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Abstract 

Oligodendrogliomas (ODG) are brain tumors accounting for approximately 10% of all 

central nervous system cancers. CIC is a transcription factor that is mutated in most 

patients with ODG; these mutations are believed to be a key oncogenic event in such 

cancers. Analysis of the Drosophila melanogaster orthologue of CIC, Capicua, 

indicates that CIC loss phenocopies activation of the EGFR/RAS/MAPK pathway, 

and studies in mammalian cells have demonstrated a role for CIC in repressing the 

transcription of the PEA3 subfamily of ETS transcription factors. Here we address the 

mechanism by which CIC represses transcription and assess the functional 

consequences of CIC inactivation. Genome-wide binding patterns of CIC in several 

cell types revealed that CIC target genes were enriched for MAPK effector genes 

involved in cell cycle regulation and proliferation. CIC binding to target genes was 

abolished by high MAPK activity, which led to their transcriptional activation. CIC 

interacted with the SIN3 deacetylation complex and, based on our results, we 

suggest that CIC functions as a transcriptional repressor through the recruitment of 

histone deacetylases. Independent single amino acid substitutions found in ODG 

tumors prevented CIC from binding its target genes. Taken together, our results 

show that CIC is a transcriptional repressor of genes regulated by MAPK signaling, 

and that ablation of CIC function leads to increased histone acetylation levels and 

transcription at these genes, ultimately fueling mitogen-independent tumor growth. 

 

Significance 

Inactivation of CIC inhibits its direct repression of MAPK pathway genes, leading to 

their increased expression and mitogen-independent growth 
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Introduction  

Oligodendrogliomas (ODGs) represent a subgroup of low-grade glioma with a distinct 

mutational spectrum. The vast majority of ODG cases contain chromosomal 

deletions of 1p and 19q and 70% harbor mutations in CIC, located on chromosome 

19q13.2 (1). CIC encodes a transcription factor containing a SOX-like high mobility 

group (HMG) domain. At least two isoforms of CIC have been identified in humans: a 

short form CIC-S and a longer isoform CIC-L that shares the HMG domain but 

contains an extended N-terminal part (2). Mutations in CIC frequently lead to 

truncations or amino acid substitutions in residues that are thought to be essential for 

DNA binding (Supplementary Figure S1A and B). Together with 1p/19q 

chromosomal deletions, these recurrent CIC mutations are thought to represent an 

ablation of CIC function (3), being causally involved in ODG formation. Of further 

interest, CIC mutations are mutually exclusive with alterations of EGFR, TP53, ATRX 

and CDKN2A (4,5). 

 

Most of our knowledge about CIC stems from studies in Drosophila melanogaster, 

where it was genetically defined as a transcriptional repressor acting downstream of 

receptor tyrosine kinase (RTK) signaling regulating developmental patterning (6,7). 

MAPK-mediated phosphorylation of Cic leads to its nuclear export and/or 

degradation of Cic (8) and expression of Cic target genes. In mammals RTK 

signaling has similar effects on CIC mediated gene repression, possibly involving 

MAPK and p90RSK (9). How CIC is acting as a transcriptional repressor is currently 

not well understood. In Drosophila, Cic-mediated repression is dependent on the co-

repressor protein Groucho (6,10). Mouse studies have suggested that CIC-mediated 

repression is in part dependent on the binding to Ataxin1 (ATXN1) or a related factor 

ATXN1L (11–13).  

 

Several mouse knockout studies have shown that germline deletion of murine Cic 

leads to perinatal lethality (13–15) and deletion of Cic after birth has been linked to T-

cell lymphoblastic lymphoma formation (14,16). In Ewing sarcomas, a genetic fusion 

of CIC to the exons coding for the transcriptional activator domain of DUX4 causes 

de-repression of PEA3 (polyoma enhancer activator 3)-family genes (17). 

Furthermore, CIC deletion and mutation was shown to influence metastasis in an 

EGFR inhibitor-resistant model of lung adenocarcinoma, through the deregulation of 

the PEA3-family gene Etv4 (18). CIC may therefore act as an important tumor 

suppressor through its transcriptional repression of its target genes, including the 

PEA3 subfamily, whose deregulation was linked to cancer development (17,18). 
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However, the mechanistic consequences of inactivation or mutation of CIC and their 

contribution to tumorigenesis of ODG are not well understood. Furthermore, the 

mechanism through which CIC achieves gene repression in mammals is not known.  

 

In this study, we aimed at elucidating how CIC contributes to normal development, 

the consequences of CIC loss and how this could lead to tumor formation.  

 

 

Material and Methods 

 

Cell lines and culture 

mESCs (E14TG2a.4, ATCC) were cultured on gelatine in 2i medium: 50:50 

DMEM/F12:Neurobasal (Invitrogen) supplemented with N2/B27 (Invitrogen), 0.05 

mM β-mercaptoethanol, 0.1 mM non-essential amino acids, 2 mM GlutaMAX, 1 mM 

sodium pyruvate, Pen/Strep, leukemia inhibitory factor (LIF), 1 μM MEK inhibitor 

(PD0325901) and 3 μM GSK inhibitor (CT-99021). 

 

Mouse neural progenitor cells derived from mESCs were cultured on PDL/Laminin in 

complete NSC medium: 50:50 DMEM/F12:Neurobasal (Invitrogen) supplemented 

with N2/B27 (Invitrogen), 0.05 mM β-mercaptoethanol, 2 mM GlutaMAX, 0.1 mM 

non-essential amino acids, Pen/Strep, 1 mM sodium pyruvate, 5mM Hepes, 2 µg/ml 

Heparin, 50 µg/ml BSA, 10 ng/ml bFGF/EGF 

 

Human GNS line G144 (19) and human fetal neural stem cell lines 18.5 and 21.5 (a 

kind gift of Dr. Steven Goldman, University of Rochester Medical Center, USA) were 

cultured on PDL/Laminin in complete NSC medium. 

 

Flp-In-T-REX-293 cells were cultured in DMEM (Invitrogen) with 10% FBS (HyClone) 

and Pen/Strep. Cells were authenticated by measuring the expression of specific 

cellular markers and by observing their morphology and functionality in specific 

assays. All the cell lines used were routinely (every 4 weeks) tested negative for 

mycoplasma by PCR. Cell culture time between thawing and experiment did not 

exceed 5 passages. 

 

CRISPR KO  

sgRNAs were cloned into pSpCas9(BB)-2A-GFP (Addgene 48138), using the 

protocol described in (20) and transfected into mESCs (Lipofectamine 2000, 
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Invitrogen), or G144 cells (Amaxa Nucleofector II, Program A033). GFP-positive cells 

were single cell sorted 48h post-transfection, expanded and screened by 

immunoblotting for Cic deletion. Gene-targeting was confirmed by PCR amplification 

and Sanger sequencing. Mouse Cic KO clones (KO1, KO2 and KO3) all harbored 

out-of-frame mutations causing complete protein depletion. Human CIC KO clones 

(KO8 and KO9) harbored a mixture of out-of-frame and large in frame mutations 

resulting in expression of an HMG domain-deleted truncated protein. Primers and 

sgRNAs are listed in Supplementary Table 1. 

 

Plasmids and cDNA 

The open-reading frame of human CIC-L was amplified from a cDNA library derived 

from human fetal brain and cloned into TOPO/pCR8, yielding a flawless 7554 bp 

clone encoding a 2513 amino acid protein (splice variant ENST00000572681, 

ProteinID ENSP00000459719). 

 

The CIC-R215W and R1515C mutants were generated using the Quickchange II site 

directed mutagenesis kit (Agilent Technologies) and expressed from pPB-CAG-Dest-

pA-pgk-bsd (Addgene 74918) by co-transfection with transposase pCyL43 (PBase; 

Sanger Institute’s plasmid repository) into mESCs and selected with 5 µg/µl 

Blasticidin. Primers are listed in Supplementary Table 1. 

 

Differentiation 

mESCs were differentiated into NSCs as described in (21). Briefly, 104 cells/cm2 

mESCs were seeded onto gelatine into complete NSC medium without bFGF/EGF. 

Culture medium was changed every day. Four days after initiation of differentiation, 

cells were plated onto PDL/Laminin coated dishes in complete NSC medium 

containing bFGF/EGF (10 ng/ml). Cells were subcultured additional 10 days until 

homogeneous NSC populations were established. 

 

Starvation and inhibitor treatment 

80% confluent NSC cultures were washed twice with PBS and cultured in NSC 

medium without bFGF/EGF for 16 h. Inhibitor treatment with 1 μM MEK inhibitor 

(PD0325901) was performed in 80% confluent NSC or GNS cultures grown in 

complete NSC medium for 4 and 24 h respectively. 

 

Monoclonal antibody generation 
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The C-terminal 195 amino acids of CIC (cloning primers in Supplementary Table 1) 

were expressed by generating a baculovirus through the co-transfection of pVL-Flag-

His-CIC-C-terminus and Bsu36I-linearized Bakpak6 baculovirus DNA. Flag-His-

tagged proteins were expressed in Trichoplusia ni, High Five, cells and purified by 

Flag–Sepharose affinity chromatography as described (22) and used to immunize 

mice. Spleens were isolated, homogenized and fused to the myeloma cell line 

SP2/0-Ag14 by addition of PEG1500. Supernatants from the resulting hybridomas 

were screened by ELISA, followed by further sub-cloning. Selected clones were 

tested for specificity and qualified for immunoblotting and immunoprecipitation using 

both human and mouse samples. All mouse work was approved by the Danish 

Animal Ethical Committee (“Dyreforsøgstilsynet”). 

 

 

Immunoblotting 

To prepare whole-cell-extracts, cells were lysed in high salt buffer (300 mM NaCl, 50 

mM Tris-HCl pH7.5, 0.5% Triton X-100, 0.1% SDS, 1 mM EDTA, 1 mM DTT, 

Aprotinin, Leupeptin, 0.1 mM PMSF). Equal amounts of whole-cell-extracts were 

analysed by standard SDS-PAGE/immunoblotting. Primary antibodies and dilutions 

are listed in Supplementary Table 1. 

 

RT-qPCR 

Cells were washed once with PBS, lysed directly in RLT buffer (Qiagen) and total 

RNA was extracted using the RNAeasy kit (Qiagen). 200 ng of total RNA was 

reverse transcribed using TaqMan® Reverse Transcription Reagents (Applied 

Biosystems) and quantified using the LightCycler® 480 SYBR Green I system. qPCR 

was performed in technical triplicates. Primers are listed in Supplementary Table 1. 

 

RNA-sequencing 

500 ng of total RNA was used for library preparation using TruSeq RNA Library Prep 

Kit v2 (Illumina) according to the manufacturer’s recommendations. Libraries were 

sequenced using Illumina NextSeq 500 sequencer 75 bp Single End. RNA 

sequencing in G144 cells was done in technical triplicates for parental cells and 

technical duplicates for one WT and two CIC KO clones (KO8, KO9). Sequencing 

data was aligned via Tophat2 (23) and differential expression was called using 

DESeq2 (24). Genes were called as differential expressed for ≥2-fold change and 

FDR≤0.01. Data from parental cells and WT clone were treated as replicates. 

Similarly, data from the two KO clones were treated as replicates. 
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Size exclusion chromatography 

293FT cell nuclear extracts were prepared as described (22) and fractionated on a 

Superose 6 PC 3.2/30 gel filtration column using an ÄKTA™ purification platform 

(GE Healthcare).  

 

Chromatin immunoprecipitation 

Cells were cross-linked (1% formaldehyde, 10 minutes), quenched with 125 mM 

glycine, washed twice with PBS and harvested in SDS buffer (50 mM Tris at pH 8.1, 

0.5 % SDS, 100 mM NaCl, 5 mM EDTA). Cells were pelleted, resuspended in Triton-

X IP buffer (100 mM Tris at pH 8.6, 0.3% SDS, 1.7% Triton X-100, and 5 mM EDTA) 

and chromatin was sonicated (fragment size 200-500bp). 25 µg chromatin 

(measured by Bradford) was pre-cleared with protein-A Sepharose beads (GE 

healthcare) for 1 hour and incubated with primary antibody overnight at 4oC. Protein-

A Sepharose beads were blocked with 10 µg/ml BSA overnight at 4°C. Next day, 

beads and antibody/chromatin-mixture were incubated for 3 hours at 4oC. Beads 

were washed 3x with low salt buffer (1% Triton X-100, 0.1% SDS, 150 mM NaCl, 2 

mM EDTA, pH 8.0, 20 mM Tris-HCl, pH 8.0) and twice with high salt buffer (1% 

Triton X-100, 0.1% SDS, 500mM NaCl, 2 mM EDTA, pH8.0, 20 mM Tris-HCl, pH8.0). 

DNA was eluted with elution-buffer (1% SDS, 0.1 M sodium bicarbonate) at 65oC 

overnight and purified using QIAquick PCR Purification Kit (Quiagen). DNA was 

analyzed using the LightCycler® 480 SYBR Green I system (Roche). qPCR was 

performed in technical triplicates. Primers and antibodies are listed in 

Supplementary Table 1. 

 

For ChIP-seq 1-2 ng of ChIP DNA was used for library preparation, using the 

NEBNext Ultra II DNA library prep kit (E7370; NEB). Libraries were sequenced using 

Illumina NextSeq 500 sequencer 75 bp Single End. 

 

Bioinformatics and motif finding 

Sequenced reads were aligned using Bowtie2 (25) (mouse-mm10 and human-hg38). 

Duplicates were removed using Samtools RmDUP. Peaks were called in EaSeq (26) 

using standard settings and corresponding IgG control (FDR<10-5). For motif analysis 

50bp surrounding the apex of each peak was used by MEME-ChIP (27) using 

standard settings in discriminative mode. Control peak set matching size and 

distance-to-TSS was generated in EaSeq (26).  
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Data availability 

RNA-seq and ChIP-seq data have been deposited in the ArrayExpress database at 

EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession numbers E-MTAB-6681 

and E-MTAB-6682 respectively. 

 

Tandem affinity purification 

Nuclear extracts (500 mg, 3x109 cells) from Flp-In-T-REX-293 cells expressing Flag–

HA-tagged human CIC-L were pre-cleared and incubated with a 700 μl packed 

volume of anti-Flag beads (anti-Flag-M2-agarose, Sigma) overnight at 4°C with 

rotation. The beads were collected by centrifugation (700 g, 5 min) and washed five 

times with buffer A (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1.5 mM MgCl2, 0.2 mM 

EDTA, 10% glycerol, 0.2 mM PMSF, 1 mM DTT, 1 µg/ml aprotinin and 1 µg /ml 

leupeptin) and once with buffer A containing Benzonase at 4°C for 1h. The 

complexes were eluted with 1 bed volume of buffer A supplemented with 0.5 μg/μl 

Flag peptide for 4 hours. The eluate was collected by passing through a 0.45 µm, 1.5 

ml centrifugal unit (Merck-Millipore). The Flag-IP elute was incubated with 120 µl of 

50 % slurry HA-beads overnight. The beads were washed six times with buffer A and 

eluted with 100 µl buffer A supplemented with 1 μg/μl HA peptide for 2 h. The 

samples were boiled in SDS loading buffer and run shortly into an SDS–PAGE gel. A 

gel slice containing the purified proteins was isolated for mass spectrometry analysis. 

For comparative purposes, nuclear extracts from an equivalent number of Flp-In-T-

REX-293 cells expressing Flag–HA-tagged human FUBP1 were processed in 

parallel.  

 

Mass spectrometry  

Proteins were in-gel digested using trypsin. Peptides were loaded on a nanoHPLC 

RSLC Ultimate 3000 (Thermo Scientific) coupled online with an Orbitrap Fusion 

Tribrid (Thermo). Peptides were separated using C18 nano-chromatography with a 

60 min gradient, and acquired using Data-Dependent Acquisition with MS/MS 

fragmentation using Higher energy Collision Dissociation (HCD). Spectra 

identification was performed with Proteome Discoverer (v1.4, Thermo) using as 

reference the UniProt human database. Results were filtered for 1% False Discovery 

Rate. 

 

 

Results  
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CIC binds directly to the promoter region of its target genes and is required for 

repressing Pea3 group genes in mouse ESCs  

To investigate the mechanism by which CIC regulates transcription and the 

functional consequences of its inactivation, we initiated our studies in mouse 

embryonic stem cells (mESCs). mESCs can be selectively differentiated into neural 

stem cells (NSCs) and further to oligodendrocyte precursor cells (OPCs) (21,28). CIC 

deletions most likely occur in one of these immature cell types during ODG 

formation. mESCs therefore appeared to be appropriate to test the consequences of 

Cic loss. In addition the 2i growth conditions used to expand mESCs enables 

investigation of CIC in the absence of MEK/ERK signaling (29). Thus, we generated 

Cic knockout (KO) mESCs using CRISPR-Cas9 (Supplementary Figure S1C). 

Targeted knockout clones showed no detectable levels of CIC (Figure 1A).  

 

To obtain a comprehensive view of the genes regulated by CIC, we mapped the 

genome-wide location of CIC by chromatin immunoprecipitation followed by high 

throughput sequencing (ChIP-seq) in mESCs using Cic-KO cells as a negative 

control (Figure 1B). We identified a strong set of 159 specific, CIC-bound regions, of 

which approximately two thirds were located in close proximity to a gene (Figure 

1C), marking 112 unique genes. 

 

Next, we performed motif enrichment analysis by comparing motif enrichments +/-

50 bp surrounding the apex of each CIC peak to a control dataset of matching size 

and distance to closest transcriptional start site (TSS). This comprehensive analysis 

revealed the highly enriched sequence TSAATGR (Figure 1D) representing the 

reported CIC consensus sequence (7,17).  

 

The expression of the PEA3 family ETS transcription factors ETV1, ETV4 and ETV5 

is reported to be directly regulated by mammalian CIC (9,13). Indeed, among the 

most prominent targets in our ChIP-seq experiments were Etv1, Etv4 and Etv5 

(Figure 1E). We also identified three members of the dual specificity protein 

phosphatase subfamily Dusp4, Dusp5 and Dusp6 as direct CIC targets. Other 

significant targets include the genes Fos, Fosb, Fosl1, Id1, Ccnd1, Rictor, Vgf, Ptpn9 

and Spred1 Spred2 and Spred3. (Figure 1E, Supplementary Table 2). Interestingly 

CIC also binds to its own promoter, suggesting an auto-regulatory loop. Many of the 

CIC bound genes are implicated in the regulation of RAS/MAPK signaling, either as 

effectors or as members of feedback mechanisms. Indeed, we found CIC target 

genes significantly enriched for RAS signaling and other signaling pathways that are 
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frequently perturbed in cancer using pathway analysis (Supplementary Figure 

S1D).  

 

In agreement with the reported function of CIC to repress ETV4 and ETV5 (9), 

deletion of Cic led to upregulation of Etv4 and Etv5 expression. Moreover, ectopic 

expression of human wild type (WT) CIC, but not the HMG mutant R215W or the C-

terminal mutant R1515C, reverted the increased levels of Etv4 and Etv5, suggesting 

that both mutants are non-functional (Supplementary Figure S1E and F). The 

inability of CIC-R215W to reduce target gene expression is likely due to its reduced 

ability to bind DNA (3). Indeed, ChIP-qPCR at the promoter region of the two target 

genes showed binding of exogenously expressed WT CIC, similar to enogenous 

levels, but no binding of CIC-R215W (Supplementary Figure S1G). Interestingly, 

binding of CIC-R1515C mutant protein was also undetectable, which is in agreement 

with a recent publication showing that the C-terminal portion of CIC is critical for DNA 

binding (30) and mutations within this domain result in activation of Etv4 (18). 

 

MAPK signaling prevents CIC from binding to its target genes and associated 

cis-regulatory elements 

Previous studies have linked the MAPK pathway signaling to CIC regulation (7,9,31). 

To investigate the influence of MAPK signaling on CIC target gene regulation, we 

established NSC cultures from WT and Cic KO mESCs. In mitogen (bFGF/EGF) 

containing NSC medium, we were unable to detect any binding of CIC at the 

promoter of target genes. In contrast, removal of mitogens for 16 hours led to a 

strong recruitment of CIC to Etv4 and Etv5 (Supplementary Figure S2A). This was 

accompanied by a significant reduction of Etv4 and Etv5 expression in WT NSCs, 

while only insignificant changes in gene expression were detected in Cic KO NSCs 

(Supplementary Figure S2B). 

 

To extend this observation to human cells and in an effort to eliminate pleiotropic 

effects of growth factor withdrawal, we performed ChIP analysis for CIC in primary 

human fetal NSCs (hNSC18.5 and hNSCs21.5) and the human glioma stem cell 

(GNS) line G144, after treatment with a small molecule inhibitor against MEK 

(PD0325901). Cells cultured in mitogen (bFGF/EGF) containing medium showed 

minimal CIC recruitment to the promoter region of ETV4. However, CIC binding was 

strongly increased in response to MEK inhibition (Figure 2A). Similarly, we observed 

a strong global recruitment of CIC at its target sites after MEK inhibition, using ChIP-

seq (Figure 2B and 2C, Supplementary Table 2) with a significant overlap in the 
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three studied cell lines (Figure 2D). Conversely, almost no peaks were detected in 

mock control samples of hNSC18.5 (n=16), hNSC21.5 (n=9) and G144 (n=8). By 

intersecting the set of human and mouse CIC target genes we identified 58 genes 

that were found in mESCs and in at least one human cell line (Supplementary 

Figure S2C). 21 genes were found across all samples (Supplementary Table 2). 

Taken together, these results demonstrate that MAPK signaling prevents CIC from 

binding to its target genes, and that these are largely conserved between mouse and 

human. 

 

Interestingly, in human NSCs as well as in GNS cells, the majority of peaks were 

found >10 kb distal to a TSS (Figure 2E), indicating that CIC might act at cis-

regulatory elements. To investigate if CIC binding to distal gene regions is linked to 

enhancer elements we performed ChIP-seq experiments in G144 cells for two 

histone marks, H3K27ac and H3K4me1, which are used as markers of enhancers 

(32). As shown in Figure 3A and 3B, CIC was found in regions strongly enriched for 

H3K27Ac and H3K4me1, whereas a random control dataset generated to match size 

and distance to closest TSS (generated in EaSeq (26)) was not enriched and 

consequently showed little overlap. 

 

Collectively, we have generated high confidence results for the genome-wide binding 

of CIC. These results show that CIC binds to a defined set of target regions in a 

MAPK-dependent manner and those regions are largely conserved between mouse 

and human. Furthermore, our results show that CIC is recruited to both TSS and to 

enhancers, suggesting that CIC can repress transcription via both of these regulatory 

regions. 

 

CIC interacts with the SIN3 histone deacetylating complex and loss of CIC 

leads to increased histone acetylation of CIC target genes 

CIC is believed to act as a transcriptional repressor (17); however, the molecular 

mechanism through which CIC regulates gene expression is unknown. To obtain 

insights into CIC-mediated transcriptional regulation in mammalian cells, we purified 

proteins interacting with human CIC-L and identified them by mass spectrometry. 

Previously identified interaction partners Ataxin-1 (ATX1) and Ataxin-1-like (ATX1L) 

(11) as well as 14-3-3 proteins (9) were highly enriched. Among the most strongly 

enriched proteins were members of the SIN3 transcriptional repressive complex, 

including core deacetylating enzymes HDAC1 and HDAC2 and structural 

components like SIN3A, SIN3B and SAP30 (Figure 4A and 4B and Supplementary 
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Table 3). This suggests that CIC could regulate transcription by recruiting the SIN3 

complex. Size exclusion chromatography supported the interaction between CIC and 

SIN3A (Supplementary Figure S2D).  

 

The affinity purification also identified the Dual specificity tyrosine-phosphorylation-

regulated kinases DYRK1A and DYRK1B as well as their partner DCAF7 

(Figure 4A). Size-exclusion chromatography showed that a fraction of DYRK1A also 

co-migrated with CIC (Supplementary Figure S2D). The Drosophila orthologues 

Minibrain (mnb) and Wings apart (wap) can act as ERK-independent regulators of 

CIC (33). Thus, our results suggest that this mechanism could be conserved during 

evolution. 

 

To investigate a possible link between CIC and the SIN3 histone deacetylation 

complex in regulating the expression of CIC target genes, we established a CIC KO 

G144 line and used ChIP-seq to correlate CIC recruitment and changes in histone 

acetylation. The human GNS cell line G144 exhibits an oligodendrocyte precursor-

like phenotype (19) and represents a disease relevant models that is experimentally 

tractable. We detected a strong recruitment of CIC in response to MEK inhibition, 

whereas no recruitment was detected in CIC KO cells (Figure 5A and 

Supplementary Figure S3A).  

 

To understand the functional consequences of CIC-recruitment to its target genes, 

we performed genome-wide localization studies of histone acetylation. This revealed 

a strong depletion of histone H3 acetylation around the promoter of CIC target genes 

upon CIC recruitment (Figure 5B). We observed a strong deacetylation at CIC peaks 

after 4h and somewhat less pronounced deacetylation after 24h of MEKi treatment. 

This loss in acetylation was not observed in CIC knockout cells (Figure 5C and 5D, 

and Supplementary Figure S3B). The effect of CIC on histone acetylation levels 

was further addressed in mESCs by ChIP-qPCR in wild type and Cic KO ESCs. A 

number of candidate genes confirmed a significant increase in H3K9ac (6/7 genes) 

and H3K27ac (2/7 genes) (Supplementary Figure S3C). Taken together, these 

results show that the recruitment of CIC to its target genes leads to their 

deacetylation, which is in agreement with our demonstration that CIC associates with 

the SIN3A complex. 

 

MEK inhibition in human glioma cells causes repression of a subset of CIC 

target genes and increased proliferation in a CIC-dependent manner  
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Having established that CIC binding to its target genes is ablated by MAPK activity, 

we investigated global gene expression changes caused by MEK inhibition and the 

effect of CIC deletion (Supplementary Figure S4A and Supplementary Table 4). 

To this end we defined “CIC target” genes as genes with a CIC peak +/- 5kb around 

the TSS after 4h and 24h MEK inhibition, respectively. For these sets of genes, we 

compared RNAseq data of parental G144 cells and one CIC WT single cell clone to 

two independent CIC KO clones. A large proportion of CIC target genes showed a 

downregulation after 4h of MEK inhibition (9/19) and to a lesser extent after 24h of 

MEK inhibition (14/111). More importantly, this loss of CIC target gene expression 

was reduced or completely abolished in CIC KO cells (Figure 6A and 

Supplementary Table 4), which was confirmed by qPCR (Figure 6B). Given that 

deacetylation of histones could be one of CIC-mediated mechanisms to 

downregulate its target genes, we used histone deacetylase (HDAC) inhibition 

(Panobiostat) to test if HDACs were involved in the repression of ETV4 and ETV5. 

Although, ETV4 and ETV5 expression was still decreased in response to MEKi, 

HDAC inhibition significantly dampened this repression (Supplementary Figure 

S4B).  

 

Previous studies have indicated that deletion of CIC confers resistance to MAPK 

pathway (34) or EGFR inhibition (35). Indeed, prolonged treatment with MEK 

inhibitors caused a complete stop of cell proliferation in G144 cells, whereas CIC KO 

cells continued to grow even after 11 days of MEK inhibition (Figure 6C).  

 

Discussion 

The high frequency of CIC mutations in ODG suggests that CIC is a bona fide tumor 

suppressor gene. It is therefore crucial to investigate the effects of CIC 

(mis)regulation as this knowledge will give insight into the molecular mechanisms 

leading to ODG and help design future treatments for the disease. In this study, we 

have mapped the genome-wide binding pattern of mammalian CIC. We find that CIC 

binds to an overlapping set of core regulatory regions in mouse and human 

genomes, including promoter regions of established MAPK effector genes, as well as 

distal regions associated with enhancer features. Furthermore, the detection of a 

conserved CIC-binding motif, similar to the one previously reported for Drosophila 

Cic suggests that CIC function is conserved during evolution. Our results identify CIC 

as a key transcriptional repressor of MAPK effector genes that are controlling cellular 

proliferation. A number of these genes are deregulated in CIC deleted cell lines (36) 

and CIC-mutated ODG (37). Based on our data we propose that these genes are 
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directly affected by the loss of CIC. A recent study suggested that CIC binds a 

number of genes unrelated to MAPK signaling and could function as a transcriptional 

activator (38). However, we have not been able to confirm this observation, because 

we only observed robust CIC binding after MAPK inhibition. 

 

The PEA3 transcription factors have been shown to be MAPK and CIC regulated 

genes and have been linked to cancer progression (17,18). Here, we show that these 

genes are likely to have similar roles in ODG. In addition, we have identified new 

target genes of CIC whose deregulation could play an important role in ODG 

development. Some of these genes, as for example ID1, CCND1 and SHC3 are 

strongly bound by CIC and have been implicated in tumor formation. The members 

of the inhibitor of DNA-binding (ID) protein family are master regulators of cancer 

stem cells and tumor aggressiveness (39), and ID1 is directly implicated in neural 

stem cell identity and gliomagenesis (40). The gene CCND1 encoding Cyclin D1, 

which is a key regulatory subunit of CDK4 and CDK6, is instrumental during G1/S-

phase transition. SHC proteins function as adaptors for translating RTK signals into 

the activation of downstream pathways like RAS/MAPK (41). Interestingly, SHC3 is 

the predominantly expressed in the brain, where it is involved in neuronal 

differentiation and prevents apoptosis in mature neurons (42,43). Furthermore, it was 

found to be misregulated in in high grade astrocytoma where it increased cell survival 

(44).   

 

CIC targets also include groups of genes that are negative regulators of the MAPK 

pathway. The DUSP phosphatases and Sprouty Related EVH1 Domain (SPRED) 

containing family members are ERK specific phosphatases (45) and SOS inhibitory 

binding proteins (46) respectively. Conversely, Sprouty RTK Signaling Antagonist 4 

(SPRY4) blocks MAPK activation by binding to RAF1 (47). This suggests that CIC 

fulfills a central role in a delicate feedback mechanism that keeps mitogen activated 

signaling in check under physiological conditions. The mutual exclusivity of CIC 

mutations and RTK mutants in ODG could therefore be explained not only by 

activation of proliferative genes in response to CIC loss, but also by the simultaneous 

transcriptional induction of negative RTK regulators which might protect from 

acquiring mutations in RTK coding genes. Importantly, CIC mutations are not found 

in other types of brain tumors such as high grade astrocytoma and Glioblastoma 

multiforme (GBM) which display an accelerated disease progression and frequently 

harbor aberrant RTK signaling (5). This suggests that increased RTK signaling can 

induce malignant cell growth through CIC dependent and independent pathways 
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leading to mutual exclusiveness with CIC mutations and a more aggressive 

phenotype. Additionally, CIC mutations could have synergistic effects with the cell of 

origin of ODG. 

 

We also investigated the effect of different single amino acid substitutions, which are 

found in human ODG patients. As expected, the DNA-binding mutant R215C was 

unable to target and repress genes. More surprisingly was that this was also true for 

the C-terminal mutant R1515C. This observation is in line with reports that a variety 

of CIC mutant proteins, including R1515H, were unable to suppress metastasis (18) 

and that the C-terminal part of CIC aids DNA-binding (30).  

 

Based on our finding that CIC is associated with the SIN3A deacetylation complex, 

we propose a model in which CIC recruitment can lead to histone deacetylation. This 

model is supported by our demonstration that a number of genes decrease 

acetylation levels in response to CIC recruitment. Furthermore, we provide evidence 

that HDAC inhibitors could counteract CIC mediated repression on selected target 

genes. Interestingly, we observed that not all CIC targets changed their acetylation 

levels in response to CIC loss, indicating that additional factors or pathways can 

cause histone deacetylation and gene repression synergistically with CIC. In fact, a 

recent study investigating Cic in Drosophila reported that the Hippo pathway and Cic 

both act as brakes of the Ras-responsive transcriptional network and the perturbation 

of both is needed for full activation of target genes (48). 

 

In summary, our data together with previous findings show that CIC acts as a 

transcriptional repressor of genes regulated by the MAPK signaling pathways. We 

provide novel insights into the spectrum of CIC-regulated genes revealing potential 

mechanisms for how loss of CIC could lead to ODG formation. Moreover, our 

demonstration that the SIN3A repressive complex interacts with CIC, and that CIC 

recruitment to target genes lead to their deacetylation suggest a mechanism by 

which CIC exerts its function. 
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Figures 

 

Figure 1 Genome-wide characterization of CIC targets in mESCs A) CIC 

Immunoblot of three WT mESC clones and three Cic-KO clones B) Heatmap at CIC 

peaks showing IgG and CIC in WT and Cic KO C) Motif analysis using MEME-ChIP. 

Top motif identified is depicted with corresponding E-value. D) Distribution of peaks 

according to gene elements. E) ChIP-seq tracks of CIC occupancy at selected target 

genes in WT and KO mESCs.  

 

Figure 2 MAPK signaling prevents CIC from binding to its target genes A) ChIP-

qPCR for CIC-binding at the promoter of ETV4 or control gene (RPL30) in two 

human neural stem cell lines (18.5 and 21.5) and one glioma neural stem cell (GNS) 

line (G144) after 24h mock (DMSO) or MEK inhibitor (MEKi) treatment. Data are 

represented as mean ±SD, n=3 B) Average intensity plot of all CIC peaks found in 

each cell line after 24h MEK inhibition. C) ChIP-seq tracks of CIC occupancy at 

selected targets genes in response to DMSO or 24h MEKi. D) Overlaps of CIC peaks 

detected by ChIP-seq in human neural stem cells and GNS cells with and without 

MEKi. E) Number of peaks found in MEKi-treated cells depicted according to their 

distance to the closest TSS.  

 

Figure 3 CIC targets are enriched for enhancer-associated histone marks A) 

Heatmaps showing ChIP-seq signals of H3K27ac and H3K4me1 at CIC peaks in 

G144 cells. A set of control regions with matched distance to TSS is depicted to the 

right. B) Percentage of CIC peaks or control regions overlapping with H3K27ac or 

H3K4me1 peaks in G144 cells. 

 

Figure 4 CIC interaction partners. A) Table of selected CIC-interacting proteins 

identified by mass-spectrometry of affinity-purified exogenously expressed Flag-HA-

CIC in HEK293 cells. Interacting proteins are grouped according to functionality. B) 

Validation of SIN3A interaction by IP-immunoblotting. An IP performed in parallel for 

HEK293 expressing Flag-HA-FUBP1 (immunoblotting for its interaction with PABP1 

and HUR) is included as a negative control. 

 

Figure 5 Loss of CIC leads to increased histone acetylation at CIC target genes 

A) Heatmap of all CIC ChIP-seq peaks found in glioma neural stem cells (G144) after 

24h of MEK inhibition showing CIC in WT and KO cells after 4h or 24h of MEK 

inhibition B) ChIP-seq tracks showing increase of CIC occupancy at selected target 
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genes and concurrent reduction of histone acetylation following MEK inhibition. C) 

Average ChIP-seq signal of H3K9ac and H3K27ac at CIC peaks after 4h and 24h 

MEK inhibition. D) ChIP-qPCR for CIC and histone acetylation marks at selected CIC 

target genes with GAPDH as a negative control. Data are represented as mean ±SD, 

n=3 (p-value: *<0.05, **<0.01, ***<0.001). 

 

Figure 6 Effect of CIC depletion on gene expression and proliferation A) Gene 

expression changes of CIC target genes after 4h and 24h of MEK inhibition in WT 

and CIC KO G144 cells (colors depict log2 fold changes between DMSO and MEKi) 

B) Expression changes quantified by qPCR in parental G144, one WT clone and two 

independent CIC KO clones. C) Growth curves measured by cell count of parental 

and CIC KO G144 cells during continuous MEK inhibition of mock treatment 

(DMSO). 
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