demographic profile of the 

target sample is markedly different from that of the parent population. 

 

Another source of problems originates in the assumptions of the transition analysis. The 

validity of the obtained results depends on whether the probit regression models with or 

without a constant slope, Equations (5) and (6), do describe the c vs. log(age) data of the 

training sample. This requirement is satisfied and a good fitting is achieved if the training 

sample is relatively large so that all stages of the skeletal ageing marker under study are 

sufficiently represented. A second assumption is that the distribution of log(age) in the 

training sample follows the normal distribution, Equations (7) and (8). 

 

If the above preconditions are fulfilled, Bayesian age estimation is expected to give better 

predictions than traditional ageing methods (e.g. Brooks and Suchey 1990; Lovejoy et al. 

1985a; Meindl and Lovejoy 1985) since it should reduce the age mimicry effect, it can make 

predictions based on multiple traits, and can provide confidence intervals for each age 

estimate. The main limitation of the Bayesian approach is that it is rather sensitive to the 

violation of its basic assumptions, as stated above, and this is likely the reason why in certain 

cases this method has given poor results (see Introduction). In addition, it is more laborious 

than traditional methods and requires the use of specialized software.  

    

 

Materials and Methods 

 

Materials 

 

Two modern Greek documented skeletal collections were studied. The first is housed at the 

Department of Animal and Human Physiology at the National and Kapodistrian University in 

Athens. The sample examined consisted of 59 females and 81 males and represents 

individuals who lived mainly in the second half of the twentieth century (Eliopoulos 2007; 

Xanthopoulou et al. 2018). The second collection is housed at the facilities of the Forensic 
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Pathology Division of the Hellenic Ministry of Justice and Human Rights in Crete. It consists 

of 54 females and 52 males, exhumed from St Konstantinos and Pateles cemeteries in 

Heraklion, Crete, who died between 1963 and 1997 (Kranioti et al. 2008). Table 1 depicts the 

age profile of the two Greek collections used in this study.  

 

For the derivation of the transition analysis parameters, we additionally used the data 

provided in Hens and Godde (2016) for modern American males (n = 372) curated in the 

William M. Bass Donated Skeletal Collection. This collection includes a variety of donors 

from United States and the world and represents a sample largely ethnically distinct from the 

Greek collections under study. Finally, among the informative priors for males, we used the 

Balkan sample (n = 212) from Konigsberg et al. (2008) in order to draw the demographic 

parameters of our models from a geographically proximal group to Athens and Crete. The 

only information provided in Konigsberg et al. (2008) about this sample is that it consists of 

Balkan genocide victims but no further indication as to the exact origin of the individuals is 

given. In addition, Konigsberg et al. (2008) stress that the ages-at-death of this sample are 

those reported by relatives, therefore, they may not always be exact.  

 

Table 1 Profile of the Greek material under study 

 

Age 

group 

Athenian 

Male 

Athenian 

Female 

Cretan 

Male 

Cretan 

Female 

18-30 

31-40 

41-50 

51-60 

61-70 

71-80 

81-90 

Total 

14 

8 

14 

16 

14 

8 

7 

81 

4 

6 

11 

9 

7 

12 

10 

59 

0 

1 

1 

14 

11 

15 

10 

52 

3 

3 

1 

6 

15 

10 

16 

54 

 

 

Methods 
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The effectiveness of Bayesian statistics in age estimation was explored in the present paper 

using the Lovejoy et al. (1985a) and the Buckberry and Chamberlain (2002) methods. Both 

methods focus on the morphology of the auricular surface of the ilium and they were used in 

this paper both in their original form as well as using Bayesian analysis. For the remainder of 

this paper, the Lovejoy et al. (1985a) method in its original and Bayesian form will be 

denoted as L and the Buckberry and Chamberlain (2002) method as BC. For the Buckberry 

and Chamberlain (2002) method, when Bayesian analysis is applied on the composite score, 

the method will be denoted as BCc. 

 

To test the performance of Bayesian statistics, a combination of target samples, TA samples 

and informative priors was adopted. Initially we examined the case where the sample from 

Athens was used as target, TA and informative prior in order to test how Bayesian age 

estimation performs in an ‘ideal’ case. Subsequently, we used the Athens Collection as the 

target sample and informative prior, and used the TA parameters from the American 

assemblage in order to explore how much age predictions change when the analysis 

parameters are obtained from a population ethnically distinct from the target one. Finally, we 

used the Cretan sample as target, the Cretan, Athenian and American samples to obtain the 

TA parameters and the Athenian, Cretan and Balkan samples as informative priors 

successively.  

 

Method performance 

 

We used three approaches in order to test how different models perform in age-at-death 

estimation: 

 

1. We counted the number of cases where the documented age-at-death fell within different 

intervals (±5, ±10, ±20 years) around the predicted mean age-at-death. For L the midpoint of 

each interval of the original method was used as the mean estimated age, while for the last 

phase, the estimated age was arbitrarily set at 70 years since Lovejoy et al. (1985a) only 

provide a broad age estimate over 60 years for individuals belonging to this stage. 

Subsequently, the percentage of successful predictions of the Bayesian methods was 

compared to that of the original methods using the same intervals around the estimated mean 

age-at-death. Fisher’s test was used to identify statistically significant differences between 

methods. We must note that other authors (e.g. Hens and Godde 2016) performed this 
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comparison using different confidence intervals for the Bayesian analysis. For example, for 

L, the original version of which uses 5-year intervals, Hens and Godde (2016) used as a 

comparison the 50% Confidence Interval (CI) for the Bayesian version. This approach has, 

however, the serious limitation that often the intervals being compared are very different in 

range as the 50% CI for the Bayesian method results in intervals ranging from 5 to 18 years 

(Table 9 in Hens and Godde 2016). 95% CIs for the difference in the percentage successes 

between original and Bayesian methods were also estimated and used as a criterion.  

2. We have estimated the Pearson correlation coefficients between the mean ages estimated 

using different methods (original and Bayesian). Statistically significant differences between 

the correlation coefficients were also explored. 

3. We plotted the documented age-at-death for all individuals in the target samples as well as 

the age-at-death predicted using the original methods and their Bayesian implementation after 

all cases had been organized in increasing documented age-at-death.   

 

The first two approaches should be used in conjunction since each one independently may 

result in misleading conclusions. It is possible to get a high correlation between methods but 

poor predictive accuracy, for example if one method produces systematically higher or lower 

values than the other. Nonetheless, a small correlation coefficient indeed suggests that a 

method has a poor performance. In addition, a high predictive accuracy may also be 

misleading because, for example, age predictions that fluctuate around the middle of the 

sample age distribution may show satisfactory classification rates but small correlation with 

the documented age-at-death of the individuals, indicating a poor method performance. As 

for the correlations, a small percentage of success shows again that a method is problematic. 

 

Software 

 

For the implementation of the Bayesian age estimation, a complete package of R functions 

has been written and is given as Supplementary material along with step-by-step instructions 

for its use. The functions can estimate the Gompertz model parameters, calculate the 

survivorship rate and plot Kaplan-Meier survivorship curves, run transition analysis (TA), 

estimate highest posterior densities (HPD) and highest posterior density ranges (HPDR) per 

individual or per sample and calculate the frequencies of correct age estimations within a 

certain age range. 
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In addition, the age-at-death distribution of different samples was compared by means of 

Kolmogorov-Smirnov tests using the ks.test. Differences between the correlation coefficients 

were explored using the R.test. The significance of the difference in the success rate of 

different ageing methods was tested using the prop.test. All tests were run in R.  

 

 

Results 

 

Demographic profiles   

 

As pointed out above, Bayesian age estimation is sensitive to the selection of the informative 

prior as the demographic profile of this prior provides important information for the age 

prediction of the target sample. Therefore, optimal results are expected when the target 

sample is also the informative prior or when target and informative prior reflect similar age 

distributions. This similarity may be examined by means of Kolmogorov–Smirnov tests. 

 

In our study, Kolmogorov–Smirnov tests showed that the Cretan, Athenian and Balkan 

samples have different age-at-death distributions (Athenian females vs. Cretan females p-

value = 0.033; Athenian males vs. Cretan males p-value < 0.001; Athenian males vs. Balkan 

males p-value = 0.002; Cretan males vs. Balkan males p-value < 0.001). When looking at the 

Gompertz plots (Figure 1), we observe that the age-at-death distribution of Cretan males is 

indeed very different from the Athenian sample and even more different from the Balkan one. 

The distribution of the Athenian and Balkan male samples is also different but not as 

pronouncedly. Differences in the age-at-death distribution of the Athenian and Cretan 

females are also noted. Due to these dissimilarities in the demographic profiles of the samples 

under study, we examined below, among others, the case where the target sample is also the 

informative prior. 
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Figure 1. Kaplan-Meier survivorship curves (dotted lines) derived from Athenian males and 

females with superimposed Gompertz survivorship curves for Cretan males and females 

(solid lines) and Balkan males (broken line). 

 

At this point we should stress that the Athenian and Cretan assemblages are temporally 

largely contemporary and geographically very proximal. Therefore, there is no reason for the 

populations from which they have been drawn to reflect a significantly different survivorship 

profile. Instead, the observed significant difference is likely due to the way these two modern 

reference collections have been put together through donations. In what concerns the Balkan 

sample, as stated in the Materials section, its documentation may be more problematic, but 

again this assemblage is geographically and temporally proximal to the two Greek 

assemblages used in this study.  

 

Initial assessment 

 

Before examining the relative performance of Bayesian analysis, we tested how the original L 

and BC methods work in order to determine how to proceed. In Table 2 it is seen that L 

works better than BC, and both methods give better results in females than males with few 

exceptions. In addition, both methods work notably poorly for Cretan males, as is particularly 

clear from the low correlation coefficient between mean estimated age-at-death and 

documented age-at-death. These results raise the question of whether the performance of 

these methods can be improved by adopting Bayesian approaches, especially with regard to 
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the performance of the BC method in the Athenian sample and both methods in the Cretan 

material. 

 

Table 2 Percentage of correctly classified individuals in different year intervals and 

Pearson’s correlation coefficients between estimated and documented age-at-death 

 

Original 

Athenian 

Female 

Athenian 

Male 

Cretan 

Female 

Cretan 

Male 

Percentage of correctly classified individuals 

L5 

L10 

L20 

BC5 

BC10 

BC20 

44.07 

69.49 

93.22 

16.95 

50.85 

76.27 

35.80 

67.90 

87.65 

13.58 

39.51 

71.60 

33.33 

57.41 

90.74 

18.52 

51.85 

85.19 

11.54 

34.62 

69.23 

25.00 

50.00 

88.46 

Pearson’s correlation coefficients 

L 

BC 

0.798 

0.620 

0.760 

0.740 

0.700 

0.641 

0.451 

0.327 

 

Key: L=Lovejoy et al. (1985a), BC=Buckberry and Chamberlain (2002), numbers 5, 10, 20 

indicate age ranges used to evaluate the performance of each approach. 

 

 

Athenians as target sample, TA sample, and informative prior  

 

Figure 2 shows the differences in the percentage performance of the Bayesian approaches 

compared to the original L and BC methods. Positive values in this figure suggest that the 

Bayesian approach improves the original methods and negative values show the opposite. 

When the zero value is outside the 95% CI, the difference between the performance of these 

methods is statistically significant. It can be seen that in females no statistically significant 

difference is found between the performance of the original versus Bayesian methods since 

the zero value is always inside the 95% CI. In contrast, in males the Bayesian version of BC 

gives statistically significantly better results than the original method in all year intervals and 
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also irrespective of whether the Bayesian analysis is applied on the composite score or on 

each individual age marker (the zero value is never inside the 95% CI).  

 

 

Figure 2. Differences in the percentage performance of the Bayesian approaches studied with 

respect to the original L and BC methods for the Athens sample using the same sample for 

TA and informative prior. Numbers 5, 10, 20 indicate age ranges used to evaluate the 

performance of each approach. 

 

Figure 3 visualizes the documented and estimated ages-at-death using the original and 

Bayesian versions of L. In females it can be seen that with the exception of a few outliers, 

there is satisfactory agreement between the estimated and the documented age-at-death, while 

the implementation of Bayesian analysis has a minimal impact on the results. This has as a 

consequence a rather high Pearson’s correlation coefficient (r = 0.8). Among males, the 
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picture is similar, though the Bayesian method is slightly better than the original one, as 

attested by the Pearson correlation coefficient of 0.76 for the original method and 0.79 for the 

Bayesian one.  

 

 

Figure 3. Documented ages of males and females for the Athens sample and their estimation 

by means of L original (+) and L Bayesian (o) using the same sample for TA and informative 

prior. r values are Pearson’s correlation coefficients of the estimated vs. documented ages. 

 

For BC (Figure 4), there is a notable overestimation of age in females younger than 50. 

Bayesian analysis tends to improve age prediction in younger adults but the original method 

is better for older adults. As a result, the Pearson correlation coefficient is almost the same for 

the Bayesian and traditional version of the method (r = 0.61-0.62) and smaller than the 



18 
 

corresponding one for L. In males, the original method again overestimates age in younger 

adults but now the use of Bayesian statistics clearly improves the results. The Pearson 

correlation coefficient is 0.74 for the original method and raises to 0.80 when using Bayesian 

analysis. Note that, as highlighted above (Figure 2), the improvement in the percentage 

performance of BC for males is statistically significant; however, the increase of the Pearson 

correlation coefficient from 0.74 to 0.80 is not significant. Finally, Figure 5 visualizes the 

comparative performance of the Bayesian implementation of BC when using the individual 

scores of each marker or the composite score. Despite the differences observed, both methods 

provide similar age estimates.    
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Figure 4. Documented ages of males and females for the Athens sample and their estimation 

by means of BC original (+) and BC Bayesian (o) using the same sample for TA and 

informative prior. r values are Pearson’s correlation coefficients of the estimated vs. 

documented ages. 

 

 

Figure 5. Documented ages of males and females for the Athens sample and their estimation 

by means of the Bayesian methods BC (o) and BCc ()using the same sample for TA and 

informative prior. r values are Pearson’s correlation coefficients of the estimated vs. 

documented ages. 

 

Athenians as target sample and informative prior, Americans as TA sample 
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When the TA parameters for males are obtained from the American assemblage (Hens and 

Godde 2016), we observe that the success rate in age-at-death prediction generally decreases 

but this decrease is overall rather small and statistically non-significant (Figure 6). The 

correlation between predicted and documented age-at-death is very similar for L and BC 

whether in their original or in their Bayesian version, ranging from 0.76 to 0.81. 

 

 

Figure 6. Percentage of successful age estimations in the Athens sample of males when the 

TA sample is the Athens sample (o) and the American sample () for the Bayesian methods 

under study at three age ranges, 5, 10 and 20. The corresponding Pearson’s correlation 

coefficients of the estimated vs. documented ages are given in the inset. 

 

Cretan females as target sample, Athenians as TA sample  

 

In females (Figure 7), L gives better results than BC, both in its original form and its 

Bayesian versions but the difference is small and never statistically significant. In addition, 

the difference in the success rate between original and Bayesian methods is more pronounced 

in BC than in L but again this difference is not statistically significant. Finally, the use of an 

informative prior from Athens or Crete has a very small, and again non-significant, impact on 

the results. In Figure 8 it can be seen that when adopting an Athenian prior and TA sample, 

age estimates for adults up to 50 years are closer to documented ages when using L, both in 
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its original and Bayesian version. In contrast, age estimation deteriorates when adopting BC, 

either in its original or Bayesian version.     

 

Figure 7. Percentage of success age estimations in the Cretan sample of females using the 

original L and BC methods () as well as the corresponding Bayesian approaches when the 

TA sample is the Athens sample and the informative prior is the Athens (o) and the Cretan 

() sample at three age ranges, 5, 10 and 20. The corresponding Pearson’s correlation 

coefficients of the estimated vs. documented ages are given in the inset. 

 

 

The Pearson correlation coefficient between the mean age-at-death estimated using L and the 

documented age-at-death of Cretan females is 0.69-0.70 and minimally affected by the choice 

of prior or the adoption of a Bayesian approach or not. The same correlation coefficient 

ranges from 0.59 to 0.65 for BC. We observe that these coefficients are lower than the 

corresponding ones when the Athenian sample is used as target. No statistically significant 

difference between methods is traced using tests for the significance of correlations. 
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Figure 8. Documented ages of females for the Cretan sample and their estimation by means 

of L and BC, original (+) and Bayesian (o), using for TA and informative prior the Athens 

sample. Pearson’s correlation coefficients of the estimated vs. documented ages are shown in 

the plot. 

 

Cretan males as target sample, Athenians and Americans as TA samples  

 

In Figure 9 it is seen that the success rates of BC and L largely overlap and fluctuate 

considerably depending on whether the original methods or their Bayesian versions have 

been used, as well as on the informative prior adopted. Bayesian statistics generally improve 

the success rate of L but this improvement is not statistically significant. In contrast, the 

original version of BC generally produces better or equally good results as its Bayesian 

versions when the Balkan and Athenian priors are used. Nevertheless, the small Pearson’s 

correlation coefficients between the mean estimated age-at-death and the documented age-at-
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death (0.38 to 0.45 for L and 0.28 to 0.38 for BC), highlight the fact that for Cretan males no 

method, original or Bayesian, actually provides satisfactory age estimations (Table 3).  

 

 

Figure 9. Percentage of successful age estimations in the Cretan sample of males using the 

original L and BC methods () as well as the corresponding Bayesian approaches when the 

TA sample is Athenian (A) and American (Am) and the informative prior from Athens (A), 

Crete (Cr) and the Balkans (B) at three age ranges, 5, 10 and 20. 

 

Table 3 Pearson’s correlation coefficients of the estimated vs. documented ages-at-death 

related to the data presented in Figure 9 

 

Method L BC BCc 

Original 

A-Ath 

A-Cr 

A-B 

Am-Ath 

Am-Cr 

Am-B 

0.451 

0.431 

0.431 

0.422 

0.408 

0.374 

0.404 

0.327 

0.325 

0.276 

0.327 

0.338 

0.320 

0.342 

0.327 

0.377 

0.358 

0.372 

0.382 

0.359 

0.379 

 

Key: A = Athenian TA sample, Am = American TA sample, Ath = Athenian informative 

prior, Cr = Cretan informative prior, B = Balkan informative prior  
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Figure 10 shows that when using an American sample to obtain the TA parameters, even in 

the optimum case where a Cretan prior has been adopted (see Figure 9), there is no 

improvement in age estimation compared to the original methods, both for BC and L. This is 

additionally highlighted by the notably low Pearson’s correlation coefficients between 

estimated and documented age-at-death, which ranges from 0.32 to 0.33 for BC and from 

0.37 to 0.45 for L, depending upon whether the original or the Bayesian version is used 

(Table 3).  

 

 

Figure 10. Documented ages of males for the Cretan sample and their estimation by means of 

L and BC, original (+) and Bayesian (o), using for TA the American sample and informative 

prior the Cretan sample. Pearson’s correlation coefficients of the estimated vs. documented 

ages are shown in the plot. 
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Pooled Cretan sample as target, TA sample, and informative prior 

 

In order to explore whether the poor results for the Cretan sample are due to the biased 

demographic nature of this collection (Table 1), we have explored the case where Cretans are 

used as target, TA sample, and informative prior. Note that in this instance we had to pool the 

male and female sample because the very small number of individuals younger than 50 years 

did not allow us to obtain transition analysis parameters per sex. In Figure 11 it is seen that in 

L and BC the performance of both the original and the Bayesian methods is still poor, as 

attested by the disassociation of the predicted age-at-death estimates from the documented 

ones. In no case do we observe an improvement in age-at-death prediction through the 

adoption of Bayesian methods compared to the traditional ones.  

 

 

Figure 11. Documented ages-at-death for pooled sexes in the Cretan sample and estimated 

ages-at-death by means of L and BC, original (+) and Bayesian (o), using the Cretan sample 
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as TA sample and informative prior. Pearson’s correlation coefficients of the estimated vs. 

documented ages are shown in the plot. 

 

Discussion 

 

The past years have witnessed a generalization in the use of Bayesian age estimation from 

skeletal remains in an attempt to overcome issues of ‘age mimicry’ (Bocquet-Appel and 

Masset 1982). The results of relevant studies are contradictory with many scholars reporting 

that Bayesian statistics improve age estimation compared to the original ageing methods (e.g. 

Godde and Hens 2012; Hens and Godde 2016) and others stressing the limitations of this 

approach and the need for further progress (e.g. Lottering et al. 2013; Milner and Boldsen 

2012). The Bayesian approach to age-at-death estimation, developed by Lyle Konigsberg, 

Jesper Lier Boldsen and their colleagues in a number of key publications (e.g. Boldsen et al. 

2002; Konigsberg and Frankenberg 1992; Konigsberg et al. 2008) has constituted a standard 

method during the past years, as explained above in section Bayesian age estimation. 

However, to achieve the optimum performance for a certain target sample, it is important to 

experiment with different reference samples and informative priors. In the current paper we 

explore the performance of the Bayesian method for two modern Greek assemblages, using 

different reference samples and informative priors from Greece, America and the Balkans. 

The morphology of the auricular surface of the ilium was our focus as an ageing marker by 

means of the Lovejoy et al. (1985a) and Buckberry and Chamberlain (2002) methods.  

 

In summary, our results showed that when the Athenian sample is used as target, L produces 

satisfactory age-at-death estimates both in its original and Bayesian version in males and 

females. In the same sample, BC gives lower success rates but still satisfactory, while its 

performance improves significantly among males when adopting a Bayesian approach. 

Among Cretan females, L works satisfactorily for individuals younger than 50 years and 

again, no significant difference in its performance is observed when using the original or the 

Bayesian version, while BC provides less satisfactory age-at-death predictions. Finally, for 

Cretan males both L and BC provide particularly poor results irrespective of whether we 

implement them in their original or Bayesian version.   

 

The above results first of all highlight that the implementation of Bayesian analysis did not 

generally lead to a significant improvement of age-at-death estimates in either Greek sample 
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used as a target. The only exception, as mentioned, was the Athenian male sample where the 

Bayesian implementation of BC indeed resulted in a significantly better age prediction. 

However, this result was not replicated among Athenian females, for the L method in either 

sex or for the Cretan target sample. It should also be stressed that the Bayesian version of BC 

among Athenian males, although improved compared to the original method, still did not 

produce more accurate age estimates than L. It is striking that this overall lack of better 

performance for Bayesian analysis in our samples was traced even when using the same 

assemblages (Athens and Cretan Collection, respectively) as target samples, TA samples and 

informative priors. These results highlight the lack of a clear pattern with regard to the 

improvement achieved by the Bayesian method, while the observed differences between 

males and females stress the importance of intra-sample variation in the senescence process.  

 

A second important finding of the present study pertains to the impact of the assemblages 

used to derive the TA parameters. In all our tests, although the samples used as TA samples 

are important and we should aim at using assemblages temporally, geographically and 

ethnically proximal to the target sample, the actual impact this has on the estimated age-at-

death is small. This is because the transition analysis used to compute Pr(c│a) is based on the 

regression of c on a, which is not particularly sensitive to the demographic profile of the 

reference sample. In what concerns the informative prior, our study showed that its impact on 

the results is rather small when the overall performance of the Bayesian analysis is moderate 

(e.g. for Cretan females). In contrast, the informative prior has a significant impact on the 

results in cases where age prediction is very poor (e.g. for Cretan males), though even the 

selection of the optimum prior does not really improve age estimation in our data. 

 

Despite the limitations of the Bayesian method highlighted in this paper, there are useful 

aspects to this approach that are not available with other current ageing methods. In 

particular, Bayesian analysis allows the combination of different skeletal age markers, the 

omission of markers that exhibit a low correlation with age-at-death and it can handle missing 

values for individual markers. This is very clear in the freely available ADBOU software, but 

it is also feasible with the R scripts written for the current paper. In the current paper we have 

made limited use of this functionality by combining L and BC in order to see if their joint use 

could improve the results of Bayesian analysis. Considering that both these methods focus on 

morphological changes in the same anatomical area, the iliac auricular surface, their 

combination mostly provided success rates in between those of each method used 
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independently. This is the reason why we did not report the relevant results. However, our 

scripts provide great flexibility with regard to the age markers used and the TA samples and 

informative priors selected. Our recommendation would be for more scholars to use the 

provided scripts in different target samples, with different combinations of reference 

populations and informative priors and adopting different skeletal markers in order to explore 

more systematically the effect of the demographic parameters of the models as well as the 

relative usefulness of different skeletal age markers and their combination.  
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