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Autoregressive neural F0 model for statistical
parametric speech synthesis

Xin Wang, Student Member, IEEE, Shinji Takaki, Member, IEEE, Junichi Yamagishi, Senior Member, IEEE

Abstract—Recurrent neural networks (RNNs) have been suc-
cessfully used as fundamental frequency (F0) models for text-
to-speech synthesis. However, this study showed that a normal
RNN may not take into account the statistical dependency of
the F0 data across frames and consequently only generate noisy
F0 contours when F0 values are sampled from the model. A
better model may take into account the causal dependency of
the current F0 datum on the previous frames’ F0 data. One
such model is the shallow autoregressive (AR) recurrent mixture
density network (SAR) that we recently proposed. However, as
this study showed, an SAR is equivalent to the combination of
trainable linear filters and a conventional RNN. It is still weak
for F0 modeling.

To better model the temporal dependency in F0 contours, we
propose a deep AR model (DAR). On the basis of an RNN,
this DAR propagates the previous frame’s F0 value through the
RNN, which allows non-linear AR dependency to be achieved.
We also propose F0 quantization and data dropout strategies for
the DAR. Experiments on a Japanese corpus demonstrated that
this DAR can generate appropriate F0 contours by using the
random-sampling-based generation method, which is impossible
for the baseline RNN and SAR. When a conventional mean-based
generation method was used in the proposed DAR and other
experimental models, the DAR generated accurate and less over-
smoothed F0 contours and achieved a better mean-opinion-score
in a subjective evaluation test.

Index Terms—fundamental frequency, F0, pitch, speech syn-
thesis, neural network, autoregressive model

I. INTRODUCTION

Text-to-speech synthesis (TTS) converts a text string into a
speech waveform. A common TTS system consists of a front-
end and back-end [1], where the front-end determines “how to
read” and the back-end creates the waveform accordingly. The
back-end can be implemented using the statistical parametric
speech synthesis (SPSS) framework [2], [3]. Given the linguis-
tic features extracted from the text by the front-end, the SPSS-
based back-end uses statistical models to generate compact
acoustic features such as the fundamental frequency (F0) and
Mel-cepstral features. It then uses a vocoder to convert the
acoustic features into a speech waveform.

The F0 is an essential acoustic feature of the speech
waveform. It is perceived as pitch and conveys the tone and
intonation in an utterance [4], [5]. The SPSS framework uses

Xin Wang and Shinji Takaki are with National Institute of Informatics,
Japan. e-mail:wangxin@nii.ac.jp, takaki@nii.ac.jp

Junichi Yamagishi is with the National Institute of Informatics, Japan and
with the Centre of Speech Technology Research, University of Edinburgh,
U.K. e-mail: jyamagis@nii.ac.jp.

The guest editor coordinating the review of this manuscript was Dr. Heiga
Zen. This work was partially supported by MEXT KAKENHI Grant Numbers
(15H01686, 16H06302, 17H04687).

hidden Markov models (HMMs), decision trees, and various
types of neural networks (NNs) [6], [7], [8] to jointly model
the F0 and other acoustic features frame-by-frame [2], [3], [9].
Besides the F0 model integrated into the SPSS framework,
various stand-alone F0 models have also been proposed on
the basis of expert knowledge (e.g., [10], [11]) and statistical
approaches (e.g., [12], [13]).

In this study, we focused on NN-based F0 models that can
be plugged into the SPSS framework. Although various NN-
based models have been investigated [14], [15], [16], [17],
[18], [19], they may be imperfect for F0 modeling. In most
of these models, the F0 data of different frames are implicitly
treated as statistically independent; moreover, this assumption
remains even if a recurrent NN (RNN) with long-short memory
units (LSTMs) is used. In this paper, we explain the theoretical
model assumption of conventional RNNs and the empirical
demonstration of it using a technique called random sampling.

A potentially better approach is augmenting a normal RNN
with autoregressive (AR) dependency. The idea is to define
and learn the F0 distribution conditioned on previous F0
observations in an F0 sequence. One example of such a
model is the AR recurrent mixture density network (RMDN)
proposed in our previous study [20]. This model summarizes
the F0 data of previous frames in the F0 sequence and adjusts
the mean of the current F0 distribution using a linear function.
However, our current study showed that this AR-based RMDN
is equivalent to a combination of a normal RNN and trainable
linear filters and only the filters capture the AR dependency.
Hence, this model, referred to as the shallow AR model (SAR)
in this paper, is still weak for F0 modeling, even though it can
reduce the over-smoothing effect on the generated F0 contours.

For this paper, we propose a deep AR model (DAR) toward
a better F0 model1. Based on a normal RNN, the proposed
DAR feeds back a previous F0 observation as the input to
a recurrent layer. This feedback link makes it feasible to
achieve the non-linear AR dependency over a longer time
span. With additional improvements, such as quantized F0
representation and data dropout strategies, the DAR performed
significantly better than the RNN and SAR in experiments.
Specifically, it increased the dynamic range of the generated
F0 contours without decreasing accuracy; thus, improving the
perceived naturalness of synthetic speech. Furthermore, the
DAR generated good F0 contours via random sampling, which

1A part of this study was published in [21]. Compared with the previously
published study, we theoretically analyzed the DAR, the SAR, and a baseline
RNN in this study and compared them on a larger Japanese corpus through
a large-scale listening test. We also obtained new results using a random-
sampling-based F0 generation method.
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had not been achieved with previous statistical F0 models to
the best of our knowledge.

In the rest of this paper, Section II gives an overview of
related F0 models. Then, Section III defines and analyzes
the SAR, and Section IV defines the proposed DAR and
related techniques. Section V shows the details of experiments.
Finally, Section VI concludes this paper.

II. TOWARDS AR NEURAL F0 MODEL

A. Classical methods for F0 modeling

In this study, we considered F0 modeling at the frame level
and assumed that the input linguistic features are given by a
TTS front-end. The task of an F0 model is to learn the mapping
from the linguistic features to the F0 for each speech frame.

A classical F0-modeling approach may require two steps. It
first transforms the F0 data within a segment into a compact
parametric form, after which it learns the mapping from the
linguistic features to the compact F0 parameters. For example,
the parameters of the Fujisaki model [22], [23] can be used to
represent the F0 contour within a syllable. Statistical models,
such as the decision tree, can then be used to learn the mapping
for the second step [24]. This approach can also be applied on
the basis of the Tilt model [25], [26], Parallel Encoding and
Target Approximation (PENTA) model [27], [28], [29], and
other parametric or non-parametric representations, namely the
target F0 points [12], [14], coefficients from discrete-cosine
transformation [30], [31], [32], [33], [34], [35], and parameters
extracted from functional data analysis [36].

Rather than the above-mentioned two-step strategy, it is also
possible to directly map the linguistic features to the F0 frame-
by-frame. Examples are the multi-space probability distribu-
tion HMM [37], continuous F0 model [9], and hierarchical F0
model [38], [39] designed for HMM-based SPSS. Recently,
the deep feedforward NN [7] has been used to jointly model
the F0 and other spectral features at the frame level. However,
it was found that a feedforward NN may prioritize the high-
dimensional spectral features over the F0 [40]. An alternative
approach is to only model the F0 contours. In this case, the
RNN-based F0 model [19] performs quite well.

B. Baseline neural networks for F0 modeling

We focused on NN-based F0 models, the task of which is to
convert linguistic features of T frames x1:T = {x1, · · · ,xT }
into an F0 sequence ô1:T = {ô1, · · · , ôT }. The goal is to
make ô1:T approximate the true F0 sequence o1:T . Although
F0 is a one-dimensional value, for general explanation, we
define that ôt and ot are D-dimensional real-valued vectors,
i.e., ôt,ot ∈ RD, D ∈ N.

Let us consider an RNN with a bi-directional recurrent
hidden layer and linear output layer. Given the input x1:T ,
this RNN calculates the output in three steps:

h
(f)
t = σ(W

(f)
h h

(f)
t−1 +W

(f)
i xt + b

(f)
h ), (1)

h
(b)
t = σ(W

(b)
h h

(b)
t+1 +W

(b)
i xt + b

(b)
h ), (2)

HΘ(x1:T , t) =W
(f)
o h

(f)
t +W (b)

o h
(b)
t + bo. (3)

Here, σ(·) is an activation function, h(f)
t and h(b)

t are hidden
features computed by the recurrent layer in the forward
and backward directions, Θ = {W (∗)

h ,W
(∗)
i ,W

(∗)
o , b

(∗)
h , bo}

denotes network weights, and HΘ(x1:T , t) denotes the RNN’s
output at the t-th frame. The network weight Θ can be
trained by minimizing a mean square error (MSE) E =∑T
t=1 ||HΘ(x1:T , t)− ot||2. Given the trained Θ∗, the RNN

can generate ô1:T̃ for a new input x̃1:T̃ by setting ôt =
HΘ∗(x̃1:T̃ , t), ∀t ∈ {1, · · · , T̃}.

The above approach of using an RNN as a regression tool
is reasonable. It has been shown that the MSE-based training
method is equivalent to a maximum-likelihood estimation
scheme, i.e., Θ∗ = argmaxΘ log p(o1:T |x1:T ;Θ), under
the assumption that the probabilistic density function (PDF)
p(o1:T |x1:T ;Θ) is a product of Gaussian distributions [41]:

p(o1:T |x1:T ;Θ) =

T∏

t=1

p(ot|x1:T ;Θ) (4)

=

T∏

t=1

N (ot;HΘ(x1:T , t), βI). (5)

Here, N (·) is the Gaussian distribution, I is the identity
matrix, and β is a variance parameter that does not affect
Θ∗. After Θ∗ is estimated, it is also reasonable to use ôt =
HΘ∗(x̃1:T̃ , t) as the generation method because HΘ∗(x1:T , t)
approximates the true conditional mean E[ot|x̃1:T̃ ] [41]. For
this reason, this generation method is referred to as the mean-
based generation method.

Because an RNN’s output only approximates E[ot|x̃1:T̃ ],
it cannot generalize well when the true distribution is multi-
modal. A better model is the RMDN [42], [43]. It directly
defines the PDF as

p(o1:T |x1:T ;Θ) =

T∏

t=1

M∑

m=1

ωmt N (ot;µ
m
t ,Σ

m
t ), (6)

where M is the number of mixture components of a Gaus-
sian mixture model (GMM), and Mt = {ω1

t , · · · , ωMt ,
µ1
t , · · · ,µMt , Σ1

t , · · · ,ΣM
t } is the GMM’s parameter set.

The covariance matrices {Σ1
t , · · · ,ΣM

t } are usually set to be
diagonal. In an RMDN, the value of Mt is computed by the
internal RNN, i.e., Mt = HΘ(x1:T , t). One example of an
RMDN is plotted on the left side of Figure 1. As the figure
shows, the internal RNN outputs the parameters of the GMMs
that describe the distribution of ot. The network weights Θ can
be trained by maximizing the likelihood. During generation,
the sequence of Mt is computed given the input features, and
the mean of the mixture component with the largest weight can
used as the model’s output ôt for each frame [42].

Next, let us consider modeling F0 as quantized rather than
continuous values. The theoretic motivation is that humans
have difficulty telling two sounds apart with a small difference
in frequency, which is known as the just-noticeable difference
of pitch [44]. Accordingly, we may quantize F0 values into
several bins and treat the quantized bins as discrete values.
Then, similar to the idea of modeling quantized speech wave-
form [45], we can model the quantized F0 using the framework
for modeling categorical data.
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Fig. 1. Illustration of RMDN, SAR and DAR. Grey circles denote observed random variables, while white circles denote deterministic values calculated with
the internal RNN. Diamonds, which are the output of the internal RNN, denote the parameter set of distribution for ot. Detailed network structures for the
experiments are explained in Section V.

To do this, we can use an RMDN after replacing the
GMM with a probabilistic mass function (PMF) based on a
multinomial distribution. Suppose ot is a one-hot vector for a
discrete datum, i.e., one bin of the quantized F0, the PMF of
o1:T is defined as

P (o1:T |x1:T ;Θ) =

T∏

t=1

P (ot|x1:T ;Θ). (7)

Here, P (ot|x1:T ;Θ) is computed using the internal RNN with
a softmax output layer, and Θ can be estimated by maximizing
the likelihood or equivalently minimizing the cross-entropy.
This RMDN with a softmax output layer has been used for
part-of-speech tagging [46] and name-entity recognition [47],
and it was used in this study as a baseline quantized F0 model.
During generation, the output F0 can be randomly sampled
from the PMF calculated by the softmax layer, or the bin with
the largest probability can be directly used as the generated
F0. However, because the F0 value is originally continuous,
we can also generate the F0 by using the expected values of
the quantized F0, which is explained in Section IV-D.

C. General idea of AR neural model

From Equations (5), (6), and (7), we can see that regardless
of whether F0 is quantized, it is assumed with the baseline
models that ot1 is statistically independent from ot2 given
the condition x1:T , ∀t2 6= t1. This assumption may be
inappropriate for F0 modeling because adjacent voiced frames
usually have a similar F0 value. Consequently, a baseline F0
model may only learn the linguistic-feature-conditioned F0
‘uni-gram’, which may be multi-mode or large in variance.
If the mean or expected values are used for generation, the
generated F0 will approximate E[ot|x1:T ], but the output F0
contour may be over-smoothed. While an RMDN with a large
number of GMM mixtures could better model the F0 ‘uni-
gram’ per frame, it may not model the temporal dependency
of the F0 values across the frames, as discussed in Section
IV-A.

To model the temporal dependency of o1:T , a general idea
is to re-define the model as a Markov random field where all
random variables form a single clique, i.e., p(o1:T |x1:T ) =
φc(o1, · · · ,oT ,x1:T )/Z. Such a model is theoretically appeal-
ing because it can cover the dependency between any pair of

ot1 and ot2 . However, inference in such a large undirected
graphic model is typically intractable. One practical approach
is to model the local dependency within a fixed time window,
which has been used with the trajectory HMM [48], [49].
Despite the improved performance, the training algorithm is
still complex. When such a method is combined with a neural
network, both training and generation become complicated due
to the inversion of high-dimensional matrices [50].

Another practical approach is to model directed or ancestral
dependency, i.e., the dependency of ot on o1:t−1. This depen-
dency is referred to as the AR dependency [51]. A model
based on the AR dependency, which is referred to as an AR
model, can be generally defined as

p(o1:T |x1:T ;Θ) =

T∏

t=1

p(ot|o1:t−1,x1:T ;Θ). (8)

Using the AR dependency allows p(o1:T |x1:T ) to be factor-
ized, which makes the model less complex than undirected
graphic models. Such an AR model can be trained in a similar
manner to a baseline RMDN except the additional cost to load
o1:t−1 as the additional condition. In the generation stage, ô1:T
can be generated sequentially. Note that the above definition
is also applicable to modeling quantized (or discrete) data.

D. Related AR models

The AR dependency has been widely used in many research
fields. One example is the linear predictive coding (LPC) for
speech [52], which uses a linear function to model the AR
dependency of a speech waveform. For SPSS, the AR-HMM
uses linear functions to model the AR dependency of acoustic
features [53]. Recently, many models have been defined to
model the AR dependency through non-linear transformation.
These models are called AR models because the definition
of AR in the machine learning field is broader than that in
the conventional speech processing field. Examples include
the WaveNet [45], variational RNN [54], and RNN language
model [55]. The AR dependency can also be defined among
latent variables in a neural AR auto-encoder [56].

More generally, the AR dependency is one type of causal
dependency defined among random variables. In image pro-
cessing, the causal dependency can be defined and learned
among pixels [57], [58], [59]. For SPSS, a similar idea has
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been proposed to model the causal dependency of Mel-cepstral
coefficients across dimensions [60].

III. SHALLOW AR NEURAL F0 MODEL

An AR neural model for continuous data o1:T ∈ RT×D can
be implemented on the basis of an RMDN [20]. It defines

p(o1:T |x1:T ;Θ,Ψ) =

T∏

t=1

p(ot|ot−K:t−1,x1:T ;Θ,Ψ)

=

T∏

t=1

M∑

m=1

ωmt N (ot;µ
m
t + FΨ(ot−K:t−1),Σ

m
t )

, (9)

where the GMM’s parameter set is still given by an internal
RNN, i.e., Mt = HΘ(x1:T , t). However, the model uses
a function FΨ(·) to merge ot−K:t−1 in the previous K
frames then adjust the mean of each GMM mixture at time t.
Specifically, FΨ(·) is defined as

FΨ(ot−K:t−1) =

K∑

k=1

ak � ot−k + b, (10)

where Ψ = {a1, · · · ,aK , b} is the parameter set that can be
jointly trained with Θ, and � is the element-wise product.
Obviously, FΨ(·) makes the distribution of ot dependent on
ot−K:t−1. Because FΨ(·) is linear and K is finite, this model
is referred to as the shallow AR model (SAR). The SAR with
K = 2 is plotted in the middle of Figure 1.

This SAR can be interpreted from the perspective of digital
filter and signal. Suppose ot ∈ RD and the GMM has one
mixture component. Then, the distribution of ot can be written
as

p(ot|ot−K:t−1,x1:T ) =
D∏

d=1

1√
2πσ2

t,d

exp
[
− (ot,d −

∑K
k=1 ak,dot−k,d − µt,d − bd)2

2σ2
t,d

]
,

(11)

where ot,d, µt,d, ak,d, and bd are the d-th dimensions of ot,µt,
ak, and b, respectively, and σt,d is the d-th diagonal element
of the diagonal matrix Σt. Suppose a new random variable
is defined as ct,d = ot,d −

∑K
k=1 ak,dot−k,d, then it can be

shown that the vector c1:T,d = [c1,d, · · · , cT,d]> and another
vector o1:T,d = [o1,d, · · · , oT,d]> are related by a linear
transformation

c1:T,d = A
(d)o1:T,d, (12)

where A(d) =



1 0 0 0 · · · 0 · · · 0
−a1,d 1 0 0 · · · 0 · · · 0
−a2,d −a1,d 1 0 · · · 0 · · · 0

...
...

...
...

...
...

...
...

−aK,d · · · −a2,d −a1,d 1 0 · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 −aK,d · · · −a2,d −a1,d 1




.

Interestingly, Equation (12) is also a filtering process in
which the input signal o1:T,d of length T is converted into
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A1(z)

AD(z)
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Fig. 2. Conceptual illustration of SAR as RMDN plus digital filters. Note
that this SAR is implemented as a single network, as shown in Figure 1.

the output signal c1:T,d by using a finite impulse response
(FIR) filter. This FIR filter can be written in the z-domain
as Ad(z) = 1 −∑K

k=1 ak,dz
−k, where {a1,d, · · · , aK,d} are

the filter coefficients. Because A(d) is invertible, an ‘inverse’
filtering process can be defined as o1:T,d =H(d)c1:T,d, where
H(d) = (A(d))−1. This ‘inverse’ filter written in the z-domain
is Hd(z) = 1/Ad(z).

Generally, {Hd(z), Ad(z)} and c1:T,d can be defined for
each d ∈ [1, D]. By replacing ot,d −

∑K
k=1 ak,dot−k,d in

Equation (11) with ct,d, it can be demonstrated that
T∏

t=1

p(ot|ot−K:t−1,x1:T ) =

T∏

t=1

p(ct|x1:T ). (13)

Equations (12) and (13) indicate that the SAR can interpreted
as a combination of digital filters and an RMDN. This inter-
pretation is shown in Figure 2.

IV. DEEP AR NEURAL F0 MODEL

A. Weakness of SAR and RMDN
The local and linear AR dependency modeled in the SAR

may be insufficient for F0 modeling. This weakness can be
revealed by examining the F0 contours sampled from the
model [61]. Let’s use the SAR in Section V as the example.
Given this SAR, ô1 can be sampled from p(o1|x1:T ), and
then ô2 can be drawn from p(o2|ô1,x1:T ). Repeating this
ancestral sampling process can generate an F0 contour. If the
AR dependency is strong enough, ôt+1 and ôt are likely to
have a similar value, and the sampled contour should be as
smooth as a natural F0 contour. However, Figure 3 shows that
the sampled F0 from the SAR is very noisy.

For reference, Figure 3 shows an F0 contour sampled from a
baseline RMDN, which is also trained on continuous F0 data
and used in Section V. The noisy output from this RMDN
is expected because F0 values are drawn from independent
distributions. In the case of the SAR, sampling an F0 contour
is equivalent to drawing an F0 contour from a virtual RMDN
and filtering it. However, the linear filter in this SAR seems
to be incapable of removing the rapid change in the sampled
F0 contour. We observed that this weakness remains even if
the order K of the filter is increased. Note that the SAR and
the RMDN can generate smooth contours by using the mean-
based generation method, which is shown later in Figure 9
and explained in the experiments of Section V-E. However, it
only indicates the smoothness of the F0 mean trajectory but
not necessarily the goodness of the model.
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Fig. 3. F0 contours sampled from RMDN and SAR. The model configuration
is explained in Section V-B. The embedded figure shows the details around the
290th frame. Note that the variance of distribution was scaled by 0.5 before
sampling. Otherwise, sampled F0 contours were too noisy for visualization.

B. Definition of deep AR model

A better implementation for the AR dependency may
require non-linear transformations. This study followed the
approach to feed the target data of the previous frame as
the additional input to a uni-directional recurrent layer at the
current frame [43]. The implementation is straightforward:
concatenate ot−1 with the output of the previous hidden layer
at the t-th frame and use the concatenated vector as an input
to the recurrent layer. While the natural ot−1 is fed back
during model training, the previously generated ôt−1 or other
statistics introduced in Section IV-D can be fed back during
generation.

Because the feedback data are propagated by the recurrent
layer, hidden features extracted from o1:t−1 can be used at
the t-th frame. Therefore, the output of the internal RNN at
the t-th frame, or consequently the parameter Mt of ot’s
distribution, can be computed as Mt = HΘ(x1:T ,o1:t−1, t).
Consequently, the distribution of ot depends on o1:t−1 in the
same manner as Equation (8) shows. Since the AR dependency
is non-linear and potentially beyond a local time window, this
proposed model is referred to as the deep AR model (DAR).
The data-feedback path is referred to as the feedback link. One
example of the DAR is plotted on the right side of Figure 1.

C. Comparing DAR and SAR with RMDN and its extensions

The proposed DAR and the SAR only introduce additional
recurrent or feedback links compared to an RMDN. Some
readers may wonder what the differences are between AR
models and extended RMDNs with similar links inside the
internal RNN. Such a toy extended RMDN with a recurrent
link in the output layer [62] is shown on the left side of Figure
4. One difference is that, while the link in the SAR and DAR
delivers ot, the link in the extended RMDN carries the valued
computed from the internal RNN. This difference impacts the
model’s capability to learn the temporal dependency of o1:T .

Let us explain this difference intuitively using the toy
models in Figure 4, where the target data sequence is o1:2 =
[o1, o2] and o1, o2 ∈ R. To simplify the explanation, we
assume that all the layers use a linear activation function and
set the bias to zero. The distribution for ot is assumed to be
a Gaussian distribution with a unit variance.

h2h1

RMDN SAR DAR

h2h1 h2h1
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M1 M2

o1 o2
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Fig. 4. Illustration of toy neural models. The RMDN uses a recurrent output
layer [62]. w∗ and W∗ denote the transformation vectors and matrices.

a) Extended RMDN: For the toy extended RMDN, it
is easy to show that M1 , µ1 = w>mh1 and M2 ,
µ2 = w>mh2 + wµµ1. Let µ̃2 = w>mh2, then the conditional
distribution of o1:2 can be written as

p(o1:2|x1:2) =N (o1;µ1, 1)N (o2; µ̃2 + wµµ1, 1)

=
1

2π
exp(− (o1 − µ1)

2

2
− (o2 − µ̃2 − wµµ1)

2

2
)

=
1

2π
exp(−1

2
(o− µ)>Σ−1(o− µ)),

(14)

where o = [o1, o2]
>, µ = [µ1, µ̃2+wµµ1]

>, and Σ =

[
1 0
0 1

]
.

Despite the recurrent link in the output layer, the covariance
matrix Σ is diagonal, which suggests that o1 and o2 are treated
with the model as independent random variables.

b) SAR: On the other hand, the toy SAR computes
M1 , µ1 = w>mh1 and M2 , µ2 = w>mh2. Accordingly,
the distribution calculated with the model can be written as

p(o1:2|x1:2) =N (o1;µ1, 1)N (o2;µ2 + ao1, 1)

=
1

2π
exp(− (o1 − µ1)

2

2
− (o2 − µ2 − ao1)2

2
)

=
1

2π
exp(−1

2
(o− µ)>Σ−1(o− µ)),

(15)

where o = [o1, o2]
>, µ = [µ1, µ2+aµ1]

>, Σ =

[
1 a
a 1 + a2

]
,

and a is the trainable AR parameter. As long as a 6= 0, the
covariance matrix Σ becomes a full matrix, which means that
the correlation between o1 and o2 is not ignored with the
model.

c) DAR: Similarly, the toy DAR computes µ1 = w>mh1

and µ2 = w>mh2, where h2 =Whh1 +Wix2 +woo1. If we
define µ̃2 = w>m(Whh1 +Wix2), then we can get

p(o1:2|x1:2) = N (o1;µ1, 1)N (o2; µ̃2 +w
>
mwoo1, 1). (16)

This equation indicates that the toy DAR models the depen-
dency between o1 and o2 in a similar manner to the toy SAR.

As the toy examples suggest, AR models differ from base-
line models because the recurrent or feedback link delivers
the target data ot rather than output of the internal RNN.
Compared with the SAR, the DAR may be more general.
When the toy DAR uses a non-linear activation function
σ(·), it computes h2 = σ(Whh1 +Wix2 + woo1). Then,
the mean of o2’s distribution becomes a non-linear function
of o1. Furthermore, if o1:T has more than two frames, the
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Fig. 5. Generated F0 contour from DAR-based continuous F0 model by using
mean-based generation. NAT denotes natural F0.

distribution of ot is also affected by o1:t−2 because hidden
features extracted from o1:t−2 are delivered by ht−1. Note
that the advantage of the DAR is valid even if it is used for
modeling quantized or discrete data.

D. DAR for quantized F0 modeling

A DAR-based F0 model seems promising, but a practical
issue on the representation of F0 data has to be solved.
Because the F0 of an unvoiced frame is unmeasurable, an
F0 datum is defined as ot ∈ {NULL} ∪ R with the classical
HMM-based SPSS framework, where NULL is the symbol for
the unvoiced frame. These F0 data can be modeled using a
multi-space probability distribution HMM [37]. Alternatively,
artificial F0 values can be assigned to the unvoiced frames,
after which the continuous F0 and unvoiced/voiced (U/V) state
of each frame can be modeled using a normal HMM [9].
Note that ‘continuous’ means that ot ∈ R,∀t ∈ {1, · · · , T}.
This continuous F0 modeling approach is widely used with
NN-based F0 models including the baseline RNN [19] and
the SAR. However, our experiments showed that the DAR
performed poorly on continuous F0 data. After training the
DAR, the configuration of which was based on RMDN in
Section V, the correlation between generated and natural F0
significantly dropped from 0.89 (RMDN’s score) to 0.58 on the
test set. A generated F0 contour is plotted in Figure 5. We
strongly believe that this degradation is due to the artificial
F0 values interpolated in the unvoiced frames. Since they are
artificially interpolated, they have deterministic dependency
to previous frames, whereas the natural F0 values in the
voiced frames have stochastic dependency. This may disturb
the learning of temporal dependency in natural F0 contours.

Hence, the DAR requires an alternative method to represent
both unvoiced and voiced frames without using F0 interpola-
tion. We propose a strategy to quantize the F0 value of voiced
frames and further assign one additional class to unvoiced
frames. In this manner, both voiced and unvoiced frames can
be represented as a set of categorical symbols. This strategy
is also reasonable because of the just-noticeable difference
of pitch in speech perception, as Section II-B discussed. To
quantize the F0 data, the first step is to map the original
F0 onto a Mel scale, then the Mel-scale F0 is quantized
into N levels. Finally, the quantized F0 of one frame can
be encoded as a one-hot vector ot = [ot,0 , ot,1, · · · , ot,N

],
where ot,j ∈ {0, 1} and ||ot||1 = 1. If the frame is unvoiced,
the 1st dimension of this one-hot vector is set to one, i.e.,
ot = [1, 0, · · · , 0].

After F0 quantization, the F0 contour becomes a sequence
of categorical symbols. This representation is very convenient
since it allows F0 values and U/V state to be modeled simulta-
neously. The DAR may use a softmax output layer to calculate
a probability for each of the quantized F0 and unvoiced symbol
at each frame. However, from the experiments discussed in
Section V-C, a normal softmax layer is not the best choice
because the quantity of unvoiced data in the corpus is much
larger than that of any other quantized F0 symbol. We thus
suggest using a hierarchical softmax layer [63] to deal with the
unbalanced data distribution. Suppose that the hot dimension
of ot is indexed by j, then the PMF w.r.t. ot can be defined
as P (ot|o1:t−1,x1:T ;Θ) , Pt(J = j), where

Pt(J = j) =





eht,0

1 + eht,0

, j ∈ {0}

1

1 + eht,0

eht,j

∑N
k=1 e

h
t,k

, j ∈ [1, N ]

. (17)

Here, ht,j is the j-th dimension of the input vector ht to
the hierarchical softmax layer. This ht is calculated from the
network given feedback data o1:t−1 and linguistic features
x1:T . Accordingly, it can be written that Pt(J = j) =
HΘ(x1:T ,o1:t−1, t, j).

As Equation (17) shows, the first hierarchical level uses a
sigmoid function to compute a probability of being unvoiced,
i.e., Pt(unvoiced) , Pt(J = 0) = e

ht,0

1+e
h
t,0

. The second level
uses a normal softmax function to compute a conditional
probability of each quantized F0 symbol given a voiced state,
i.e., Pt(J = j|voiced) = e

h
t,j∑N

k=1 e
h
t,k
, j ∈ [1, N ]. Based on

Equation (17), the network can be trained by maximizing the
likelihood or equivalently minimizing the cross-entropy.

In the generation stage, if Pt(J = 0) > 0.5, the t-th
frame is classified as being unvoiced. Otherwise, this frame
will be voiced and will be assigned a real-number F0 value
f̂t. Suppose {v1, · · · , vN} denotes the real F0 values of the
N quantization levels, e.g., the center of each quantization
interval. The F0 value f̂t can be acquired using a random-
sampling-based generation method, which is written as

f̂t = vj ,where j ∼ Pt(J = j|voiced), j ∈ {1, · · · , N}. (18)

Given the sampled value j, a one-hot vector ôt with the j-th
dimension turned on is fed back to the next frame. Remember
that random-sampling is used to test the model’s capability.

So far, we treated the F0 symbols as discrete categorical
values. Since the F0 symbols for voiced frames are quantized
F0 indexes, a real-number F0 value f̂t can also be generated
from expected value below

f̂t =

N∑

j=1

vjPt(J = j|voiced). (19)

This method is the mean-based generation method for quan-
tized F0. After f̂t is generated, a vector of probability [Pt(J =
0), Pt(J = 1), · · · , Pt(J = N)] is fed back to the next frame.
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E. Exposure bias of DAR

The representation of F0 data is not the only issue that
affects the DAR. As Section IV-B explains, the feedback link
in the DAR propagates the natural F0 during model training,
which is known as teacher-forced training [64]. However,
because the natural ot−1 usually has a similar value to ot,
a trained DAR may only rely on the feedback F0 data while
ignoring the input linguistic features x1:T . This behavior is
unwanted because an F0 model should also use the linguistic
features. Furthermore, while natural F0 data are propagated
through the feedback links in the training stage, generated F0
data are fed back during generation. Because the distribution
of generated F0 may not be identical to the natural one, the
model may suffer from the problem called exposure bias [65].
Consequently, generation errors in the previous frames may be
propagated to the next frame, which makes the entire generated
F0 contour erratic.

In this study, we propose a data dropout strategy to alleviate
the above problems. It requires the model to randomly set the
feedback F0 data to zero in both training and generation stages,
which consequently forces the DAR to focus on the linguistic
features. This strategy is similar to the idea of weakening the
AR-model-based decoder for lossy variational auto-encoders
[66]. It will also alleviate the exposure bias as the model relies
more on the linguistic features that are given with the same
TTS front-end for both training and generation.

The problem of exposure bias has been investigated for
the task of structured prediction, and several methods, such
as data as demonstrator (DAD) [67] and scheduled sampling
[68], have been proposed. Their basic strategy is to feed back
the generated data during training. However, it is also known
that this strategy may force the model to ignore the temporal
dependency of the natural data sequence [69]. An alternative
method is to combine search and optimization for model
training [70]. The idea is to train a model by minimizing the
average utterance-level distance between natural and generated
data sequence candidates, which does not require feeding back
the natural data during training. We leave this idea for our
future work because of increased complexity in pruning and
searching the space of generated data sequences.

V. EXPERIMENTS

A. Corpus and feature extraction

We conducted experiments on a Japanese speech corpus,
which was used for the XIMERA unit-selection TTS system
[71]. All the data are neutral, read speech recorded at a
sampling rate of 48 kHz. Fifty hours of recordings from a
female speaker (F009) were used for the experiments. This
subset contained 30,016 segmented utterances, among which
500 were randomly selected as the validation set and another
500 as the test set. Note that the validation and test sets were
larger than those used in a previous experiment [72].

Linguistic features were automatically extracted from the
speech transcription using the TTS front-end called OpenJTalk
[73]. This front-end conducted grapheme-to-phoneme con-
version, part-of-speech tagging, and syntactic parsing based
on the Mecab toolkit [74]. The output from the front-end
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Fig. 6. Structure of experimental models. FF, H-softmax, bi-LSTM, and
un-LSTM denote feedforward, hierarchical-softmax, bi-directional, and uni-
directional LSTM layer, respectively. QF0 denotes quantized F0 data. × in
DAR means random data dropout. Layer size of bi-LSTM is the sum of the
forward and backward recurrent layers’ size.

was identical to that used in the Japanese HTS system [75],
including quin-phone identity, word part-of-speech tag, phrase
accent type, and other structural information. These linguistic
features were encoded into a vector of 389 dimensions.

Natural F0 values were extracted by merging the results
of multiple pitch trackers [76] with the frame rate of 200
Hz (5 ms). Then, these raw F0 data were transformed to the
Mel scale [77] by using m = 1127 log(1 + F0/700). For the
models working on continuous F0, the unvoiced frames were
interpolated using an exponential function. For quantized F0
models, the transformed F0 values were quantized into 255
levels between 66 and 529 on the Mel scale. The number 66
was equal to the minimum Mel-scale F0 value in the corpus.
The number 529 was computed with m+3σ, where m = 342.4
and σ = 62.2 are the mean and standard deviation of Mel-
scale F0 over the corpus. The number of quantization levels
was decided from an analysis-by-synthesis test, which found
that using 255 levels was sufficient to avoid F0 ‘quantization
noise’. The quantized F0 and unvoiced symbol were encoded
as a one-hot vector ot ∈ {0, 1}256 for each frame. The F0
delta and delta-delta components were not used.

Speech samples for the listening test were generated given
natural Mel-generalized cepstral coefficients [78] of order 60
and band aperiodicity coefficients of order 25. The WORLD
vocoder [79] was used for waveform generation from the
acoustic features.

B. Model configuration, training, and testing

The experimental models are shown in Figure 6, among
which RNN, RMDN and SAR work on the continuous F0 while
the RNN-based quantized F0 model (RNNQ) and the proposed
DAR work on the quantized F0. Note that RNNQ is just the
baseline quantized F0 model defined in Equation (7).

After the input layer, all the models used two feedforward
layers with 512 nodes and a bi-directional LSTM layer with
256 nodes. The feedforward layers used the tanh-based acti-
vation function. After the first three hidden layers, all models,
except DAR, used another bi-directional LSTM layer with 128
nodes. On the output side, RNN used a linear output layer.
RMDN and SAR used a linear layer to generate the parameters
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for a binomial distribution modeling U/V status and a GMM
with two mixture components modeling the F0 value. The
motivation to use two mixture components instead of one
was to make the model robust against data outliers. SAR set
K = 1 for the AR dependency. This choice of K was based
on previous experiments in which a larger K did not improve
performance. Different from other models, DAR used a uni-
directional LSTM of 128 nodes after the first three hidden
layers. This uni-LSTM layer also took the feedback F0 as
the input. After this LSTM layer, a linear layer was used
to generate the activation to the hierarchical softmax layer.
Several versions of DAR were trained and tested using different
dropout rates Pd = {0.00, 0.25, 0.50, 0.75}.

The plain stochastic gradient descent (SGD) with early stop-
ping was used for initial training. After the error on the valida-
tion set consistently increased for five epochs, the best trained
model was further tuned using the AdaGrad optimizer [80]
with early stopping. The learning-rate for the SGD was 1e-
5, while the learning-rate parameter for AdaGrad was 0.001.
RNN, RNNQ, and DAR were initialized using the layer-size-
dependent uniform distribution [81]. RMDN was initialized with
the trained RNN except the last linear layer. Similarly, SAR was
initialized by the trained RMDN. All models and experiments
were implemented on the basis of the CURRENNT toolkit
[82]. The toolkit and training recipes for the experiments are
publicly available online (http://tonywangx.github.io)

To evaluate the performance of the experimental models,
the log-likelihood of each model except RNN was calculated
on the validation set. Natural F0 data were fed back when
the log-likelihood of DAR and SAR was evaluated. For further
evaluation, subjective and objective tests were conducted on
the test set. The subjective test is discussed in Section V-E.
For the objective test, several metrics were calculated on
generated F0 given the natural duration information. These
metrics include root mean square error (RMSE), a correlation
coefficient (CORR), a U/V classification error rate (U/V),
and utterance-level F0 global variance (GV). The RMSE and
CORR were calculated on frames where both natural and
generated F0s were voiced. For different versions of DAR
using random dropout (Pd = {0.25, 0.50, 0.75}), the objective
evaluation was conducted for 10 rounds, where the model used
a different random seed for F0 generation in each round. The
mean value of each metric over the 10 rounds is reported in
this paper. Standard deviation is not shown because it is quite
small: σRMSE < 0.2, σCORR < 0.0017, σUV < 0.018%, and
σGV < 0.5 for all related models.

C. Effectiveness of hierarchical softmax for DAR

Before evaluating DAR against other models, this sec-
tion discusses the effectiveness of hierarchical softmax.
This test introduced another DAR-based model that had
the same structure as DAR except using a normal softmax
layer. This model was trained using dropout rates Pd =
{0.00, 0.25, 0.50, 0.75}. Note that this model generates an
unvoiced frame if Pt(unvoiced) is larger than the proba-
bility of other F0 symbols. Otherwise, it uses the mean-
based generation method in Equation (19) to generate F0.

TABLE I
PERFORMANCE OF DAR USING DIFFERENT SOFTMAX LAYERS.

MEAN-BASED GENERATION WAS USED. U→V DENOTES ERROR RATE OF
CLASSIFYING UNVOICED FRAMES AS VOICED; V→U DENOTES THE

ERROR THE OTHER WAY ROUND.

Softmax type U/V V→U U→V

Pd = 0.75
Normal 5.31% 4.57% 0.74%

Hierarchical 3.35% 1.66% 1.69%

Pd = 0.50
Normal 4.87% 4.04% 0.83%

Hierarchical 3.46% 1.86% 1.60%

Pd = 0.25
Normal 4.55% 3.46% 1.09%

Hierarchical 3.62% 1.86% 1.76%

Pd = 0.00
Normal 4.43% 2.98% 1.45%

Hierarchical 3.82% 1.73% 2.09%

The objective evaluation was conducted for 10 rounds when
Pd = {0.25, 0.50, 0.75}.

No matter what the dropout rate was, using the normal
softmax layer achieved similar but no better RMSE and CORR
scores than the hierarchical one. The results of RMSE and
CORR are thus not shown in this paper. What is interesting is
the results on U/V decision. Table I lists the gross U/V error
rate, the error rate of classifying voiced frames as unvoiced
(V→U), and the error rate the other way around (U→V).
Interestingly, while using the normal softmax layer achieved
a lower U→V error rate, it made more V→U errors. The
unbalanced error rate was not observed in the case of the
hierarchical softmax. In terms of gross error rate, using the
hierarchical softmax layer performed better. Similar results
were also observed from an experiment on English data [21].

These results may be due to the imbalance of F0 data
distribution. While around 50% of training data are unvoiced
(including 28% silent frames), the ratio of any quantized F0
symbol is less than 0.6%. Therefore, the model with a normal
softmax layer may be trained to over-estimate the probability
for being unvoiced, which may have caused a low U→V
error rate but a high V→U error rate. For the model using
the hierarchical softmax layer, the U/V decision is a binary
classification problem and can be learned given well balanced
U/V data.

D. Effectiveness of dropout for DAR

This section analyzes the usefulness of dropout on DAR. The
F0 contours on the test set were generated using the mean-
based generation method for discrete data (Equation (19)).
Note that RNNQ can be treated as DAR with Pd = 1.0. The
results in Table II indicate that DAR with Pd > 0 acquired
better RMSE and CORR scores than DAR with Pd = 0.0,
which indicates the effectiveness of using dropout on DAR.

As Section IV-E argues, a potential problem of using DAR is
the exposure bias. This is supported from the results in Table
II. First, DAR with Pd = 0.0 achieved a higher likelihood than
other cases on the development set. Because the likelihood on
the development set was evaluated given the natural F0 data for
feedback, it suggests that, when the natural F0 data were used
as the condition, DAR could better depict the F0 data without
using data dropout. However, on the test set in which the model

http://tonywangx.github.io
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TABLE II
RESULTS OF OBJECTIVE EVALUATION ON TEST SET. RNN, RMDN, AND SAR

USED MEAN-BASED GENERATION METHOD FOR CONTINUOUS F0; DAR
AND RNNQ USED MEAN-BASED GENERATION METHOD FOR QUANTIZED

F0. Pd DENOTES DROPOUT PROBABILITY; GV OF NATURAL F0 IS
AROUND 61.

Pd
Log-likelihood
validation set

RMSE CORR U/V GV

RNN - - 29.31 0.894 3.26% 51.4
RMDN - -3340.9 28.32 0.897 3.85% 54.2
SAR - -3278.6 34.57 0.898 3.85% 71.8

RNNQ - -2443.8 26.77 0.907 5.74% 56.4

DAR

0.75 -1595.1 26.52 0.909 3.35% 57.8
0.50 -1156.3 28.30 0.903 3.46% 61.5
0.25 -943.6 29.70 0.896 3.62% 62.7
0.00 -839.7 32.04 0.881 3.82% 64.4

had to feed back the generated F0 data, DAR’s performance
in terms of RMSE and CORR degraded. In fact, DAR with
Pd = 0.0 was very confident in terms of the F0 distribution.
This confidence can be demonstrated by the small variance of
its F0 distribution in Figure 7. However, a small variance does
not necessarily mean a small bias. When DAR uses its output
as feedback data on the test set, a slight difference between the
generated and natural F0 may be propagated to the following
frames and accumulated.

Dropout may provide DAR with the freedom to adjust the
bias and variance. As Table II and Figure 7 show, a larger Pd
led to a larger variance of the F0 distribution; consequently,
a smaller likelihood on the development set. However, it
improved the RMSE and CORR on the test set. Particularly,
DAR with Pd = 0.75 achieved the best performance in terms
of RMSE and CORR.

The rate of dropout should be selected carefully. An ap-
propriate choice should strike a balance between the bias
and variance. Another concern indicated in Figure 8 is that
intensive dropout may reduce the GV of the generated F0
contours and make them over-smoothed. Because the over-
smoothing effect may be more harmful to the perception of
pitch than the degraded value of RMSE or CORR, DAR with
Pd = 0.5 was selected for the subjective evaluation discussed
in the next section.
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Fig. 8. Box-plot of GV for natural and generated F0 on test set

E. Comparison among DAR, SAR, and baseline models

1) Objective evaluation: This section compares the perfor-
mance of the experimental models. Note that RNN, RMDN, and
SAR used the mean-based generation method for continuous
F0 while DAR and RNNQ used the mean-based generation
method for quantized F0. The objective results are listed in
Table II, and the generated F0 contours are plotted in Figure 9.

The results indicate that RNN and RMDN were strong base-
lines. Compared with RMDN and RNN, SAR performed worse
in terms of RMSE and similarly in terms of CORR. However,
SAR acquired a higher GV score, and the generated F0
contours had a larger dynamic range. SAR’s performance may
be explained if SAR is interpreted on the basis of the RMDN-
plus-filter model shown in Figure 2. Given the AR coefficients
from the trained SAR, the frequency responses of those virtual
filters are plotted in Figure 10. Note that the analysis filter
A(z) enhances the high-frequency band while suppressing the
low-frequency part of the input F0 contour. Because the energy
of an F0 contour concentrates in the low-frequency band,
what A(z) does is similar to signal whitening. Accordingly,
the virtual RMDN in SAR only models the ‘whitened’ F0
contours, and the averaging effect of statistic modeling may
have less impact on the original F0 contours. This may be the
reason for the increased GV of SAR. However, it generated less
smoothed F0 curves such as the segment around the 500th-
frame in Figure 9. These under-smoothed curves degraded the
RMSE score and turned out to be perceptible in the subjective
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Fig. 9. Generated F0 contours for test utterance (AOZORAR 03372 T01). NAT denotes natural F0. RNN, RMDN, and SAR used the mean-based generation
method for continuous F0 data. DAR and RNNQ used the mean-based generation method for quantized F0 data.
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Fig. 10. Frequency response of filters A(z) and H(z) learned with SAR

evaluation.
Compared with SAR and other baselines, DAR performed

better when an appropriate dropout rate was used. For exam-
ple, DAR with Pd = 0.75 achieved the highest CORR and
lowest RMSE. DAR with Pd = 0.5 also achieved good objec-
tive scores. As Figure 9 shows, the generated F0 contours from
DAR were sufficiently smooth, even though the models were
trained given quantized F0 data. However, these generated F0
contours are not over-smoothed. For example, Table II shows
that DAR with Pd = 0.5 acquired a GV score that was closer
to the natural F0. In particular, from Figure 9, the generated
F0 contour from DAR with Pd = 0.5 had a larger dynamic
range than those from the baseline RNN and RMDN.

2) Subjective evaluation: To further evaluate the perfor-
mance of the experimental models, a mean-opinion-score
(MOS) test was conducted to compare RNN, RMDN, SAR,
DAR using Pd = 0.5, and natural F0 (NAT). As Section
V-A explained, speech samples were generated given natural
spectral features. In one evaluation set of the MOS test, each
participant had to complete five evaluation screens. On each
screen, a sample from one of the five systems was played,
and the participant was asked to rate the prosody from “1 -
unnatural” to “5 - natural”. The five samples in one evaluation
set had the same linguistic content, and the order of these

NAT DAR SAR RMDN RNN
NAT <1e-16 <1e-16 <1e-16 <1e-16
DAR <1e-16 <1e-16 <1e-16 <1e-16
SAR <1e-16 <1e-16 0.01785 0.7429
RMDN <1e-16 <1e-16 0.01785 0.00426
RNN <1e-16 <1e-16 0.7429 0.00426

3.00
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3.50

3.75

4.00

4.25

M
O

S

Fig. 11. Results of subjective evaluation. NAT denotes the natural F0.
p−values calculated from the two-sided Mann-Whitney U test are listed in
the table.

samples was randomly shuffled.

This MOS test was crowdsourced online, and 130 paid
native Japanese speakers participated. Each participant com-
pleted around 23 evaluation sets on average, and 3000 sets of
MOS scores were collected in total. The results are plotted in
Figure 11. Although it was still worse than NAT, DAR out-
performed other models. Results of two-sided Mann-Whitney
U tests demonstrated that the difference between DAR and
other F0 models was statistically significant (p < 0.01). One
main reason for DAR’s performance may be that the generated
F0 contours were sufficiently smooth but not over-smoothed.
Compared with SAR, DAR’s output did not contain the under-
smoothed curves that turned out to be perceptually harmful to
the synthetic speech. Meanwhile, generated F0 contours from
DAR had a proper dynamic range and sounded less boring than
those from the baseline models.



MANUSCRIPT 2018 11

TABLE III
RESULTS OF OBJECTIVE EVALUATION ON SAMPLED F0 CONTOURS FROM

DAR (Pd = 0.5)

Linguistic
features

Sampling
rounds

RMSE CORR U/V GV

Full set of
linguistic
features

1st round 30.49 0.889 3.63% 60.6

2nd round 30.65 0.887 3.59% 60.8

3rd round 30.31 0.890 3.65% 60.9

Without
pitch

accents

1st round 35.93 0.840 3.57% 61.4

2nd round 36.52 0.838 3.60% 61.9

3rd round 36.02 0.838 3.63% 61.2

F. Random sampling on DAR

The results given in the previous section indicate DAR’s
potential for F0 modeling. However, the results did not directly
answer whether DAR’s performance is due to its improved
capability to model sequential data. This section first discusses
the test on DAR by using the random-sampling-based genera-
tion method. This test was conducted on DAR with Pd = 0.5
for three rounds, where each round used a different random
seed for sampling. Figure 12 (a) plots the three randomly
sampled F0 contours for one test-set sentence. Interestingly,
the randomly sampled F0 contours were smooth and much
better than the output of RMDN and SAR shown in Figure 3.
Furthermore, these sampled F0 contours were quite close
to the natural one. The objective metrics calculated on the
randomly sampled F0 contours are listed in the first three rows
of Table III. Comparison between these results and those in
Table II indicates that the random-sampling generation method
achieved similar objective scores to the mean-based generation
method on DAR. Note that the sampled F0 contours in Figure
12 (a) contained small spikes due to the random sampling
process. However, they are barely perceptible. Generally, these
results indicate that DAR is better at F0 modeling than SAR
and RMDN.

It is not surprising to see that smooth F0 contours can be
sampled from DAR. As Figure 7 shows, the F0 distribution
calculated with DAR has a sharp mode, and this mode moves
slowly across frames. Thus, it is highly possible to sample a
smooth F0 contour from the sequence of such F0 distribution.
However, it is surprising that the sampled F0 contours were
quite similar to the natural one. Despite the detailed differ-
ences, the sampled and natural F0 contours were perceived to
be quite similar in terms of intonation.

We hypothesized that this is due to the characteristics of
Japanese speech data. In the case of reading speech, the F0
contour of an utterance may be sufficiently specified by the
Japanese pitch accents. Although the Japanese pitch accents
interact with each other in an utterance [83], they can be
somewhat pinned down by a lexicon. Therefore, in the TTS
system, the input linguistic features given by the front-end may
be sufficiently informative for DAR to determine the shape of
generated F0 contours; thus, leaving less space for sampling
F0 contours with varied shapes.

To verify the hypothesis, another DAR was trained after
linguistic features related to the Japanese pitch accent were
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(a) DAR trained with full set of linguistic features
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Fig. 12. Randomly sampled F0 contours from DAR (Pd = 0.5)

removed. The objective results are listed in the last three
rows of Table III, and the sampled F0 contours are shown
in Figure 12 (b). Interestingly, Figure 12 (b) shows that
sampled contours occasionally deviated from the natural F0
contour, e.g., after the 200th and 500th frames. According to
the native Japanese speakers, those F0 curves were perceived
as either unnatural segments or different accents from the
natural ones. These results indicate that DAR’s performance
in this experiment benefited from the relatively accurate input
linguistic features.

We believe that these results are somewhat consistent with
those from our previous experiment on an English corpus,
in which the proposed DAR sampled more distinguishable
F0 contours every time. In English TTS systems, what we
can obtain from a lexicon is the lexical stress. However, it
does not sufficiently explain an F0 contour. For specifying the
general shape of the F0 contour in English, we need to have
accurate English pitch-accent information2, but the English
pitch accents cannot be perfectly inferred from the text [85].
Therefore, it is thought that the degrees of informativeness of

2We follow the literature to use the term ‘pitch accent’ for both English and
Japanese. However, there are fundamental differences between ‘pitch accent’
in English and Japanese [84]
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the English input linguistic features allowed the English DAR
to generate varied F0 contours through sampling.

Finally, it is interesting to see what would happen if no
linguistic feature is provided for DAR. This was implemented
by setting the input sequence x1:T to zero during both training
and generation. Two samples randomly drawn from such a
DAR are shown in Figure 12 (c). Although these two F0
contours were nonsense, they were smooth and resembled the
high-low movement of natural F0 contours. As RMDN and SAR
could not generate smooth random samples under the same
condition, this result provides further evidence of DAR’s ability
to model the temporal correlation of F0 contours.

VI. CONCLUSION

We investigated the task of F0 modeling for TTS from
the perspective of sequential data modeling. On the basis
of the analysis and experiments, it was demonstrated that
a conventional RNN may not properly capture the temporal
dependency of the F0 contour across frames. Even the F0s of
two adjacent frames are assumed to be statistically indepen-
dent. As a result, the RNN generated very noisy F0 contours
when a sampling-based generation method was used. Although
the RNN could generate smooth F0 contours by using a
conventional mean-based generation method, the generated
F0 contours became over-smoothed and made the synthetic
speech tedious in perception.

We attempted to improve an RNN by adding the AR
dependency to the model. The first attempt was based on our
recently proposed SAR. However, although this SAR takes
into account the AR dependency within a local time window,
it was shown that the SAR also generated noisy F0 contours
when the sampling-based generation method was used. The
weakness of the SAR is due to the fact that it only relies on
linear transformation to capture the AR dependency.

Therefore, in this paper, we further proposed a DAR for
accurate F0 modeling. The basic idea of this model is to feed
back the previous F0 observation as the input to a recurrent
layer. This feedback link can propagate the previous F0 data
to all the following frames through non-linear transformation.
To make the model practical, we also proposed quantized F0
representation and a data dropout strategy of the feedback link.
As experiments demonstrated, the proposed DAR generated
smooth and quite natural F0 contours even if random sampling
was used. This result has not been achieved with other
F0 models. Furthermore, when the conventional mean-based
generation method was used, the DAR generated F0 contours
with an appropriate dynamic range and high accuracy. It also
outperformed the SAR, an RMDN, and an RNN in a subjective
evaluation test on the prosodic naturalness of synthetic speech.
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