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Abstract 

Equine Mesenchymal stem/stromal cells (MSCs) are multipotent cells that are 

widely used for treatment of musculoskeletal injuries, and there is significant interest 

in expanding their application to non-orthopedic conditions. MSCs possess 

antibacterial and immunomodulatory properties which may be relevant for 

combatting infection, however, comparative studies using MSCs from different origins 

have not been carried out in the horse, and this was the focus of the present study. 

Our results showed that MSC-conditioned media attenuated the growth of Escherichia 

coli, and that this effect was, on average, more pronounced for endometrium (EM)- 

and adipose tissue (AT)- than for bone marrow (BM)-derived MSCs. In addition, the 

antimicrobial Lipocalin-2 was expressed at mean higher levels in EM- compared to AT- 

and BM-MSCs, and the bacterial product lipopolysaccharide (LPS) stimulated its 

production by all three MSC types. We also show that MSCs express IL-6, IL-8, MCP-1, 

CCL5 and TLR4, and that, in general, these cytokines were induced in all cell types by 

LPS. Low expression levels of the macrophage marker CSF1-R were detected in BM- 

and EM-MSCs, but not in AT-MSCs. Altogether, these findings suggest that equine 

MSCs from endometrium, adipose tissue and bone marrow have both direct and 

indirect antimicrobial properties which may vary between MSCs from different origins 

and could be exploited towards improvement of regenerative therapies for horses. 
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Introduction 

Equine mesenchymal stem/stromal cells (MSCs), obtained typically from bone 

marrow (BM) and adipose tissue (AT), have been used clinically for more than a 

decade. Although great progress has been made towards their characterisation [1-9], 

there is still a lack of understanding regarding their antibacterial and immune-related 

properties.  Antibiotic resistance is emerging as a major health risk for both humans 

and animals, and new strategies to ameliorate this problem are in great need.  

The regenerative potential of MSCs derives not only from their ability to 

differentiate into mature mesenchymal cell lineages, but also from a variety of 

immunomodulatory effects exerted by these cells [10-14] which, importantly, 

contribute to combating infection and determine clinical outcome in patients receiving 

MSCs. Moreover, human and mouse MSCs have been shown to express several 

antimicrobials and to be able to attenuate bacterial growth [12,15-17], a finding that 

has been recently extended to MSCs derived from equine blood [18].  

In humans, MSCs can have different inflammatory phenotypes depending on the 

extracellular milieu [19]. Interestingly, in a low inflammatory environment or upon 

activation of Toll-like receptor 4 (TLR4) by bacterial lipopolysaccharide (LPS), MSCs 

polarise to a pro-inflammatory state (MSC1), characterised by increased production of 

chemokines and cytokines that may recruit and activate immune effector cells [19]. In 

a different environment, MSCs may display an anti-inflammatory phenotype (MSC2). 

A limited number of studies have investigated the immunological properties of 

equine MSCs [4,20,21]. Moreover, there is accumulating evidence that MSCs from 
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different tissue sources differ in their TLR-expression profiles and response to 

inflammatory stimuli [22]. In this study, we investigated the antibacterial and 

immunomodulatory properties of MSCs from three different equine tissues sources, 

namely, BM and AT, the two most common sources of clinical MSCs, and endometrium 

(EM), a promising novel source of therapeutic MSCs [23,24]. 

 

Materials and Methods 

Sourcing of MSCs 

BM-, AT- and EM-MSCs were obtained each from 3 horses as described [5,23], and 

were characterised following the criteria established by the International Society for 

Cellular Therapy for MSCs [25]. All animal procedures were carried out according to 

the U.K. Home Office Animals (Scientific Procedures) Act 1986 with approval by the 

Ethical Review Committee, University of Edinburgh. BM-MSCs were obtained by 

aspiration of the sternum marrow, centrifugation on a density gradient, and culture of 

the resulting mononucleated cell layer. AT-MSCs were obtained by mincing 

subcutaneous adipose tissue followed by collagenase II (1 mg/ml; Gibco-Thermo 

Fisher Scientific, Paisley, UK)/BSA (3.5%) digestion at 37oC under agitation (100 rpm). 

Digestion was stopped by addition of DMEM 20% FBS (Gibco-Thermo Fisher Scientific), 

the fat layer removed and cells were further washed and seeded. To harvest EM-MSCs 

[23], the tissue was washed and minced and then dissociated in DMEM/F-12 

containing 0.1% bovine serum albumin (BSA), 0.5% collagenase I, 40 μg/ml 

deoxyribonuclease type I (Sigma Aldrich, Irvine, UK), and 1% penicillin/streptomycin 
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(P/S) for 40 minutes at 37 °C. Stromal cells were separated by negative selection of 

epithelial cells using Muc1-beads, filtered, washed and cultured. MSCs were expanded 

in DMEM 10% FBS and 1% P/S at 37°C in a humidified atmosphere containing 5% 

carbon dioxide. Alveolar macrophages were obtained via bronchoalveolar lavage from 

adult horses and cryopreserved as previously described [27]. Prior to use, cells were 

thawed and seeded in 24-well plastic plates (Nunc, Thermo Scientific) at 1 x 106 

cells/ml in complete medium (RPMI-1640 with GlutaMAX™-I Supplement; Invitrogen), 

penicillin/streptomycin (Invitrogen) and 20% heat-inactivated Horse Serum (Sigma 

Aldrich) and incubated overnight at 37 °C and 5% CO2. The following day non-adherent 

cells were removed, and medium was replaced.  

 

Bacterial growth  

Conditioned medium (CM; DMEM 10% FBS) was harvested from MSCs (BM, EM and 

AT; 70000 cells/well in 12-well plates) after culture for 16h at 37°C. CM was spun to 

remove cell debris and kept at -80°C. Escherichia coli ZAP198 was inoculated in BM-, 

EM- and AT-CM for 16h at 37°C, and colony forming units (cfu/ml) were obtained by 

serial dilutions in Luria-Bertani (LB) agar plates. Bacteria grown in DMEM 10% FBS and 

LB served as positive controls.  

 

Gene expression analyses 

Total RNA was extracted using Trizol’s protocol and was reversed transcribed using 

Superscript III (18080-044; Invitrogen-Thermo Fisher Scientific). Transcript levels were 



6 
 

quantified using a MX3005P qPCR system (Stratagene, CA, USA) with primers listed in 

Table 1 and SensiFAST SYBR Lo-ROX kit (Bioline). Data were analysed using Stratagene 

MxPro software and the mRNA levels were determined relative to a standard curve 

(generated from sample pools) that was run simultaneously.  Results were normalised 

to 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and expressed 

as arbitrary units (AU). Reverse transcriptase-negative and no template control 

samples were included in each run as negative controls. For the measurement of CSF1-

R mRNA levels, cDNA from equine macrophages and keratinocytes [26] were included 

as positive and negative controls, respectively.  

 

LPS stimulation experiments 

MSCs at passage 4-6 were seeded at a density of 70 000 cells/well in 12-well plates 

(Nunc, Thermo Scientific). After 24 hours, the cell culture medium was removed and 

replaced with medium containing 0 or 0.1 µg/ml LPS (Sigma-Aldrich). After 16 hours of 

incubation, wells were washed with PBS and cells harvested into Trizol (Thermo Fisher 

Scientific), frozen and stored at -80°C prior to further analysis. Cell stimulation 

conditions, 0.1 µg/ml LPS for 16h, were chosen based on results from previous time-

course and  LPS dose-response trials (Supplementary Fig. 1).  

 

Immunocytochemistry (ICC) 

Cultured cells were washed with PBS and fixed with PFA for 15 minutes, and kept at 

4oC until use. Cells were permeabilized using methanol:acetone (1:1) followed by 
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incubation with protein blocking solution (Insight Biotechnology, UK). Cells were then 

incubated with primary antibodies against Lipocalin-2 (ab41105, Abcam, Cambridge, 

UK) or TLR4 (sc-12511, Santa Cruz Biotecnology, Paso Robles, CA, USA) for 16h at 4oC, 

and then with secondary antibodies (anti-rabbit and anti-goat IgG (10042, 11057; both 

from Invitrogen-Thermo Fisher Scientific) conjugated to the AF568 fluorochrome). The 

primary antibodies have been previously used to detect Lipocalin-2 and TLR4 in equine 

samples [18,27]. Samples were then mounted in fluoroshield with 4′,6-diamidino-2-

phenylindole (DAPI;F6057; Sigma, St Louis, MO, USA) and micrographs taken with a 

camera connected to a Zeiss Axiovert 25 microscope. The same settings were used for 

all pictures taken for each antibody. Cells incubated with secondary antibody only 

were used as negative controls. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

MCP-1 concentrations in cell culture supernatants were analysed by ELISA (ELE-

MCP-1, Cambridge Bioscience, Cambridge, UK) accordingly to the manufacturer's 

protocol. In brief, samples and standards were added to a 96 well plate coated with 

anti-Equine MCP-1 antibody, and incubated for 2.5 hours at room temperature with 

gentle agitation. Samples were washed and incubated with biotinylated antibody for 

1h. Following addition of HRP-conjugated streptavidin and 3,3,5,5'-

tetramethylbenzidine subtract reagent, signal detection was performed at 450 nm. 

Equine MCP-1 protein provided in the kit was used to produce the standard curve.  
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Statistical analysis 

The effects of LPS on MSCs from different tissues were analysed by two-way ANOVA 

including "tissue", "treatment", "tissue x treatment" interaction and "animal" nested 

within "tissue" using the Minitab 17 statistical software (Minitab Inc.). Fisher's test was 

used for post-hoc comparisons.  Data were log-transformed before analyses to comply 

with normality criteria. Significance was set at p<0.05.  

 

 

Results 

Equine MSCs attenuate bacterial growth and express Lipocalin-2 

To assess direct effects of MSCs on bacterial growth, E. coli were inoculated in 

conditioned media (CM) from BM-, EM- and AT-MSCs. All three CM attenuated 

bacterial growth, although, on average, EM- and AT-MSC had more pronounced 

effects than BM-MSC media (Fig. 1A). We then determined whether equine MSCs 

expressed antimicrobial genes.  All cell types expressed Lipocalin-2, both at the mRNA 

(Fig. 1B) and protein (Fig. 1C) levels, but not other antimicrobial genes assayed, 

namely, LL-37 and β-defensin 1. Interestingly, EM-MSCs expressed Lipocalin-2 at 

higher mean levels (≥2-fold) than BM- and AT-MSCs (Fig. 1B). Moreover, fluorescence 

ICC showed increased Lipocalin-2 protein signal in MSCs stimulated with LPS (Fig. 1C). 

 

Equine MSCs express immunomodulatory genes 
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To examine the immunomodulatory properties of the three types of MSCs, we 

determined the expression of genes including the cytokines, Monocyte 

chemoattractant protein-1 (MCP-1), Chemokine ligand-5 (CCL5), Interleukin-6 (IL-6) 

and Interleukin-8 (IL-8). Samples had detectable levels of all cytokines analysed (Fig. 

2).  Mean MCP-1 mRNA levels were higher (≥2.9-fold) in BM- and EM- than in AT-MSCs 

(Fig. 2A). Similarly, CCL5 and IL-6 were expressed at relative much lower levels in AT-

MSCs (Fig. 2B,C), whereas mean IL-8 expression was much higher (≥7-fold) in EM- than 

in either BM- or AT-MSCs (Fig. 2D). Thus, AT-MSCs expressed the lowest levels of all 

immunomodulatory genes analysed. 

 

MSCs are responsive to LPS  

We then examined the effects of stimulation with LPS on the expression of 

immunomodulatory genes by MSCs. LPS induced a dramatic increase (≥7-fold; P<0.05) 

in MCP-1 mRNA levels across all three cell types (Fig. 3A). An increase in CCL5 mRNA 

was also observed although this was not significant for any cell type (Fig. 3B). In 

contrast, for both IL-6, a graded response to LPS was observed across cells with lower 

fold-induction in AT-MSCs (P<0.05) than in BM-MSCs (P<0.0001) or EM-MSCs 

(P<0.001; Fig. 3C,D). A similar graded response in IL-8 mRNA was observed with the 

LPS-induction being significant (P<0.05) only in BM-MSCs (P<0.05). To confirm the 

results from qPCR, we analysed MCP-1 levels in conditioned media using a commercial 

available ELISA kit that recognises the equine protein. In agreement with mRNA data 

(Fig. 3A), MCP-1 protein was significantly induced in response to LPS (Fig. 3E) in BM-
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MSCs (0.4±0.07 vs 1.4±0.3 ng/ml for unstimulated and LPS-stimulated, respectively, 

P<0.05), EM (0.2±0.03 vs 0.9±0.07, P<0.001) and AT (0.09±0.02 vs 0.3±0.02, P<0.05). 

We also quantified the relative expression of TLR4 [28], a cognate LPS receptor, in 

MSC preparations both at the mRNA (Fig. 4A) and protein (Fig. 4B) levels. TLR4 was 

detected in unstimulated cells, although at variable levels; mean mRNA levels were 

higher (≥6.5-fold) in BM- and EM-MSCs than in AT-MSC (Fig. 4A), consistent with 

protein data (upper row in Fig 4B). Cells were then stimulated with LPS for 16h. This 

did not produce any apparent changes in cell morphology or cell numbers (Fig. 4C), 

but results from fluorescence ICC indicated increased levels of TLR4 protein in 

response to LPS in all MSC types (Fig. 4B).   

 

Low levels of CSF1-R are present in BM- and EM-MSC preparations  

To assess whether contamination of MSCs with immune cells such as macrophages, 

as reported in other studies [29], may have influenced our results, we measured the 

expression of the macrophage-specific gene, colony stimulating factor 1 receptor 

(CSF1-R), in MSC preparations and compared these with the levels expressed by 

macrophages (positive control) and keratinocytes (negative control). CSF1-R was 

detected at very low levels in BM- and EM-MSCs (<700-fold lower than in macrophage 

samples) but not in AT-MSCs or keratinocytes. Although this finding did not completely 

rule out the presence of macrophages in MSC preparations, LPS stimulation did not 

induce changes in CSF1-R expression either (Fig. 5). 
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Discussion 

Antimicrobial resistance poses a growing threat for both Animal and Human Health, 

requiring the identification of novel approaches to fight microbial infection. Studies 

over the past 10 years have demonstrated the immunomodulatory nature of MSCs 

including direct antimicrobial effects [12,13,15,17,18,30-32], providing an attractive 

therapeutic tool alternative or complementary to the use of antibiotics. The 

identification of novel MSC sources has also represented a step forward in that regard. 

For example, while bone marrow and adipose are well established sources of clinical 

MSCs in both humans and animals, endometrium is now emerging as a promising 

alternative source with defined cell differentiation and immunomodulatory properties 

[23,24,30,33].  It is thus critical to compare the immunomodulatory properties of MSCs 

across different tissues to identify the most optimal source(s) for each particular 

clinical application. In that regard, this is to our knowledge the first study to 

simultaneously compare the properties of MSCs from bone marrow, endometrium 

and adipose.   

Several studies in humans and rodents [16,34] have shown that MSCs are able to 

attenuate microbial growth and that this effect can be attributed to the production of 

antimicrobials. These findings were recently extended for the first time to the horse, 

specifically to equine blood-derived MSCs [18]. Here, we report that several common 

sources of clinical MSCs in the horse are able to inhibit bacterial growth and that this 

effect varies between cell sources, being apparently higher for EM- and AT- than for 

BM-MSCs. Moreover, we show that all three cell sources express Lipocalin-2, and that 
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EM-MSCs express, on average, the highest levels. In agreement with our results, a 

recent study showed that production of lipocalin-2, among other antimicrobial 

peptides, contributed to the antibacterial effects of equine blood-derived MSCs, which 

did not produce β-defensin [18].  In contrast to our results, however, blood-derived 

MSCs did produce substantial LL-37, a finding which may reflect tissue-specific 

differences in antimicrobial production by MSCs. In that regard, human BM- and 

umbilical cord blood (UCB)-MSCs have been shown to reduce bacterial growth through 

the secretion of LL-37 and β-defensin 2, respectively [15,16,34]. Our observation of 

apparent highest lipocalin-2 expression in EM-MSCs may be linked to the fact that, 

unlike BM or AT, EM provides a natural body barrier against infection. EM-MSCs could 

thus provide distinct benefits for clinical use. 

In addition to lipocalin-2, equine MSCs from all sources examined expressed the 

immunomodulatory genes, MCP-1, IL-6, IL-8 and CCL5, suggesting theses cytokines 

may contribute to the reported ability of equine MSCs to limit infection indirectly via 

recruiting and activating immune cells [32,35]. Of these four cytokines, MCP-1 and 

CCL5 have to our knowledge not been reported previously to be expressed in equine 

MSCs. Of interest, expression of all of the above immunomodulatory genes was 

generally reduced in AT- relative to BM- and EM-MSCs. Although we don’t have an 

explanation for this, expression of CSF1-R was lowest in AT-MSCs suggesting that 

contamination by macrophages, even at low levels, may have possibly contributed to 

the elevated cytokine expression in BM and EM. Indeed, the presence of 

contaminating leukocyte populations in MSC preparations likely contributes to the 
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variability in clinical outcomes reported with the use of these cells. On the other hand, 

it has also been reported that BM mesenchymal progenitor cells can originate from 

CD14+ cells [36]. Overall, this highlights the need for more robust characterisation of 

MSC populations. 

In the context of infection and tissue repair, the inflammatory microenvironment 

and specific pattern of TLR expression in effector cells determine both the interactions 

between MSCs and immune cells as well as the outcome of tissue regeneration 

approaches using MSCs [37]. In agreement with findings with human BM- and AT-

MSCs [38], and equine UCB-MSCs [20], we detected expression of TLR4 in MSCs from 

all sources, consistent with their responsiveness to LPS. Polarisation into a pro-

inflammatory MSC1-phenotype in response to TLR4 activation is marked by increased 

secretion of immune effector-recruiting cytokines and chemokines [19]. In this study, 

in general, the expression of MCP-1, IL-6, IL-8 and CCL5 increased in response to LPS-

stimulation, consistent with reports with human AT- and BM-MSCs [39,40] and, for 

those cytokines that have been examined (IL-6 and IL-8), equine BM-MSCs [41].   

In summary, our results suggest that MSCs from different sources have both 

antimicrobial activity and constitutively produce Lipocalin-2, which may 

physiologically contribute to innate immune responses, particularly in the case of EM-

MSCs. However, the largest component of the reported in vivo antibacterial activity of 

MSCs is likely to involve indirect activation of immune effector cells. This conclusion is 

in line with observations that LPS-stimulated human MSCs induce both the expression 

of IL-6 and IL-8 and enhance activation and phagocytic activity of polymorphonuclear 
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neutrophils [42].  Overall our findings suggest that equine MSCs, particularly EM-MSCs, 

could be of benefit for reducing and limiting infection. However, further studies will 

be necessary to assess the antibacterial activity of these cells in an in vivo context so 

new strategies can be developed to diversify their use and increase their therapeutic 

efficiency.  
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 Figure legends 

Fig. 1. A) E. coli growth, indicated as cfu/ml, 16h after bacteria inoculation in 

conditioned media from bone marrow (BM)-, endometrium (EM)- or adipose tissue 

(AT)-MSCs or in growth medium only (positive control, C). B) Lipocalin-2 transcript 

levels in equine MSCs from BM, EM or AT. Data are shown as Mean + SEM (n=3 

horses/tissue type). Mean mRNA levels in BM-MSC samples were set to 1. AU, 

arbitrary units. C) Fluorescence ICC of unstimulated (Uns) or LPS-stimulated MSCs from 

BM, EM, or AT, with Lipocalin-2 antibody. Negative controls (-ve) were produced with 

LPS-stimulated cells incubated with secondary antibody only, and positive control 

(+ve) resulted from staining of alveolar macrophages with Lipocalin-2 antibody. 

Lipocalin-2 is indicated by red signal and DAPI-stained nuclei is shown by blue. Pictures 

were taken in an Axiovert 25 Inverted Microscope. Scale bars, 100 µm.  
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Fig. 2. Transcript levels of A) MCP-1, B) CCL5, C) IL-6 and D) IL-8 in MSCs from bone 

marrow (BM), endometrium (EM) and adipose tissue (AT). Data are shown as Mean + 

SEM (n=3 horses/tissue type). Mean mRNA levels of BM-MSC samples was set to 1. 

AU, arbitrary units.  

 

Fig. 3. Fold-change in MCP-1 (A), CCL5 (B), IL-6 (C) and IL-8 (D) mRNA levels, and MCP-

1 protein levels (E) after LPS stimulation (grey bars) of MSCs from bone marrow (BM), 

endometrium (EM) and adipose tissue (AT). In each case, data (shown as Mean + SEM; 

n=3 horses/tissue type) were normalized to mean mRNA levels in unstimulated cells 

(black bars). * (p<0.05), ** (p<0.001) and *** (p<0.0001) indicate differences between 

unstimulated and stimulated cells, while different superscripts (a, b) show significant 

differences between cell types (p<0.03). 

 

Fig. 4. A) TLR4 expression measured by qPCR in unstimulated MSCs from bone marrow 

(BM), endometrium (EM) and adipose tissue (AT). Data are shown as Mean + SEM (n=3 

horses/tissue type). Mean mRNA levels in BM-MSC samples were set to 1. AU, 

arbitrary units. B, C) Photomicrographs showing (B) fluorescence immunostaining of 

TLR4 (in red) and (C) bright field images of MSCs from bone marrow (BM), 

endometrium (EM) and adipose tissue (AT) before (unstimulated, Uns) and after a 16h-

simulation with LPS (0.1 µg/ml). Negative controls (-ve) correspond to LPS-stimulated 

cells incubated with secondary antibody only, and positive control (+ve) to alveolar 
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macrophages incubated with TLR4 antibody. All pictures were taken in an Axiovert 25 

Inverted Microscope. Scale bars, 100 µm. 

 

Fig. 5. mRNA levels of the macrophage marker, CSF1-R, in unstimulated (Uns) and LPS-

stimulated (0.1 µg/ml LPS for 16h) MSCs from equine bone marrow (BM), 

endometrium (EM) and adipose tissue (AT). Keratinocyte (K) and macrophage (M) 

samples were used as negative and positive controls, respectively. Results are shown 

as Mean + SEM. N=3 horses/tissue type. NB, not detected; AU, arbitrary units. 

 

Supplementary Fig. 1. IL-6 mRNA levels from BM- (A) and AT-MSCs (B) that were 

unstimulated (Uns) or stimulated with 0.1 or 1 µg/ml LPS for 8 or 24h. Results (Mean 

+ SEM) are from one cell preparation of each type assayed in triplicate. AU, arbitrary 

units. 

 

 

Table 1. Gene and respective pair of primers used for qPCR. 

Gene Sense primer sequence (5’-3’)   Antisense primer sequence (5’-3’) Reference 

IL-6 GGACCACTACTCACCACTGC CCCAGATTGGAAGCATCCGT  

MCP-1 ATATCAGGGGGCATTTAGGG      ATTGGCCAAGGAGATCTGTG  

CCL5 CAGTCGTCTTTGTCACCCGA GGTTCGAGATGCCCTCCAAT  

LCN2 CCACAGCTACAACGTCACCT GGCTGGGAACTTGGGATGAA  

IL-8 CTTTCTGCAGCTCTGTGTGAAG GCAGACCTCAGCTCCGTTGAC (39) 

TLR-4 GCCACCTGTCAGATTAGCAAGA AGAACTGCTATGACAGAAACCATGA (28) 

CSF-1R GAAATACGTCCGCAGGGACA GACACGGGTCTCATCTCCAC  

IDO ACAACATCAGGACCAGGACAC  CCAGACGCCTTCATAGAG (4) 



20 
 

TNFα CCTGTAGCCCATGTTGTAGCA GGACCTGGGAGTAGATGAGGT  

18S GCTGGCACCAGACTTG GGGGAATCAGGGTTCG  

GAPDH CAGAACATCATCCCTGCTTC           ATGCCTGCTTCACCACAATTC  
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