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Abstract

Among the many approaches for reasoning about degrees of belief in the presence of noisy sensing and acting, the
logical account proposed by Bacchus, Halpern, and Levesque is perhaps the most expressive. While their formalism
is quite general, it is restricted to fluents whose values are drawn from discrete finite domains, as opposed to the
continuous domains seen in many robotic applications. In this work, we show how this limitation in that approach
can be lifted. By dealing seamlessly with both discrete distributions and continuous densities within a rich theory of
action, we provide a very general logical specification of how belief should change after acting and sensing in complex
noisy domains.

Keywords: Knowledge representation, Reasoning about action, Reasoning about knowledge, Reasoning about
uncertainty, Cognitive robotics

1. Introduction

On numerous occasions it has been suggested that the formalism [the situation calculus] take uncer-
tainty into account by attaching probabilities to its sentences. We agree that the formalism will eventually
have to allow statements about the probabilities of events, but attaching probabilities to all statements
has the following objections:

1. It is not clear how to attach probabilities to statements containing quantifiers in a way that corre-
sponds to the amount of conviction people have.

2. The information necessary to assign numerical probabilities is not ordinarily available. Therefore,
a formalism that required numerical probabilities would be epistemologically inadequate.

− McCarthy and Hayes [1].

Much of high-level AI research is concerned with the behaviour of some putative agent, such as an autonomous
robot, operating in an environment. Broadly speaking, an intelligent agent interacting with a dynamic and incom-
pletely known world grapples with two special sorts of reasoning problems. First, because the world is dynamic, it
will need to reason about change: how its actions affect the state of the world. Pushing an object on a table, for exam-
ple, may cause it to fall on the floor, where it will remain unless picked up. Second, because the world is incompletely
known, the agent will need to make do with partial specifications about what is true. As a result, the agent will often
need to augment what it believes about the world by performing perceptual actions, using sensors of one form or
another.

For many AI applications, and robotics in particular, these reasoning problems are more involved. Here, it is not
enough to deal with incomplete knowledge, where some formula φ might be unknown. One must also know which
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Figure 1: A simple robot.

of φ or ¬φ is the more likely, and by how much. In addition, both the sensors and the effectors that the agent uses to
modify its world are often subject to uncertainty in that they are noisy.

To see a very simple example, imagine a robot moving towards a wall as shown in Figure 1, and a certain distance
h from it. Suppose the robot can move towards and away from the wall, and it is equipped with a distance sensor
aimed at the wall. Here, the robot may not know the true value of h but may believe that it takes values from some set,
say {2, . . . , 11}. If the sensor is noisy, a reading of, say, 5 units, does not guarantee that the agent is actually 5 units
from the wall, although it should serve to increase the agent’s degree of belief in that fact. Analogously, if the robot
intends to move by 1 unit and the effector is noisy, it may end up moving by 0.9 units, which the agent does not get to
observe. Be that as it may, the robot’s degree of belief that it is closer to the wall should increase.

While many proposals have appeared in the literature to address such concerns (cf. penultimate section), very few
are embedded in a general theory of action whilst supporting features like disjunction and quantification. For example,
graphical models such as Bayesian networks can represent and reason about the probabilistic dependencies between
random variables, and how that might change over time. However, it lacks first-order features and a rich account
of actions. Relational graphical models, including Markov logic networks [2], borrow devices from first-order logic
to allow the succinct modelling of relational dependencies, but ultimately they are purely syntactic extensions to
graphical models, and do not attempt to address the deeper issues pertaining to the specification of probabilities in
the presence of logical connectives and quantifiers. Building on first-order accounts of probabilistic reasoning [3, 4],
perhaps the most general formalism for dealing with degrees of belief in formulas, and in particular, with how degrees
of belief should evolve in the presence of noisy sensing and acting is the account proposed by Bacchus, Halpern, and
Levesque [5], henceforth BHL. Among its many properties, the BHL model shows precisely how beliefs can be made
less certain by acting with noisy effectors, but made more certain by sensing (even when the sensors themselves are
noisy).

The main advantage of a logical account like BHL is that it allows a specification of belief that can be partial
or incomplete, in keeping with whatever information is available about the application domain. It does not require
specifying a prior distribution over some random variables from which posterior distributions are then calculated, as in
Kalman filters, for example [6]. Nor does it require specifying the conditional independences among random variables
and how these dependencies change as the result of actions, as in the temporal extensions to Bayesian networks [7].
In the BHL model, some logical constraints are imposed on the initial state of belief. These constraints may be
compatible with one or very many initial distributions and sets of independence assumptions. All the properties of
belief will then follow at a corresponding level of specificity.

Subjective uncertainty is captured in the BHL account using a possible-world model of belief [8, 9, 10]. In
classical possible-world semantics, a formula φ is believed to be true when φ holds in all possible worlds that are
deemed accessible. In BHL, the degree of belief in φ is defined as a normalized sum over the possible worlds where
φ is true of some nonnegative weights associated with those worlds. (Inaccessible worlds are assigned a weight of
zero.) To reason about belief change, the BHL model is then embedded in a rich theory of action and sensing provided
by the situation calculus [1, 11, 12]. The BHL account provides axioms in the situation calculus regarding how the
weight associated with a possible world changes as the result of acting and sensing. The properties of belief and belief
change then emerge as a direct logical consequence of the initial constraints and these changes in weights.

For example, suppose h is a fluent representing the robot’s horizontal distance to the wall in Figure 1. The fluent
h would have different values in different possible worlds. In a BHL specification, each of these worlds might be
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given an initial weight. For example, a uniform distribution might give an equal weight of .1 to ten possible worlds
where h ∈ {2, 3, . . . , 11}. The degree of belief in a formula like (h < 9) is then defined as a sum of the weights, and
would lead here to a value of .7. The theory of action would then specify how these weights change as the result of
acting (such as moving away or towards the wall) and sensing (such as obtaining a reading from a sonar aimed at the
wall). Naturally, the logical language permits weaker specifications, involving disjunctions and quantifiers, and the
appropriate behavior would still emerge.

While this model of belief is widely applicable, it does have one serious drawback: it is ultimately based on
the addition of weights and is therefore restricted to fluents having discrete finite values. This is in stark contrast to
robotics and machine learning applications [13, 14, 15], where event and observation variables are characterized by
continuous distributions, or perhaps combinations of discrete and continuous ones. There is no way to say in BHL
that the initial value of h is any real number drawn from a uniform distribution on the interval [2, 12]. One would
again expect the belief in (h < 9) to be .7, but instead of being the result of summing weights, it must now be the result
of integrating densities over a suitable space of values, something quite beyond the BHL approach.

So, on the one hand, the BHL account and others like it can be seen as general formal theories that attempt to
address important philosophical problems such as those raised by McCarthy and Hayes above. But on the other, a
serious criticism levelled at this line of work, and indeed at much of the work in reasoning about action, is that the
theory is far removed from the kind of probabilistic uncertainty and noise seen in typical robotic applications.

The goal of this work is to show how with minimal additional assumptions this serious limitation of BHL can be
lifted.1 By lifting this limitation, one obtains, for the first time, a logical language for representing real-world robotic
specifications without any modifications, but also extend beyond it by means of the logical features of the underlying
framework. In particular, we present a formal specification of the degrees of belief in formulas with real-valued
fluents (and other fluents too), and how belief changes as the result of acting and sensing. Our account will retain
the advantages of BHL but work seamlessly with discrete probability distributions, probability densities, and perhaps
most significantly, with difficult combinations of the two. More broadly, we believe the model of belief proposed in
this work provides the necessary bridge between logic-based reasoning modules, on the one hand, and probabilistic
specifications as seen in real-world data-intensive applications, on the other.

The paper is organized as follows. We first review the formal preliminaries, the BHL model in particular, and
introduce definitions for modeling continuous probability distributions. We then show how the definition of belief in
BHL can be reformulated as a different summation, which then provides sufficient foundation for our extension to
continuous domains. We then discuss how this model can be extended for noisy acting, and combinations of discrete
and continuous properties. We conclude after discussing related work.

2. A Theory of Action

Our account is formulated in the language of the situation calculus [1], as developed in [11]. The situation calculus
is a special-purpose knowledge representation formalism for reasoning about dynamical systems. Informally, the
formalism is best understood by arranging the world in terms of three kinds of things: situations, actions and objects.
Situations represent “snapshots,” and can be viewed as possible histories. A set of initial situations correspond to the
ways the world can be prior to the occurrence of actions. The result of doing an action, then, leads to a successor (non-
initial) situation. Naturally, dynamic worlds change the properties of objects, which are captured using predicates and
functions whose last argument is always a situation, called fluents.

2.1. The Logical Language

Formally, the language L of the situation calculus is a many-sorted dialect of predicate calculus, with sorts for
actions, situations and objects (for everything else). (We do not review standard predicate logic here; see, for example,
[17, 18]. We further assume familiarity with the notions of models, structures, satisfaction and entailment.) In full
length, let L include:

1A preliminary version of this work was discussed in [16]. That work was limited to noisy sensors, but assumed deterministic (i.e., noise-free)
effectors.
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• logical connectives ¬,∀,∧,=, with other connectives such as ⊃ understood for their usual abbreviations;

• an infinite supply of variables of each sort;

• an infinite supply of constant symbols of the sort object;

• for each k ≥ 1, object function symbols g1, g2, . . . of type (action ∪ object)k → object;

• for each k ≥ 0, action function symbols A1, A2, . . . of type (action ∪ object)k → action;

• a special situation function symbol do: action × situation→ situation;

• a special predicate symbol Poss: action × situation;2

• for each k ≥ 0, fluent function symbols f1, f2, . . . of type (action ∪ object)k × situation→ object;

• a special constant S0 to represent the actual initial situation.

To reiterate, apart from some syntactic particulars, the logical basis for the situation calculus is the regular (many-
sorted) predicate calculus.3 So, terms and well-formed formulas are defined inductively, as usual, respecting sorts.
See, for example, [11] for an exposition.

We follow some conventions in the ways we use Latin and Greek alphabets: a for both terms and variables of the
action sort (the context would make this clear); s for terms and variables of the situation sort (the context would make
this clear); and finally, x, u, v, z, n, and y to range over variables of the object sort. We let φ and ψ range over formulas,
and Σ over sets of formulas. (These may be further decorated using superscripts or subscripts.)

We sometimes suppress the situation term in a formula φ, or use a distinguished variable now, to denote the current
situation. Either way, we let φ[t] denote the formula with the restored situation term t.

We will often use the the usual “case” notation with curly braces as a convenient abbreviation for a logical formula:

z =

t1 if ψ
t2 otherwise

.
= (ψ ⊃ z = t1) ∧ (¬ψ ⊃ z = t2).

Finally, for convenience, we often introduce formula and term abbreviations that are meant to expand as L-
formulas. For example, we might introduce a new formula A by A .

= φ, where φ ∈ L. Then any expression E(A)
containing A is assumed to mean E(φ). Analogously, if we introduce a new term t by t = u .

= φ(u) then any expression
E(t) is assumed to mean ∃u(E(u) ∧ φ(u)).

Dynamic worlds are enabled by performing actions, and in the language, this is realized using the do operator.
That is, the result of doing an action a at situation s is the situation do(a, s). Functional fluents, which take situations as
arguments, may then have different values at different situations, thereby capturing changing properties of the world.
As noted, the constant S0 is assumed to give the actual initial state of the domain, but the agent may consider others
possible that capture the beliefs and ignorance of the agent. In general, we say a situation is an initial one when it is a
situation without a predecessor:

Init(s) .= ¬∃a, s′. s = do(a, s′).

The picture that emerges is that situations can be structured as a set of trees, each rooted at an initial situation and
whose edges are actions. More conventions: we use ι to range over such initial situations only, and let α denote
sequences of action terms or variables, and freely use this with do, that is, if α = [a1, . . . , an] then do(α, s) stands for
do(an, do(. . . , do(a1, s) . . .)).

Domains are modeled in the situation calculus as axioms. A set of L-sentences specify the actions available, what
they depend on, and the ways they affect the world. Specifically, these axioms are given in the form of a basic action
theory [11], reviewed below.

2We will subsequently introduce a few more distinguished predicates when modeling knowledge, sensing and nondeterminism.
3For simplicity, only functional fluents are introduced, and their predicate counterparts are ignored. (Distinguished symbols like Poss are an

exception.) This is without loss of any generality since predicates can be thought of functions that take one of two values, the first denoting true
and the other denoting false.
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2.2. Basic Action Theories

In general, a basic action theory D is a set of sentences consisting of (free variables understood as universally
quantified from the outside):

• an initial theoryD0 that describes what is true initially;

• precondition axioms, of the form Poss(A(~x, s)) ≡ β(~x, s) that describe the conditions under which actions are
executable;

• successor state axioms, of the form f (~x, do(a, s)) = u ≡ γ f (u, ~x, s), that describe the changes to fluent values
after doing actions;

• domain-agnostic foundational axioms, such as a second-order induction axiom for the space of situations and
unique name axioms for actions, the details of which need not concern us here [11].

The formulation of successor state axioms, in particular, incorporates Reiter’s monotonic solution to the frame prob-
lem [19].

An agent reasons about actions by means of entailments of a basic action theoryD, for which standard first-order
(Tarskian) models suffice (although see below). A fundamental task in reasoning about action is that of projection
[11], where we test which properties hold after actions. Formally, suppose φ is a situation-suppressed formula or uses
the special symbol now. Given a sequence of actions a1 through an, we are often interested in asking whether φ holds
after these:

D |= φ[do([a1, . . . , an], S0)]?

This concludes our review of the basic features of the language. In the subsequent sections, we will discuss how
the formalism is first extended for knowledge, and then, degrees of belief against discrete probability distributions and
beyond. To prepare for that, the rest of the section will introduce three logical constructions that will be used in our
work. First, we will define a class of Tarskian structures. Second, we define a logical term standing for summation
in the usual mathematical sense, that is to be understood as an abbreviation for a formula involving second-order
quantification. Third, we analogously define a logical term standing for integration in the usual mathematical sense.

2.3. R-interpretations

For our purposes, the notion of entailment will be assumed wrt a class of Tarskian structures that we call R-
interpretations. See [17] for a review of Tarskian structures; we assume some familiarity with the underlying notions.
Below, for any L-term t and L-interpretation M, we use tM to mean the domain element that t references. If t has a
free variable x and y is any L-term, then we write tx

y to mean the L-term obtained by replacing x in t with y. Finally,
for any variable map µ and variable X, we use µX

Y to mean a variable map that is exactly like µ except that for the
variable X it takes the value Y .

Definition 1. By an R-interpretation we mean any L-structure where =, <, >, 0, 1,+,×, /,−, e, π, exponentiation and
logarithms have their usual interpretations.

(That is, “1 + 0 = 1” is true in all R-interpretations, if “x > y” is true then “¬(y > x)” is true, and so on.) So,
henceforth, when we write Σ |= φ, we mean that in all R-interpretations where Σ is true, so is φ.4

Natural numbers can be defined in terms of a predicate by appealing to R-interpretations. Let

Natural(x) .= ∀P[(P(0) ∧ ∀x(P(x) ⊃ P(x + 1))) ⊃ P(x)].

Then:

4Alternatively, one could have specified axioms for characterizing the field of real numbers together with Σ. Whether or not reals with expo-
nentiation is first-order axiomatizable remains a major open question [20].
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Theorem 2. Let M be any R-interpretation, and c a constant symbol of L. Then, M |= Natural(c) iff cM ∈ N.

The proof relies on two lemmas. First, we argue that the set of natural numbers satisfies the antecedent A .
=

P(0) ∧ ∀x(P(x) ⊃ P(x + 1)):

Lemma 3. For every R-interpretation M and map µ, M, µP
N |= A.

Proof: Since “0” and “+” have their usual interpretations, and 0 ∈ N, M, µP
N |= P(0). Suppose k ∈ N, and so,

M, µP x
N k |= P(x). Since N includes the successors of all its elements, M, µP x

N k |= P(x + 1).

Next, we argue that every set satisfying the antecedent includes the set of natural numbers:

Lemma 4. For every M and µ as above, and for any set Q, if M, µP
Q |= A then N is a subset of Q.

Proof: Suppose M, µP
Q |= A. We prove the claim by induction on natural numbers. For the base case, we consider

0 ∈ N, and by assumption M, µP
Q |= P(0), and so 0 is in the set Q. For the hypothesis, assume for any k ∈ N, k is also in

Q. That is, M, µP x
Q k |= P(x). Of course, the successor of k is a natural number and by assumption, M, µP x

Q k |= P(x + 1).
Thus, starting from 0, every natural number and its successor is in Q, and so Q must include N.

So, the main claim is as follows:
Proof: Suppose M |= Natural(c), that is, M |= ∀P(A ⊃ P(c)). Since N is a subset of the domain by assumption, for
any map µ, M, µP

N |= A ⊃ P(c). By Lemma 3, M, µP
N |= A, and so M, µP

N |= P(c). Hence cM ∈ N.
Suppose instead cM ∈ N. Suppose for any set Q and any map µ, M, µP

Q |= A. By Lemma 4, N is a subset of Q and
so cM is in Q, that is, M, µP

Q |= P(c). Therefore, M, µP
N |= A ⊃ P(c). Since this holds for any set Q, M |= ∀P[A ⊃ P(c)],

that is, M |= Natural(c).

2.4. Summation

Here we show how finite summations can be characterized as an abbreviation for an L-term using second-order
quantification.

Let f be any L-function from N to R. Let SUM( f , n), standing for the sum of the values of f for the argument 1
through n, be defined as an abbreviation:

SUM( f , n) = z .
= ∃g[g(1) = f (1) ∧

g(n) = z ∧
∀i( 1 ≤ i < n ⊃ g(i + 1) = g(i) + f (i + 1) )].

The variable i is understood to be chosen here not to conflict with any of the variables in n and z. The function g from
N to R is assumed to not conflict with f . (That is, the logical terms are distinct.)

This can then be argued to correspond to summations in the usual mathematical sense as follows:

Theorem 5. Let f be a function symbol of L from N to R, c be a term, and n be a constant symbol of L. Let M be
any R-interpretation. Then,

if
nM∑
i=1

f M(i) = cM then M |= SUM( f , n) = c.

Proof: We prove by induction on nM . For the base case, suppose nM = 1. Then, the antecedent would give us f M(1).
As for the consequent, clearly M |= SUM( f , n) = f (1), and so the base case holds.

Assume the hypothesis holds for nM , and we prove the case for (nM + 1). (Note that owing to “1” and “+” having
their usual interpretations, (n + 1)M = nM + 1.) So suppose

nM+1∑
i=1

f M(i) = cM .
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On expanding the summation expression, we obtain:

nM∑
i=1

f M(i) = cM − f M(nM + 1)

By induction hypothesis, M |= SUM( f , n) = c − f (n + 1), and so, by definition, M |= SUM( f , n + 1) = c.

Henceforth, we write:
n∑

i=1

t

to mean the logical formula SUM(t, n) for a logical term t. Here, i is assumed to not conflict with any of the variables
in n and t.5

It is worth noting that this logical formula can be applied to summation expressions where the arguments to the
terms are not restricted to natural numbers, but taken from any finite set. For example, suppose H is any finite set of
terms {h1, . . . , hn}. We can then use terms such as: ∑

h∈H

t(h)

standing for an abbreviation, similar to SUM(t, n): let g be a function, and let g(i) = t(hi). Then clearly the above sum
defines the same number as

∑n
i=1 g. In the sequel, we sometimes sum over a finite set of situations, or a finite vector

of values, which is then understood as an abbreviation in this sense.

2.5. Integration

Finally, we characterize integrals as logical terms.6 We present this first for a continuous real-valued function of
one variable, and then discuss its (straightforward) extension to the many-variable case.

We begin by introducing a notation for limits to positive infinity. For any logical term t and variable x, we introduce
a term characterized as follows:

LIM[x, t] = z .
= ∀u(u > 0 ⊃ ∃m∀n(n > m ⊃

∣∣∣z − tx
n

∣∣∣ < u)).

The variables u, m, and n are understood to be chosen here not to conflict with any of the variables in x, t, and z. The
abbreviation can be argued to correspond to the limit of a function at infinity in the usual sense:

Lemma 6. Let g be a function symbol of L standing for a function from R to R, and let c be a constant symbol of L.
Let M be any R-interpretation of L. Then we have the following:

If lim
x→∞ gM(x) = cM then M |= (c = LIM[x, g]).

5That is, we use the standard mathematical notation to denote sums (and later: limits and integrals) in two ways that context will disambiguate:
first, as the usual mathematical expression, and second, as a well-formed logical formula to be understood as an abbreviation as explained above.

6In this article, given a non-negative real-valued function, our notion of an integral of this function is based on the Riemann integral [21], in
which case the function is said to be integrable. There are limitations to the Riemann integral; for example, the function f : [0, 1]→ R where

f (x) =

1 if x is rational
0 otherwise

is not integrable in the Riemann account. In the calculus community, generalizations to the Riemann integral, such as the gauge integral [22], have
been studied that allow for the integration of such functions. We have chosen to remain within the framework of classical integration, but other
accounts may be useful.

The key idea for moving beyond Riemann integrals would be to amend the logical formula standing for the abbreviations we introduce below.
(For example, rather than partitioning the domain of a function, partitioning the range would allow us to formalise Lebesgue integrals.)
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Proof: Suppose the limit holds. Then, by the standard notion of limits [23], for every real number ε > 0, there is a
natural number j such that for all natural numbers k > j:

|gM(k) − cM | < ε.
Suppose M 6|= LIM[x, g] = c. Then there is some r > 0 such that M, µu

r 6|= ∃m∀n(n > m ⊃ |c − g(n)| < u). By
Theorem 2, the domain of M includes N, and so let m and n be variables that are mapped to j and k respectively.
Then, given that M interprets arithmetic symbols in the usual way, the claim M, µu m n

r j k 6|= (n > m) ⊃ (|c − g(n)| < u) is
a contradiction.

Henceforth, we write:
lim
x→∞ t

to mean the logical formula LIM[x, t].
Next, for any variable x and terms a, b, and t, we introduce a term INT[x, a, b, t] denoting the definite integral of

t over x from a to b:

INT[x, a, b, t] .
= lim

n→∞ h ·
n∑

i=1

tx
(a+h·i)

where h stands for (b − a)/n. The variables are chosen not to conflict with any of the other variables. We now show:

Lemma 7. Let g be a function symbol of L standing for a function from R to R, and let a, b, c be constant symbols of
L. Let M be any R-interpretation of L. Then we have the following:

If
∫ bM

aM
gM(x) dx = cM then M |= (c = INT[x, a, b, g]).

Proof: Suppose
∫ bM

aM gM(x)dx = cM , that is, gM is integrable. By definition, then:

lim
k→∞

h ·
k∑

i=1

gM(aM + h · i) = cM

where h = (bM − aM)/k. By Lemma 6, we have

M |= lim
n→∞ h ·

n∑
i=1

gx
(a+h·i) = c

where h = (b − a)/n, that is, M |= INT[x, a, b, g] = c.

Finally, we define the definite integral of t over all real values of x by the following:∫
x
t .

= lim
u→∞ lim

v→∞ INT[x,−u, v, t].

The main result for this logical abbreviation is the following:

Theorem 8. Let g be a function symbol of L standing for a function from R to R, and let c be a constant symbol of
L. Let M be any R-interpretation of L. Then we have the following:

If
∫ ∞

−∞
gM(x) dx = cM then M |= (c =

∫
x
g(x)).

Proof: Suppose
∫ ∞
−∞ gM(x)dx = cM , that is, gM is integrable. By definition,

lim
u→∞ lim

v→∞

∫ v

−u
gM(x) = c.
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By Lemma 6 and Lemma 7, we obtain:

M |= lim
u→∞ lim

v→∞ INT[x,−u, v, g] = c.

That is, M |=
∫

x g(x) = c.

The characterization of integrals for a many-variable function f , from Rk to R, is then an easy exercise. For vari-
ables x1, . . . , xk and terms a1, . . . , ak, b1, . . . , bk, and t, we introduce a term MINT[x1, . . . , xk, a1, . . . , ak, b1, . . . , bk, t]
denoting the definite integral of t from (a1, . . . , ak) ∈ Rk to (b1, . . . , bk) ∈ Rk:

MINT[x1, . . . , xk, a1, . . . , ak, b1, . . . , bk, t]
.
= lim

n1→∞
. . . lim

nk→∞
h1 · · · hk ·

n1∑
i1=1

. . .

nk∑
ik=1

tx1,...,xk
(a1+h1·i1),...,(ak+hk ·ik)

where h j stands for (b j − a j)/n j. The variables are chosen not to conflict with any of the other variables. Finally, we
define the definite integral of t over all real values of x1, . . . , xk by the following:∫

x1,...,xk

t .
= lim

u1→∞
. . . lim

uk→∞
lim

v1→∞
. . . lim

vk→∞
MINT[x1, . . . , xk,−u1, . . . ,−uk, v1, . . . , vk, t].

From this we get, as a corollary to Theorem 8:

Corollary 9. Let g be a function symbol of L standing for a function from Rk to R, and let c be a constant symbol of
L. Let M be any R-interpretation of L. Then we have the following:

If
∫ ∞

−∞
. . .

∫ ∞

−∞
gM(x1, . . . , xk) dx1 . . . dxk = cM then M |= (c =

∫
x1,...,xk

g(x1, . . . , xk)).

3. A Theory of Knowledge

3.1. Knowledge
An early treatment of knowledge in the situation calculus is due to Moore [24]. The classical possible-world

interpretation for knowledge [8, 9] is based on the notion that there many different ways the world can be, where
each world stands for a complete state of affairs. Some of these are considered possible by a putative agent, and
they determine what the agent knows and does not know. Moore’s observation was that situations can be viewed as
possible worlds. (Different from standard modal logics [10], however, worlds are reified as part of the syntax, but
this is a minor technicality.) A special binary fluent K, taking two situation arguments, determines the accessibility
relation between worlds: K(s′, s) says that when the agent is at s, he considers s′ possible. (Also different from
standard modal logics, we note that the order of the terms in the accessibility relation is reversed.) Knowledge, then,
is simply truth at accessible worlds:

Definition 10. (Knowledge.) Let φ be any situation-suppressed formula. The agent knowing φ at situation s, written
Knows(φ, s), is the following abbreviation:

Knows(φ, s) .= ∀s′. K(s′, s) ⊃ φ[s′].

In English: if in every situation s′ that is considered possible at s the formula φ holds, then the agent knows φ at s.7

Moore’s account has been adapted to the arrangement of dynamic laws via basic action theories by Scherl and
Levesque [12]. In this scheme, the initial theory is assumed to specify the agent’s initial beliefs. For example,
Knows(velocity(obj5) = 50, S0) expands to ∀s′. K(s′, S0) ⊃ velocity(obj5,s′) = 50; that is, every accessible world

7We do not insist that beliefs are necessarily true in the real world. Perhaps for this reason, “believes” is a more appropriate reading of Knows.
The two terms are used interchangeably here. Also, see Scherl and Levesque [12] on how features such as positive and negative introspection can
be enabled by constraining the accessibility relation K, in a manner entirely analogous to standard modal logic [10].
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initially agrees that the velocity of object 5 is 50, which means that the agent knows that the velocity of object 5 is 50.
In addition, ¬Knows(velocity(obj6) = 60, S0) and Knows( f = 0∨ f = 1, S0) say that initially, the agent does not know
that the velocity of object 6 is 60, and knows that the functional fluent f takes a value of either 0 or 1. Equivalently,
one specifies an initial constraint on K; for example:

K(ι, S0) ≡ ( f = 1 ∨ f = 0)[ι] (1)

characterizes the agent’s knowledge about the fluent f taking a value of either 0 or 1.

3.2. Sensing

To specify the behavior of K at non-initial situations, Scherl and Levesque provide a successor state axiom for
K. This axiom, intuitively, tests whether situations are to remain accessible as actions occur. Without going into full
details, assume the provision of domain-specific sensing axioms, also part of the basic action theoryD. For example,

SF(sensetrue-f, s) ≡ f (s) = 1.

formalizes the sensing outcome for an action to check whether f has value 1 in situation s. Here SF is a special
L-predicate, similar to Poss. Then, for s′ to be accessible from s, we need the following successor state axiom to be
included inD:

K(s′, do(a, s)) ≡ ∃s′′[K(s′′, s) ∧ s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ (SF(a, s′′) ≡ SF(a, s))].

This says that if s′′ is the predecessor of s′, such that s′′ was considered possible at s, then s′ would be considered
possible from do(a, s) contingent on sensing outcomes.

To appreciate how this axiom works in dynamical domains, assume that for actions without any sensing aspect,
such as an action that toggles the value of f , one simply lets SF be vacuously true:

SF(toggle-f, s) ≡ true.

The idea, then, is that the accessibility between situations would not change as physical actions occur. However,
as the agent operates in an environment where it senses various properties, those situations that are incompatible
with the real world regarding the sensed value will be deemed impossible after such sensing actions. This leads to a
notion of knowledge expansion,8 as the agent becomes more certain about the true nature of the world. See Figure
2 for an illustration of the axiom: we imagine three situations s, s′ and s′′ that are epistemically related prior to any
sensing (that is, s′ and s′′ are possible worlds when the agent is at s). These situations disagree on the value of f ,
and consequently, the agent does not know f ’s value. After executing a sensing action for the truth of f , however,
do(sensetrue-f, s′′) is not epistemically related to do(sensetrue-f, s). The upshot is that the agent knows the value of f
at do(sensetrue-f, s) and believes that this value is 1.

1 1

1 1

s s′

0

0

s��
sensetrue-f

Figure 2: Situations with accessibility relations after sensing. The numbers inside the circles denote the f values at these situations.

8Revising beliefs, where the agent believes φ but acquires information to now believe ¬φ, is not dealt with in this work. See [25] for an account.
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3.3. Degrees of Belief and Likelihood

The Scherl and Levesque scheme, however, lacks constructs to quantify the agent’s uncertainty. One measure
to quantify uncertainty is with degrees of belief. What is also lacking in their scheme is the ability to formalize the
probabilistic noise in effectors and sensors, as seen in many real-world robotics applications [13]. These limitations,
to discrete approximations, were addressed by BHL [5].

The BHL scheme builds on Scherl and Levesque’s ideas, especially regarding how accessibility relations between
worlds vary as a result of actions. In fact, the reader may observe many parallels between the two extensions. BHL’s
remarkably simple proposal consists of introducing two new distinguished fluents, p and l, in addition to K. We
present a simpler alternative involving only p and l.

As a simple running example, imagine a robot moving towards a wall, as shown in Figure 1. Its distance to the
wall is given by a functional fluent h, and it is assumed to be equipped with a sonar sensor that measures how far the
robot is from the wall. In other words, ideally, the sensor’s reading would correspond to the actual value of h.

The p fluent determines a probability distribution on situations, by associating situations with weights. More
precisely, the term p(s′, s) denotes the relative weight accorded to situation s′ when the agent happens to be in situation
s. Of course, p can be seen as a companion to K. As one would for K, the properties of p in initial states, which vary
from domain to domain, are specified with axioms as part ofD0. For example,

p(ι, S0) = u ≡ ((h(ι) = 2 ∨ h(ι) = 3) ∧ u = .5) ∨
(h(ι) , 2 ∧ h(ι) , 3 ∧ u = 0). (2)

says that those initial situations where h has the integer values 2 or 3 obtain a weight of .5. All other situations, then,
obtain 0 weight. We expect, of course, that weights are nonnegative, and that non-initial situations are given a weight
of 0 initially. The following nonnegative constraint, also part ofD0, ensures this:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)

Note that this is a stipulation about initial situations ι only. But BHL provide a successor state axiom for p, to be listed
shortly, that ensures that this constraint holds in all situations.

Next, the term l(a, s) is intended to denote the likelihood of action a occurring in situation s. Among other things,
l can be used to model noisy sensors. This is perhaps best demonstrated using an example. Imagine a sonar aimed at
the wall, which gives a reading for the true value of h. Supposing the sonar’s readings are subject to additive Gaussian
noise.9 If now a reading of z were observed on the sonar, intuitively, those situations where h = z should be considered
more probable than those where h , z.10 This occurrence is captured using likelihoods in the formalism. Basically,
if sonar(z) is the sonar sensing action with z being the value read, we specify a likelihood axiom describing its error
profile as follows:

l(sonar(z), s) = u ≡ (z ≥ 0 ∧ u = N(z − h(s); µ, σ2)) ∨
(z < 0 ∧ u = 0). (3)

This stipulates that the difference between a nonnegative reading of z and the true value h is normally distributed with
a variance of σ2 and mean of µ.11

Clearly, the error profile of various hardware devices is application dependent, and it is this profile that is modeled
as shown above using l. Notice, for example, when µ = 0, which indicates that the sensor has no systematic bias, then
l(sonar(5), s) will be higher when h(s) = 5 than when h(s) = 25. Roughly, then, the idea is that after an observation,
the weights on situations would get redistributed based on their compatibility with the observed value.

9Note that Gaussians are continuous distributions involving π, e, exponentiation, and so on. Therefore, BHL always consider discrete probability
distributions that approximate the continuous ones.

10As usual, the reading observed is not in the control of the agent. Here, we assume that the value is given to us, and in that sense, the language
is geared for projection (cf. Section 5.2). For example, we might be interested in the beliefs of the agent after obtaining a specific sequence of
readings on the sonar. Integrating this language with an online framework that obtains such readings from an external source is addressed in [26].

11We understand N(u; µ, σ2) as an abbreviation for the mathematical expression e
−(u−µ)2

2·σ2 /
√

2 · π · σ2.
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One may contrast such likelihood specifications to (trivial) ones for deterministic physical actions,12 such as an
action move(z) of moving towards the wall by precisely z units. For such actions, we simply write

l(move(z), s) = u ≡ u = 1

in which case the p value of s is the same as that for do(move(3), s). Thus, this is a form of imaging [27], where the
weights of worlds are simply “transferred” to their successors.

Formally, we add action likelihood axioms toD:

Definition 11. Action likelihood axioms for each action type A are sentences of the form:

l(A(~x), s) = u ≡ ψA(~x, u, s).

Here ψA(~x, u, s) is any formula characterizing the conditions under which action A(~x) has likelihood u in s.

In general, likelihood axioms can depend on any number of features of the world besides the fluent that the sensor
is measuring. For example, imagine that the sonar’s accuracy depends on the room temperature. We could then
specify an error profile as follows:

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ temp(s) ≥ 0 ∧ u = N(z − h(s); µ, 1)) ∨
(z ≥ 0 ∧ temp(s) < 0 ∧ u = N(z − h(s); µ, 16)) ∨
(z < 0 ∧ u = 0).

(4)

That is, the sonar’s accuracy worsens severely when the temperature drops below 0, as seen by the larger variance.
Having introduced the new fluents, we are now ready to provide the successor state axiom for p,which is analogous

to the one for K:
p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧

u = p(s′′, s) × l(a, s′′)]
∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)] ∧ u = 0.

(P2)

This says that the weight of situations s′ relative to do(a, s) is the weight of their predecessors s′′ times the
likelihood of a contingent on the successful execution of a at s′′.

2 3

2 3

s s′

.5

sonar(2)

.5

.5 × N (−1; 0, 1).5 × N (0; 0, 1)

Figure 3: Situations with accessibility relations after noisy sensing. The numbers inside the circles denote the h values at these situations. Dotted
circles denote a lower weight in relation to their epistemic alternatives.

12Noisy actions will also involve non-trivial likelihood axioms. Their treatment, however, is deferred to a subsequent section.
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To see an application of this axiom using the specifications (2) and (3), consider two situations s and s′ associated
with the same weight initially, as shown in Figure 3. These situations have h values 2 and 3 respectively. Suppose the
robot obtains a reading of 2 on the sensor. Given a sensor with mean µ = 0 and variance σ2 = 1, the likelihood axiom
is such that the weight of the successor of s is higher than that of s′ because the h value at s coincides with the sensor
reading. More precisely, the weight for the successor of s is given by the prior weight .5 multiplied by the likelihood
factor N(z − h(s); µ, σ2) = N(2 − 2; 0, 1) = N(0, 0, 1). The weight for the successor of s′ is obtained analogously.

Interestingly, by means of the above axiom, if predecessors are not epistemically related, which is another way of
saying that p(s′′, s) is 0, then their successors will also not be. Similarly, when a is not executable at s′′, its successor is
no longer accessible from do(a, s). One other consequence of (P1) and (P2) is that (p(s′, s) > 0) will be true only when
s′ and s share the same history of actions. This is because (P1) insists that initial situations are only epistemically
related to other initial ones, and (P2) respects this relation over actions.

We are now prepared to define the degree of belief in a formula φ at a situation s, written Bel(φ, s). (Henceforth,
whenever a formula φ appears in the context of Bel,we assume that it is either situation-suppressed, or it only mentions
the situation term now.) Intuitively, this is simply the weight of accessible situations. Formally:

Definition 12. (Degrees of belief.) Suppose φ is any situation-suppressed L-formula. Then the degree of belief in φ
is an abbreviation for:

Bel(φ, s) .
=

1
γ

∑
{s′:φ[s′]}

p(s′, s),

where γ, the normalization factor, is understood (throughout) as the same expression as the numerator but with φ
replaced by true. So, here, γ is

∑
s′ p(s′, s).

Note that we do not have to insist that s′ and s share histories since p(s′, s) will be 0 otherwise, as discussed above.
The summation term in this logical formula is not a new logical symbol, but simply an abbreviation for a second-order
formula, by way of Section 2.4.

3.4. Discussion
Let us conclude this section by remarking that since p is a fluent, the syntax of basic action theories allows us to

express probabilistic knowledge in a very general way, quite beyond standard probabilistic formalisms [28, 7]. For
example, to represent categorical uncertainty like (1), we would do:

p(ι, S0) =

1 if (h = 2 ∨ h = 3)[ι]
0 otherwise

(5)

In English: all initial situations where the value of h is either 2 or 3 are considered epistemically possible, and accorded
a weight of 1. All other initial situations are accorded a weight of 0. Observe, however, that this p-specification does
not say which value of h is more likely. Thus, unlike standard probabilistic frameworks, we do not assume that it is
always possible to find a single probability distribution for the robot to use.

It is also possible to handle partial specifications. Let us contrast (2) with the following initial axiom for p:

p(ι, S0) =

.1 if h(ι) ∈ {1, 2, . . . , 10}
0 otherwise

(6)

Then, letting a basic action theory include the sentence:

(2) ∨ (6)

means that the robot believes h is uniformly distributed on {2, 3} or on {1, . . . , 10} without being able to say which. To
reiterate, we do not assume that it is always possible to find a single probability distribution for the robot to use.

Of course, a much weaker specification is possible by replacing one of these probabilistic alternatives with cate-
gorical ones. For example, suppose the basic action theory were to instead include:

(5) ∨ (6).
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In this case, the agent believes that h may take a value from {2, 3} or is uniformly distributed on {1, 2, . . . , 10} without
being able to say which.

In sum, the framework allows one to freely combine categorical and probabilistic specifications, leading to a very
general model of belief. For simplicity of presentation, we consider a fairly simple set of specifications in this article,
and refer readers to [29] for more involved ones.

4. Belief Reformulated

The definition for degrees of belief, as given by BHL, is intuitive and simple. It is closely fashioned after the
semantics for belief in modal probability logics [30], where the probabilities of formulas is calculated from the weights
of possible worlds satisfying the formula. Unfortunately, this definition is not easily amenable to generalizations.
Notice, for example, that Bel is well-defined only when the sum over all those situations s′ such that φ[s′] holds is
finite. This immediately precludes domains that involve an infinite set of situations agreeing on a formula. Moreover,
the definition does not have an obvious analogue for continuous probability distributions. Observe that such an
analogue would involve integrating over the space of situations, which makes little sense. Indeed, it is not certain
what the space of situations would look like in general, but even if this was fixed, how such a thing can be tinkered
with so as to obtain an appropriate notion of integration is far from obvious.

Therefore, what we propose is to shift the calculating of probabilities from situations to fluent values, that is, to
the well-understood domain of numbers. The current section is an exploration of this idea. What we will show in this
section is that Definition 12 can be reformulated as a summation over numeric indices. That will allow, among other
things, a seamless generalization from summation to integration, which is to be the topic of the next section.

To prepare for that, in addition to the usual case notation used, for example, in (6), we will introduce another kind
of conditional term for convenience. This involves a quantifier and a default value of 0, like in formula (P2). If z is a
variable, ψ is a formula and t is a term, we use 〈z.ψ→ t〉 as a logical term characterized as follows:

〈z.ψ→ t〉 = u .
=

[(∃zψ) ⊃ ∀z(ψ ⊃ u = t)] ∧ [(¬∃zψ) ⊃ u = 0)].

The notation says that when ∃zψ is true, the value of the term is t; otherwise, the value is 0. When t uses z (the usual
case), this will be most useful if there is a unique z that satisfies ψ.

Returning to the task at hand, we will now need a way to enumerate the primitive fluent terms of the language.
Intuitively, these correspond to the probabilistic variables in the language. Perhaps the simplest way is to assume there
are n fluents f1, f2, . . . , fn in L which take no arguments other than the situation argument,13 and that they take their
values from some finite sets. We can then rephrase Definition 12 as follows:

Definition 13. Suppose φ is as before. Let Bel(φ, s) be an abbreviation for:

1
γ

∑
~x

∑
s′

{
p(s′, s) if

∧
fi(s′) = xi ∧ φ[s′]

0 otherwise

where γ is the numerator but with φ replaced by true, as usual.

(For readability, we often drop the index variables in sums and connectives when the context makes it clear: in
this case, i ranges over the set {1, . . . , n}, that is, the indices of the fluents in L.) Definition 13 suggests that for each
possible value of the fluents, we are to sum over all possible situations and for each one, if the fluents have those

13Essentially, functional fluents in L are assumed to not take any object arguments. More generally, if we assume that the arguments of k-ary
fluents are drawn from finite sets, an analogous enumeration of ground functional fluent terms is possible.

Understandably, from the point of view of situation calculus basic action theories, where fluents are also usually allowed to take arguments from
any set, including infinite ones, this is a limitation. But in probabilistic terms, this would correspond to having a joint probability distribution over
infinitely many, perhaps uncountably many, random variables. We know of no general logical account of this sort, and we have as yet no good
ideas about how to deal with it. It remains to be seen whether ideas from probability theory on high dimensions [31, 32] and infinite-dimensional
probabilistic graphical models [33] can be leveraged for our purposes.
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values and φ holds, then the p value is to be used, and 0 otherwise. Roughly speaking, if one were to group situations
satisfying

∧
fi(s) = xi into sets for every possible vector ~x, the union of these sets would give the space of situations.

Our claim about the relationship between the two abbreviations can be made precise as follows:

Theorem 14. Let D be any basic action theory and φ any L-formula. Then the abbreviations for Bel(φ, s) from
Definition 12 and 13 define the same number.

Proof: For the proof, we focus solely on the numerators of the two abbreviations. That is,∑
{s′:φ[s′]}

p(s′, s) (†)

on the one hand, and ∑
~x

∑
s′

{
p(s′, s) if

∧
fi(s′) = xi ∧ φ[s′]

0 otherwise (‡)

on the other. We show that these expressions define the same number. With this, the case for the denominators follows
trivially, since true is a special case of φ. Then, the claim is proven.

Let S be a set such that s′ ∈ S iff p(s′, s) > 0. (That is, for any ground situation term s, this is the set of all ground
situation terms s′ such that p(s′, s) > 0.) Then, let T ⊆ S be the set such that s′ ∈ T iff φ[s′]. Intuitively, T is the set
of all situations that are epistemically related to s, but where φ holds. It is easy to see that

(†) =
∑
s′∈T

p(s′, s).

Suppose now fi ranges over {c1i, . . . , cki}, and so by extension, suppose ~f = 〈 f1, . . . , fn〉 ranges over {~c1, ~c2, . . . , ~ck}.
For any ~c j in that set, let T j ⊆ T be a set such that s′ ∈ T j iff

∧
fi(s′) = c ji. That is, T j identifies those situations from

T where fluents satisfy the vector of values ~c j. Observe that

(‡) =

k∑
j=1

∑
s′∈T j

p(s′, s).

But, of course, T =
⋃

T j. Therefore,
k∑

j=1

∑
s′∈T j

p(s′, s) =
∑
s′∈T

p(s′, s).

Therefore, (†) and (‡) define the same number.

Be that as it may, Definition 13 still involves summations over situations. To arrive at a definition that eschews the
summing of situations, we start with the case of initial situations. In this matter, we will be insisting on a precise space
of initial situations. For this, let us recall the axiomatization of the situation calculus presented in [34] for multiple
initial situations, which includes a sentence saying there is precisely one initial situation for any possible vector of
fluent values. This can be written as follows:

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (P3)

(Recall that i ranges over the indices of the fluents in L, that is, {1, . . . , n}.) Under the assumption (P3), we can rewrite
Definition 12 for s = S0 as

Bel(φ, S0) .=
1
γ

∑
~x

〈ι.
∧

fi(ι) = xi ∧ φ[ι]→ p(ι, S0)〉 (B0)

The two abbreviations, in fact, are equivalent:

Theorem 15. LetD be any basic action theory, φ any L-formula, and supposeD0 includes (P3). Then the abbrevia-
tions for Bel(φ, S0) in Definition 12 and (B0) define the same number.
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Proof: As in Theorem 14, we focus on the numerators for the two abbreviations. That is,∑
{s′:φ[s′]}

p(s′, S0) (†)

on the one hand, and ∑
~x

〈ι.
∧

fi(ι) = xi ∧ φ[ι]→ p(ι, S0)〉 (‡)

on the other. We show that these expressions define the same number. The denominators represent a special case, and
so the claim will follow.

Let S be the set of initial situations. Suppose fi ranges over
{
ci, c′i , . . . , c

′′
i

}
. By way of (P3), for any vector of

values 〈c1, . . . , cn〉 for the vector of fluents 〈 f1, . . . , fn〉, there exists a (unique) situation s ∈ S such that
∧

fi(s) = ci.
Let T ⊆ S be such that s ∈ T iff φ[s]. It is easy to see that

(‡) =
∑
s′∈T

p(s′, S0).

Since (P1) ensures that p(s′, S0) > 0 only if s′ is an initial situation, we get that

(†) =
∑
s′∈T

p(s′, S0).

Therefore (†) and (‡) define the same number.

This shows that for S0, summing over possible worlds can be replaced by summing over fluent values.
Unfortunately, (B0) is only geared for initial situations. For non-initial situations, the assumption that no two

agree on all fluent values is untenable. To see why, imagine an action move(z) that moves the robot z units to the left
(towards the wall) but that the motion stops if the robot hits the wall. The successor state axiom for fluent h, then,
might be like this:

h(do(a, s)) = u ≡
¬∃z(a = move(z)) ∧ u = h(s) ∨
∃z(a = move(z) ∧ u = max(0, h(s) − z)).

(7)

In this case, if we have two initial situations that are identical except that h = 3 in one and h = 4 in the other, then
the two distinct successor situations that result from doing move(4) would agree on all fluents (since both would have
h = 0). Ergo, we cannot sum over fluent values for non-initial situations unless we are prepared to count some fluent
values more than once.

It turns out there is a simple way to circumvent this issue by appealing to Reiter’s solution to the frame problem.
Indeed, Reiter’s solution gives us a way of computing what holds in non-initial situations in terms of what holds in
initial ones, which can be used for computing belief at arbitrary successors of S0. More precisely,

Definition 16. (Degrees of belief (reformulated).) Let φ be any L-formula. Given any sequence of ground action
terms α = [a1, . . . , ak], let

Bel(φ, s) .=
1
γ

∑
~x

P(~x, φ, s)

where if s = do(α, S0) then

P(~x, φ, do(α, S0)) .= 〈ι.
∧

fi(ι) = xi ∧ φ[do(α, ι)] → p(do(α, ι), do(α, S0)) 〉.

(As before, i ranges over the indices of the fluents in L.) To say more about how (and why) this definition works,
we first note that by (P1) and (P2), p will be 0 unless its two arguments share the same history. So the s′ argument
of p in Definition 12 is expanded and written as do(α, ι) in Definition 16. By ranging over all fluent values, we range
over all initial ι as before, but without ever having to deal with fluent values in non-initial situations. Of course, we
test that the φ holds and use the p weight in the appropriate non-initial situation. In particular, owing to p’s successor
state axiom (P2), the weight for non-initial situations accounts for the likelihood of actions executed in the history.
We now establish the following result:
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Theorem 17. Let D be any basic action theory with (P3) initially, φ any L-formula, and α any sequence of ground
actions terms. Then the abbreviations for Bel(φ, do(α, S0)) in Definition 12 and Definition 16 define the same number.

Proof: As in Theorem 14, we will focus on the numerators of the two abbreviations. That is,∑
{s′:φ[s′]}

p(s′, do(α, S0)) (†)

on the one hand, and ∑
~x

〈ι.
∧

fi(ι) = xi ∧ φ[do(α, ι)] → p(do(α, ι), do(α, S0)) 〉. (‡)

on the other. We show that these expressions define the same number. The denominators represent a special case, and
so the claim will follow.

Let S be the set of initial situations, as determined by (P3). Let S ∗ = {do(α, s′) : s′ ∈ S }. Let T ⊆ S ∗ such that
s′′ ∈ T iff φ[s′′]. It is easy to see that

(‡) =
∑
s′∈T

p(s′, do(α, S0)).

On the other hand, by (P1) and (P2), p(s, do(α, S0)) = 0 for all s < S ∗. This means that

(†) =
∑
s′∈T

p(s′, do(α, S0)).

Therefore (†) and (‡) define the same number.

Thus, by incorporating a simple constraint on initial situations, we now have a notion of belief that does not require
summing over situations.

Readers may notice that our reformulation only applies when we are given an explicit sequence α of actions,
including the sensing ones. But this is just what we would expect to be given for the projection problem [11], where
we are interested in inferring whether a formula holds after an action sequence. In fact, we can use regression on the
φ and the p to reduce the belief formula from Definition 16 to a formula involving initial situations only. See [35] for
work in this direction.

5. From Weights to Densities

The framework presented so far is fully discrete, which is to say that fluents, sensors and effectors are characterized
by finite values and finite outcomes. Belief in φ, in particular, is the summing over a finite set of situations where
φ holds. We now generalize this framework. We structure our work by first focusing on fully continuous domains,
which is to say that fluents, sensors and effectors are characterized by values and outcomes ranging over R. This
section, in particular, explores the very first installment: effectors are assumed to be deterministic, but sensors have
continuous noisy error profiles. The next section, then, allows both effectors and sensors to have continuous noisy
profiles. Further generalizations are deferred to Section 7.

Let us begin by observing that the uncountable nature of continuous domains precludes summing over possible
situations. In this section, we present a new formalization of belief in terms of integrating over fluent values. This, in
particular, is made possible by the developments in the preceding section.

Allowing real-valued fluents implies that there will be uncountably many initial situations. Imagine, for example,
the scenario from Figure 1, and that the fluent h can now be any nonnegative real number. Then for any nonnegative
real x there will be an initial situation where (h = x) is true. Suppose further thatD0 includes:

p(ι, S0) =

.1 if 2 ≤ h(ι) ≤ 12
0 otherwise

(8)

which says that the true value of h initially is drawn from a uniform distribution on the interval [2,12]. Then there are
uncountably many situations where p is non-zero initially. So the p fluent now needs to be understood as a density,
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not as a weight. (That is, we now interpret p(s′, s) as the density of s′ when the agent is in s.) In particular, for any x,
we would expect the initial degree of belief in the formula (h = x) to be 0, but in (h ≤ 12) to be 1.

When actions enter the picture, even if deterministic, there is more to be said. Numerous subtleties arise with p
in non-initial situations. For example, if the robot were to do a move(4) there would be an uncountable number of
situations agreeing on h = 0: namely, those where 2 ≤ h ≤ 4 was true initially. In a sense, the point h = 0 now has
weight, and the degree of belief in h = 0 should be .2. On the other hand, the other points h ∈ (0, 8] should retain their
densities. That is, belief in h ≤ 2 should be .4 but belief in h = 2 should still be 0. In effect, we have moved from a
continuous to a mixed distribution on h. Of course, a subsequent rightward motion will retain this mixed density. For
example, if the robot were to now move away by 4 units, the belief in h = 4 would then be .2.

To address the concern of belief change in continuous domains, we now present a generalization to BHL. One of
the advantages of our approach is that we will not need to specify how to handle changing densities and distributions
like the ones above. These will emerge as side-effects, that is, shifting density changes will be entailed by the action
theory.

For our formulation of belief, we first observe that we have fluents f1, . . . , fn in L as before, that take no argument
other than the situation term but which now take their values from R. Then:

Definition 18. (Degrees of belief (continuous noisy sensors).) Let φ be any situation-suppressed L-formula, and
α = [a1, . . . , ak] any ground sequence of action terms. The degree of belief in φ at s is an abbreviation:

Bel(φ, s) .=
1
γ

∫
~x

P(~x, φ, s)

where, as in Definition 16, if s = do(α, S0) then

P(~x, φ, do(α, S0)) .= 〈ι.
∧

fi(ι) = xi ∧ φ[do(α, ι)] → p(do(α, ι), do(α, S0)) 〉.

That is, the belief in φ is obtained by ranging over all possible fluent values, and integrating the densities of situations
where φ holds. If we were to compare the above definition to Definition 16, we see that we have simply shifted
from summing over finite domains to integrating over reals. In fact, we could read P as the (unnormalized) density
associated with a situation satisfying φ. As discussed, by insisting on an explicit world history, the ι need only range
over initial situations, giving us the exact correspondence with fluent values.

This completes our new definition of belief. To summarize, our extension to the BHL scheme is defined using a
few convenient abbreviations, such as for Bel and mathematical integration, and where an action theory consists of:

1. D0 (with (P1)) as usual, but now also including (P3);

2. precondition axioms as usual;

3. successor state axioms, including one for p, namely (P2), as usual;

4. foundational domain-independent axioms as usual; and

5. action likelihood axioms, one for each action type.

Note that, apart from (P3) and Bel’s new abbreviation, we carry over precisely the same components as would
BHL. By and large, the extension, thus, retains the simplicity of their proposal, and comes with minor additions. We
will show that it has reasonable properties using an example and its connection to Bayesian conditioning below.

In the sequel, we assume, without explicitly mentioning so, that basic action theories include the sentences (P1),
(P2) and (P3).

5.1. Bayesian Conditioning
We now explicate the relationship between our definition for Bel and Bayesian conditioning [7]. Bayesian con-

ditioning is a standard model for belief change wrt noisy sensing [13] and it rests on two significant assumptions.
First, sensors do not physically change the world, and second, conditioning on a random variable f is the same as
conditioning on the event of observing f .
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In general, in the language of the situation calculus, there need not be a distinction between sensing actions and
physical actions. In that case, the agent’s beliefs are affected by the sensed value as well as any other physical changes
that the action might enable to adequately capture the “total evidence” requirement of Bayesian conditioning.

The second assumption expects that sensors only depend on the true value for the fluent. For example, in the
formulation of (3) the sonar’s error profile is determined solely by h. But to suggest that the error profile might
depend on other factors about the environment, as formulated by (4) for example, goes beyond this simplified view.
In fact, here, the agent also learns about the room temperature, apart from sensing the value of h.

Thus, our theory of action admits a view of dynamical systems far richer than the standard setting where Bayesian
conditioning is applied. Be that as it may, when a similar set of assumptions are imposed as axioms in an action theory,
we obtain a sensor fusion model identical to Bayesian conditioning. This connection was demonstrated in BHL for
the discrete case. We prove the property formally for continuous variables below.

We begin by stipulating that actions are either of the physical type or of the sensing type [12], the latter being the
kind that do not change the value of any fluent, that is, such actions do not appear in the successor state axioms for
any fluent. Now, if obs(z) senses the true value of fluent f , then assume the sensor error model to be:

l(obs(z), s) = u ≡ u = Err(z, f (s))

where Err(u1, u2) is some expression with only two free variables, both numeric. This captures the notion established
above: the error model of a sensor measuring f depends only on the true value of f , and is independent of other
factors. Finally, for simplicity, assume obs(z) is always executable:

Poss(obs(z), s) ≡ true.

Then we obtain:

Theorem 19. SupposeD is any basic action theory with likelihood and precondition axioms for obs(z) as above, φ is
any L-formula mentioning only f , and u ∈ {x1, . . . , xn} that f takes a value from. Then we obtain:

D |= Bel(φ, do(obs(z), S0)) =

∫
~x[P(~x, φ ∧ f = u, S0) × Err(z, u)]∫
~x[P(~x, f = u, S0) × Err(z, u)]

That is, the posterior belief in φ is obtained from the prior density and the error likelihoods for all points where φ
holds given that z is observed, normalized over all points. The proof for the theorem is as follows.

Proof: Without loss of generality, assume f takes the value x, and the remaining fluents are f1, . . . fn that take values
from x1, . . . , xn. Let a denote obs(z). From Definition 18, Bel(φ, do(obs(z), S0)) is an abbreviation for:

1
γ

∫
~x

P(~x, φ, do(a, S0)) = (a)

1
γ

∫
~x
〈ι. f (ι) = x ∧

n∧
i=1

fi(ι) = xi ∧ φ[do(a, ι)]→ p(do(a, ι), do(a, S0))〉 = (b)

1
γ

∫
~x
〈ι. f (ι) = x ∧

∧
fi(ι) = xi ∧ φ[ι]→ p(do(a, ι), do(a, S0))〉 = (c)

1
γ

∫
~x
〈ι. f (ι) = x ∧

∧
fi(ι) = xi ∧ (φ ∧ f = x)[ι]→ p(do(a, ι), do(a, S0))〉 = (d)

1
γ

∫
~x
〈ι. f (ι) = x ∧

∧
fi(ι) = xi ∧ (φ ∧ f = x)[ι]→ p(ι, S0) × Err(z, x)〉 = (e)

1
γ

∫
~x

Err(z, x) × 〈ι. f (ι) = x ∧
∧

fi(ι) = xi ∧ (φ ∧ f = x)[ι]→ p(ι, S0)〉 = (f)

1
γ

∫
~x

Err(z, x) × P(~x, φ ∧ f = x, S0).
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The arguments underline those parts of the sentences that are being reduced. Step (a) expands P. In step (b), owing to
the fact that sensing actions do not change fluent values (by our first assumption tailored to Bayesian conditioning),
φ[do(a, ι)] is equivalent to φ[ι]. In step (c), we observe that what appears to the left of the right-arrow in step (b) is
equivalent to one where φ[ι] is replaced by (φ ∧ f = x)[ι]. (The main reason for introducing the formula f = x is to
allow us to identify those situations where f takes the value x which are all to be multiplied by the error likelihood
for observing z when the true value is x.) In step (d), we use (P2) and the fact that a is always executable to replace
p(do(a, ι), do(a, S0)) by p(ι, S0) × l(a, ι) = p(ι, S0) × Err(z, x). Now note that the term appearing in the context of an
integral is suggesting that if there is an initial situation where a particular condition holds, then a certain value is
returned, and otherwise 0 is returned. This allows us to place the term Err(z, x) on the outside in step (f), giving us
the required numerator that appears in the claim. The expansion of the denominator is analogous with true being a
special case for φ, and so we are done.

The usual case for posteriors are formulas such as b ≤ f ≤ c, which is estimated from the prior and error
likelihoods for all points in the range [b, c], as demonstrated by the following consequence:

Corollary 20. Suppose D is any basic action theory with likelihood and precondition axioms for obs(z) as above, f
is any L-fluent, and u is a variable from ~x = 〈x1, . . . , xm〉 that f takes a value from. Then we obtain:

D |= Bel(a ≤ f ≤ b, do(obs(z), S0)) =

∫
~x[P(~x, f = u ∧ a ≤ u ≤ b, S0) × Err(z, u)]∫

~x[P(~x, f = u, S0) × Err(z, u)]

More generally however, and unlike many probabilistic formalisms, we are able to reason about any logical prop-
erty φ of the random variable f being measured.

5.2. Example
Using an example, we demonstrate the formalism and Theorem 19 in particular. To reason about the beliefs of

our robot, let us build a simple basic action theoryD. We extend the setting from Figure 1 to a 2-dimensional grid, as
shown in Figure 4. As before, let h be the fluent denoting its horizontal position (that is, its distance to the wall), and
let the robot’s vertical position be given by a fluent v. The components ofD are as below.

h

v

Figure 4: A robot in a 2-dimensional grid.

• Imagine a p of the form:

p(ι, S0) =

.1 × N(v(ι); 0, 16) if 2 ≤ h(ι) ≤ 12
0 otherwise

(9)

This says that the value of v is normally distributed about the horizontal axis with variance 16, and indepen-
dently, that the value of h is uniformly distributed between 2 and 12.

Note also that initial beliefs can be specified for D0 using Bel directly. For example, to express that the true
value of h is believed to be uniformly distributed on the interval [2, 12] we might equivalently include the
following theory inD0:

{Bel(2 ≤ h ≤ 12, S0) = .1,Bel(h ≤ 2 ∨ h ≥ 12, S0) = 0},
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and analogously for the fluent v.

For this example, a simple distribution has been chosen for illustrative purposes. In general, recall from Section
3.4 that the p-specification does not require the variables to be independent, nor does it have to mention all
variables.

• For simplicity, let us assume that actions are always executable, i.e., thatD includes

Poss(a, s) ≡ true (10)

for all actions a. For this example, we assume three action types: action move(z) that moves the robot z units
towards the wall, action up(z) that moves the robot z units away from the horizontal axis, and action sonar(z)
that gives a reading of z for the distance between the robot and the wall.

• The successor state axiom for h is as in (7), and the one for v is as follows:

v(do(a, s)) = u ≡ ¬∃z(a = up(z)) ∧ u = v(s) ∨
∃z(a = up(z) ∧ u = v(s) + z). (11)

• For the sensor device, suppose its error model is given as follows:

l(sonar(z), s) = u ≡ (z ≥ 0 ∧ u = N(z − h(s); 0, 4)) ∨ (z < 0 ∧ u = 0). (12)

The error model says that for nonnegative z readings, the difference between the reading and the true value is
normally distributed with mean 0 (which indicates that there is no systematic bias) and variance 4.14

For the remaining (physical) actions, we let

l(move(z), s) = 1, l(up(z), s) = 1 (13)

since they are assumed to be deterministic for this section.

Then we obtain:

Theorem 21. Let D be a basic action theory that is the union of {(9), (10), (7), (11), (12), (13)}. Then the following
are logical entailments ofD:

1. Bel([h = 3 ∨ h = 4 ∨ h = 7], S0) = 0.

To see how this follows, let us begin by expanding Bel([h = 3 ∨ h = 4 ∨ h = 7], S0):

1
γ

∫
~x

P(~x, h = 3 ∨ h = 4 ∨ h = 5, S0). (a)

For the rest of the section, let h take its value from x1 and v take its value from x2. By means of (P3), there is
exactly one situation for any set of values for x1 and x2. The P term for any such situation, however, is 0 unless
h = 3 ∨ h = 4 ∨ h = 5 holds at the situation. Thus, (a) basically simplifies to:

1
γ

∫
~x

.1 × N(x2; 0, 16) if x1 ∈ {3, 4, 5}
0 otherwise

= 0.

In effect, although we are integrating a function δ(x1, x2) over all real values, δ(x1, x2) = 0 unless x1 ∈ {3, 4, 7}.

14For a more elaborate example involving multiple competing sensors and systematic bias, see [36].
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2. Bel(h ≤ 9, S0) = .7.

We might contrast this with the previous property in that for any given value for x1 and x2, the P term is 0 when
x1 > 9. When x1 ≤ 9, however, the p value for the situation is obtained from the specification given by (9). That
is, we have:

1
γ

∫
~x

Initial specification given by (9) if h ≤ 9
0 otherwise

=

1
γ

∫
~x

.1 × N(x2; 0, 16) if ∃ι. h(ι) = x1, x1 ∈ [2, 12] and h(ι) ≤ 9
0 otherwise

=

1
γ

∫
R

∫ 9

2
.1 × N(x2; 0, 16) dx1 dx2

The numerator evaluates to .7, and the denominator to 1.

3. Bel(h > 7v, S0) ≈ .6.
Beliefs about any mathematical expression involving the random variables, even when that does not correspond
to well known density functions, are entailed. To evaluate this one, for example, observe that we have

1
γ

∫
~x

.1 × N(x2; 0, 16) if x1 ∈ [2, 12] and x1 > 7x2

0 otherwise
=

1
γ

∫ 12

2

∫ x1/7

−∞
.1 × N(x2; 0, 16)dx1.

4. Bel(h = 0, do(move(4), S0)) = .2.

Here a continuous distribution evolves into a mixed distribution. This results from Bel(h = 0, do(move(4), S0))
first expanding as:

1
γ

∫
~x

P(~x, h = 0, do(move(4), S0)) (a)

The P term, then, simplifies to:

〈ι.
∧

f (ι) = x ∧ (h = 0)[do(move(4), ι)]→ p(ι, S0)〉 (b)

That is, since move(z) has no error component, l(move(z), s) = 1 for any s in accordance with D. Therefore,
p(do(a, ι), do(a, S0)) = p(ι, S0). Now (b) says that for every possible value for h and v, if there is an initial
situation where h = 0 holds after moving leftwards, then its p value is to be considered. Note that for any initial
situation s where h(s) ∈ [2, 4], we get h(do(move(4), s)) = 0 by (7). This leaves us with:

1
γ

∫
~x

.1 × N(x2; 0, 16) if ∃ι. h(ι) = x1, x1 ∈ [2, 12], h(ι) ∈ [2, 4]
0 otherwise

=

1
γ

∫
~x

.1 × N(x2; 0, 16) if x1 ∈ [2, 4]
0 otherwise

(c)

We can show that γ = 1, which means (c) = .2. This change in beliefs is shown in Figure 5.

5. Bel(h ≤ 3, do(move(4), S0)) = .5.

Bel’s definition is amenable to a set of h values, where one value has a weight of .2, and all the other real values
have a uniformly distributed density of .1.
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6. Bel([∃a, s. now=do(a, s) ∧ h(s)>1], do(move(4), S0)) = 1.

It is possible to refer to earlier or later situations using now as the current situation. This says that after moving,
there is full belief that (h > 1) held before the action.

7. Bel(h = 4, do([move(4),move(−4)], S0)) = .2

Bel(h = 4, do([move(−4),move(4)], S0)) = 0.

The point h = 4 has 0 weight initially, as shown in item 1. Roughly, if the agent were to move leftwards first
then many points would “collapse”, as shown in item 4. The point would then obtain a h value of 0, and have a
weight of .2. The weight is then retained on moving away by 4 units, where the point once again gets h value 4.
On the other hand, if this entire phenomena were reversed then none of these features are observed because the
collapsing does not occur and the entire space remains fully continuous.

8. Bel(−1 ≤ v ≤ 1, do(move(4), S0)) = Bel(−1 ≤ v ≤ 1, S0) = ∫ 1
−1N(x2; 0, 16)dx2.

Owing to Reiter’s solution to the frame problem, belief in v is unaffected by a lateral motion. That is, a leftwards
motion does not change v in accordance with (11). As per (9), the initial belief in v ∈ [−1, 1] is the area between
[−1, 1] bounded by the specified Gaussian.

9. Bel(v≤7, do(up(2.5), S0)) = Bel(v≤4.5, S0).

After the action up(2.5), the Gaussian for v’s value has its mean “shifted” by 2.5 because the density associated
with v = x2 initially is now associated with v = x2 + 2.5. Intuitively, we have:

1
γ

∫
~x

.1 × N(x2; 0, 16) if ∃ι.v(ι) = x2 and (v ≤ 7)[do(up(2.5), ι)]
0 otherwise

=

1
γ

∫
~x

.1 × N(x2; 0, 16) if ∃ι.v(ι) = x2 and v(ι) ≤ 4.5
0 otherwise

=

1
γ

∫
~x

.1 × N(x2; 0, 16) if x2 ≤ 4.5
0 otherwise

10. Bel(h ≤ 9, do(sonar(5), S0)) ≈ .97.

Bel(h ≤ 9, do([sonar(5), sonar(5)], S0) ≈ .99.

Compared to item 2, belief in h ≤ 9 is sharpened by obtaining a reading of 5 on the sonar, and sharpened to
almost certainty on a second reading of 5. This is because the p function, according to (P2), incorporates the
likelihood of each sonar(5) action. More precisely, the belief term in the first entailment simplifies to:

1
γ

∫
~x
〈ι.h(ι) = x1 ∧ v(ι) = x2 ∧ h(ι) ≤ 9→ p(ι, S0) × N(5 − x1; 0, 4)〉 (a)

Note that we have replaced (h ≤ 9)[do(sonar(5), S0)] by (h ≤ 9)[ι] since sonar(z) does not affect h. From (a),
we get

1
γ

∫
~x
N(5 − x1; 0, 4) × 〈ι.h(ι) = x1 ∧ v(ι) = x2 ∧ h(ι) ≤ 9→ p(ι, S0)〉 (b)

We know from (9) that those initial situations where h ≤ 2 have p values 0. Therefore, from (b), we get:

1
γ

∫
~x
N(5 − x1; 0, 4) ×

.1 × N(x2; 0, 16) if x1 ∈ [2, 9]
0 otherwise

=

1
γ

∫
R

∫ 9

2
N(5 − x1; 0, 4) × .1 × N(x2; 0, 16)dx1dx2

After a second reading of 5 from the sonar, the expansion for belief is analogous, except that the function to
be integrated gets multiplied by a second N(5 − x1; 0, 4) term. It is then not hard to see that belief sharpens
significantly with this multiplicand. The agent’s changing densities are shown in Figure 6.
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Figure 5: Belief update for h after physical actions. Initial belief at S0 (in solid red) and after a leftward move of 4 units (in blue with point markers).
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Figure 6: Belief change for h at S0 (in solid red), after sensing 5 (in green with circular markers), and after sensing 5 twice (in blue with square
markers).
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6. Noisy Acting

In the presentation so far, we assumed physical actions to be deterministic. By this we mean that when a physical
action a occurs, it is clear to us (as modelers) but also the agent how the world has changed on a. Of course, in realistic
domains, especially robotic applications, this is not the usual case. In this section, in a domain that has continuous
fluents, we show how our current account of belief can be extended to reason with sensors as well as effectors that are
noisy.

In line with the rest of this work, effector noise is given a quantitative account. Let us first reflect on what is
expected with noisy acting. When an agent senses, as in the case of sonar(z), the argument for this action is not
chosen by the agent. That is, the world decides what z should be, and based on this reading of z, the agent comes
to certain conclusions about its own state. The noise factor, then, simply addresses the phenomena that the number z
returned may differ from the true value of whatever fluent the sensor is measuring.

Noisy acting diverges from that picture in the following sense. The agent intends to do action a, but what actually
occurs is a′ that is possibly different from a. For example, the agent may want to move 3 units, but, unbeknownst to
the agent, it may move by 3.042 units. The agent, of course, does not observe this outcome. Nevertheless, provided
the agent has an account of its effector’s inaccuracies, it is reasonable for the agent to believe that it is in fact closer to
the wall, even if it may not be able to precisely tell by how much. Intuitively, the result of a nondeterministic action is
that any number of successor situations might be obtained, which are all indistinguishable in the agent’s perspective
(until sensing is performed). Depending on the likelihoods of the action’s potential outcomes, some of these successor
situations are considered more probable than others. The agent’s belief about what holds then must incorporate these
relative likelihoods. So, in our view, nondeterminism is really an epistemic notion.

6.1. Noisy Action Types

Following [5], perhaps the simplest extension to make all this precise is to assume that deterministic actions such
as move(x) now have companion action types move(x, y) in L. The intuition is that x represents the nominal value,
which is the number of units that the agent intends to move, while y represents the actual distance moved. The actual
value of y in any ground action, of course, is not observable for the agent. This simple idea will need three adjustments
to our account:

1. successor state axioms need to be built using these new action types;

2. the formalism must allow the modeler to formalize that certain outcomes are more likely than others, that is,
noisy actions may be associated with a probabilistic account of the various outcomes; and

3. the notion of belief must incorporate the nominal value, the range of possible outcomes and their likelihoods.

First, we address successor state axioms. These are now specified as usual, but using the second argument, which
is the actual outcome, rather than the nominal value, which is ignored. For example, for the fluent h, instead of (7),
we will now have:

h(do(a, s)) = u ≡ ∃x, y[a = move(x, y) ∧ u = max(0, h − y)] ∨
¬∃x, y[a = move(x, y)] ∧ u = h(s). (14)

The reason for this modification is obvious. If y is the actual outcome then the fluent change should be contingent
on this value rather than what was intended. It is important to note that no adjustment to the existing (Reiter’s) solution
to the frame problem is necessary.

6.2. The Golog approach

The foremost issue now is to use the above idea to allow for more than one possible successor situation. Clearly,
we do not want the agent to control the actual outcome in general. So the approach taken by BHL is to think of
picking the second argument as a nondeterministic Golog program [11]. Briefly, Golog is an agent programming
proposal where one is allowed to formulate complex actions that denote sequential and nondeterministic executions
of actions, among others, and is essentially a basic action theory. Given the action move(x, y), for example, the Golog
program MOVE(X) might stand for the abbreviation πy. move(x, y), which corresponds to a ground action move(x, n)
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where n is chosen nondeterministically. For our purposes, we would then imagine that the agent executes Golog
programs.

There are some advantages to this approach: namely, we only have to look at the logical entailments, including
ones mentioning Bel, of such Golog programs. Since traces of these programs account for many potential outcomes,
Bel does the right thing and accommodates all of these when considering knowledge. But the disadvantage is that the
resulting formal specification turns out be unnecessarily complex, at least as far as projection is concerned.

For projection tasks, we show that we can settle on a simpler alternative, one that does not appeal to Golog. Like
BHL, we assume that the world is deterministic, where the result of doing a ground action leads to a distinct successor.
Roughly, the intuition then is that when a noisy action is performed, the various outcomes of the action as well as the
potential successor situations that are obtained wrt these are treated at the level of belief.

6.3. Alternate Action Axioms
Inspired by [37], our approach is based on the introduction of a distinguished predicate Alt. The idea is this: if

Alt(a, a′,~z) holds for ground action a = A(~c) then we understand this to mean that the agent believes that any instance
of a′ = A(~z) might have been executed instead of a. Here,~z denotes the range of the arguments for potential outcomes.

To see how that gets used with the new action types such as move(x, y), consider the ground action move(3, 3.1).
So, the agent intends to move by 3 units but what has actually occurred is a move by 3.1 units. Since the agent does
not observe the latter argument, from its perspective, what occurred could have been a move by 2.9 units, but also
perhaps (although less likely) a move by 9 units. Thus, the ground actions move(3, 2.9) and move(3, 9) are Alt-related
to move(3, 3.1). (The likelihoods for these may vary, of course.) In logical terms, we might have have an axiom of the
following form in the background theory:

Alt(move(x, y), a′, z) ≡ a′ = move(x, z). (15)

This to be read as saying that move(3, z) for every z ∈ R are alternatives to move(3, 3.1). If we required that z is only
a certain range from 3, for example, we might have:

Alt(move(x, y), a′, z) ≡ a′ = move(x, z) ∧ |x − z| ≤ c

where c bounds the magnitude of the maximal possible error. On the other hand, for actions such as sonar(z), which
do not have any alternatives, we simply write:

Alt(sonar(x), a′, z) ≡ a′ = sonar(z) ∧ z = x. (16)

This says that sonar(x) is only Alt-related to itself.
With this simple technical device, one can now additionally constrain the likelihood of various outcomes using l.

For example:
l(move(x, y), s) = u ≡ u = N(y − x; µ, σ2) (17)

says that the difference between nominal value and the actual value is normally distributed with mean µ and variance
σ2. This essentially corresponds to the standard additive Gaussian noise model in robotics [13].

To see an example of how, say, (15) and (17) work together with the successor state axiom (P2) for p, consider
three situations s, s′ and s′′ associated with the same density, as shown in Figure 7. Suppose their h values are 6, 6.1
and 5.9 respectively. After attempting to move 3 units, the action move(3, z) for any z ∈ R may have occurred. So, for
each of the three situations, we explore successors from different values for z. Assume the motion effector is defined
by a mean µ = 0 and variance σ2 = 1. Then, the p-value of the situation do(move(3, 5.7), s′), for example, is obtained
from the p-value for s′ multiplied by the likelihood of move(3, 5.7), which isN(5.7−3; 0, 1) = N(2.7; 0, 1). Thus, the
successor situation do(move(3, 5.7), s′) is much less likely than the successor situation do(move(3, 3), s), as should be
the case.

In general, we define alternate actions axioms that are to be a part of the basic action theory henceforth:

Definition 22. Let A(~x, ~y) be any action. Alternate actions axioms are sentences of the form:

Alt(A(~x, ~y), a′,~z) ≡ a′ = A(~x,~z) ∧ ψ(~x, ~y,~z)

where ψ is a formula that characterizes the relationship between the nominal and true values.
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Figure 7: Situations with accessibility relations after noisy acting. The numbers inside the circles denote the h values at these situations. Dotted
circles denote a lower density in relation to their epistemic alternatives.

The one limitation with this definition is that only actions of the same type, i.e., built from the same function
symbol, are alternatives to each other. This does not allow, for example, situations where the agent intends a physical
move, but instead unlocks the door. Nevertheless, this definition is not unreasonable because noisy actions in robotic
applications typically involve additive noise [13]. Moreover, this limitation only assists us in arriving at a simple and
familiar definition for belief. A more involved definition would allow for other variants.

6.4. A Definition for Belief

We have thus far successfully augmented successor state axioms and extended the formalism for modeling noisy
actions. The final question, then, is how can the outcomes of a noisy action, and their likelihoods, be accounted for?
Indeed, a formula might not only be true as a result of the actions intended, but also as a result of those that were not.

Consider the simple case of deterministic actions, where the density associated with s is simply transferred to
do(a, s). This is an instance of Lewis’s imaging [27]. In contrast, if a and a′ are Alt-related, then the result of doing
a at s would lead to successor situations do(a, s) and do(a′, s). Moreover, unlike noisy sensors, a and a′ may affect
fluent values in different ways, which is certainly the case with move(3, 3.074) and move(3, 3) on the fluent h. Thus,
the idea then is that when reasoning about the agent’s beliefs about φ, one would need to integrate over the densities
of all those potential successors where φ would hold.

To make this precise, let us first consider the result of doing a single action a at S0. The degree of belief in φ after
doing a is now an abbreviation for:

Bel(φ, do(a, S0)) .=
1
γ

∫
~x

∫
z

P(~x, z, φ, do(a, S0))

where
P(~x, z, φ, do(a, S0)) .= 〈ι, b.

∧
fi(ι) = xi ∧ Alt(a, b, z) ∧ φ[do(b, ι)]→ p(do(b, ι), do(a, S0)) 〉.

(As before, the i ranges over the indices of the fluents in L, that is, {1, . . . , n}.) The intuition is this. Recall that by
integrating over ~x, all possible initial situations are considered by fi(ι) = xi. Analogously, by integrating over z, all
possible action outcomes are considered by Alt(a, b, z). Supposing a = A(x, y), for each outcome b = A(x, z),15 we
test whether φ holds at the resulting situation do(b, ι) as before, and use its p-value. Here, this p-value is given by
p(do(b, ι), do(a, S0)), where the first argument is the successor of interest do(b, ι) and the second is the real world
do(a, S0).

The generalization, then, for a sequence of actions is as follows:

15For ease of presentation, we assume that the nominal and the actual arguments involve a single variable.
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Definition 23. (Degrees of belief (continuous noisy effectors and sensors.)) Suppose φ is any L-formula. Then the
degree of belief in φ at s, written Bel(φ, s), is defined as an abbreviation:

Bel(φ, s) .=
1
γ

∫
~x

∫
~z

P(~x,~z, φ, s)

where, if s = do([a1, . . . , ak], S0), then

P(~x,~z, φ, s) .=
〈ι, b1, . . . , bk.

∧
fi(ι) = xi ∧∧

Alt(a j, b j, z j) ∧ φ[do([b1, . . . , bk], ι)]
→ p(do([b1, . . . , bk], ι), do([a1, . . . , ak], S0)) 〉.

(Here, i ranges over {1, . . . , n} as before, and j ranges over the indices of the ground actions {1, . . . , k}.) That is,
given any sequence, for all possible~z values, we consider alternate sequences of ground action terms and integrate the
densities of successor situations that satisfy φ, using the appropriate p-value.

6.5. Example
Let us now build a simple example with noisy actions. Consider the robot scenario in Figure 1. Suppose the basic

action theoryD includes the foundational axioms, and the following components.
The initial theoryD0 includes the following p specification:

p(ι, S0) =

.5 if 10 ≤ h(ι) ≤ 12
0 otherwise

(18)

For simplicity, let h be the only fluent in the domain, and assume that actions are always executable. The successor
state axiom for the fluent h is (14). For p, it is the usual one, viz. (P2).

We imagine two actions in this domain, one of which is the noisy move move(x, y) and a sonar sensing action
sonar(z). For the alternate actions axioms, let us use (15) and (16).

Finally, we specify the likelihood axioms. Let the sonar’s error profile be

l(sonar(z), s) = u ≡ (z ≥ 0 ∧ u = N(z − h(s); 0, .25)) ∨ (z < 0 ∧ u = 0). (19)

Readers may note that this sonar is more accurate than the one characterized by (12), as it has a smaller variance.
Regarding the likelihood axiom for move(x, y), let that be:

l(move(x, y), s) = u ≡ u = N(y − x; 0, 1). (20)

This completes the specification ofD.
Theorem 24. The following are entailments ofD.

1. Bel(h ≥ 11, do(move(−2,−2.01), S0)) ≈ .95

We first observe that for calculating the degrees of belief, we have to consider all those successors of initial
situations wrt move(−2, z) for every z, where φ holds. By (P2), the p value for such situations is the initial p
value times the likelihood of move(−2, z), which is N(z + 2; 0, 1) by (20). Therefore, we get

1
γ

∫
x

∫
z

.5 × N(z + 2; 0, 1) if ∃ι. x ∈ [10, 12], h(ι) = x and (h ≥ 11)[do(move(2, z), ι)]
0 otherwise

=

1
γ

∫
x

∫
z

.5 × N(z + 2; 0, 1) if ∃ι. x ∈ [10, 12], h(ι) = x and h(ι) − z ≥ 11
0 otherwise

=

1
γ

∫ ∞

−∞

∫ 12

10

.5 × N(z + 2; 0, 1) if x ∈ [10, 12] and x − z ≥ 11
0 otherwise
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Figure 8: Belief change for h at S0 (in solid red), a noisy move away from the wall (in green with circular markers), and after a second noisy move
towards the wall (in blue with square markers).

It is not hard to see that had the action been deterministic, the degree of belief in h ≥ 11 after moving away by
2 units should have been precisely 1. In Figure 8, we see the effect of this move, where the range of h values
with non-zero densities extends considerably more than 2 units.

2. Bel(h ≥ 10, do([move(−2,−2.01),move(2, 2.9)], S0)) ≈ .74

The argument proceeds in a manner identical to the previous demonstration. The density function is further
multiplied by a factor of N(u − 2; 0, 1), from (20) and (P2). More precisely, we have

1
γ

∫
x

∫
z

∫
u

.5 × N(z + 2; 0, 1) × N(u − 2; 0, 1) if ∃ι. x ∈ [10, 12], h(ι) = x and h(ι) − z − u ≥ 10
0 otherwise

=

1
γ

∫
z

∫
u

∫ 12

10

.5 × N(z + 2; 0, 1) × N(u − 2; 0, 1) if x ∈ [10, 12] and x − z − u ≥ 10
0 otherwise

If the action were deterministic, yet again the degree of belief about h ≥ 10 would be 1 after the intended
actions. That is, the robot moved away by 2 units and then moved towards the wall by another 2 units, which
means that h’s current value should have been precisely what the initial value was.

See Figure 8 for the resulting density change. Intuitively, the resulting density changes as effectuated by the
moves degrades the agent’s confidence considerably. In Figure 8, for example, we see that in contrast to a single
noisy move, the range of h values considered possible has extended further, leading to a wide curve.

3. Bel(h ≥ 11, do([move(−2,−2.01), sonar(11.5)], S0) ≈ .94

This demonstrates the result of a sensing action after a noisy move. Using arguments analogous to those in the
previous item, it is not hard to see that we have:

1
γ

∫
x

∫
z

.5 × N(z + 2; 0, 1) × N(x − z − 11.5; 0, .25) if ∃ι. x ∈ [10, 12], h(ι) = x and h(ι) − z ≥ 11
0 otherwise

4. Bel(h ≥ 11, do([move(−2,−2.01), sonar(11.5), sonar(12.6)], S0) ≈ .99

In this case, two successive readings around 12 strengthens the agent’s belief about h ≥ 11. The density function
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Figure 9: Belief change for h at S0 (in solid red), after a noisy move (in green with circular markers), after sensing once (in blue with square
markers), and after sensing twice (in solid magenta).

is multiplied by N(x − z − 12.6; 0, .25) because of (P2) and (12) as follows:

1
γ

∫
x

∫
z

δ × N(x − z − 11.5; 0, .25) × N(x − z − 12.6; 0, .25) if ∃ι. x ∈ [10, 12], h(ι) = x, h(ι) − z ≥ 11
0 otherwise

=

1
γ

∫
z

∫
x

δ × N(x − z − 11.5; 0, .25) × N(x − z − 12.6; 0, .25) if x ∈ [10, 12] and x − z ≥ 11
0 otherwise

where δ = .5 × N(z + 2; 0, 1), and γ is∫
z

∫
x

δ × N(x − z − 11.5; 0, .25) × N(x − z − 12.6; 0, .25) if x ∈ [10, 12]
0 otherwise

In Figure 9, the agent’s increasing confidence is shown as a result of these sensing actions. Note that even
though the sensors are noisy, the agent’s belief about h’s true value sharpens because the sensor is a fairly
accurate one.

7. Generalization

Many real-world problems have both continuous and discrete components (sensors, fluents, and/or effectors). Not
surprisingly, discrete sensors can be easily modeled in the current scheme, as they only affect the p-values. Regarding
fluents and effectors, it turns out that accommodating the more general case is an easy exercise, where an integration
symbol in Bel corresponding to a continuous fluent or action argument is replaced by a summation symbol.

To clarify, we proceed as follows. We begin with an example for discrete sensors, introduce a general definition
for Bel in the above sense, and finally conclude with an example that demonstrates this general setting.

7.1. Example

We understand a discrete sensor to mean a sensing action that is characterized by a finite number of possible
observations. Thus, these observations would be associated with a probability rather than a density. Imagine the robot
scenario from Figure 1. Suppose that instead of a sensor that returns a number indicating the distance to the wall, the
robot is equipped with a crude binary version. This latter sensor simply indicates whether the robot is close or far
from the wall.
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Formally, suppose there is a sensing action sensewall(z) where z ∈ {close, far}.A noise-free model for the closeness
sensor might be as follows:

l(sensewall(z), s) = u ≡ (z = close ∧ ((h(s) ≤ 1 ∧ u = 1) ∨ (h(s) > 1 ∧ u = 0))) ∨
(z = far ∧ ((h(s) > 1 ∧ u = 1) ∨ (h(s) ≤ 1 ∧ u = 0))).

For the more interesting case of a noisy sensor, assume the following error profile:

l(sensewall(z), s) = u ≡ (z = close ∧ h(s) ≤ 3 ∧ u = 2/3) ∨
(z = close ∧ h(s) > 3 ∧ u = 1/3) ∨
(z = far ∧ h(s) ≥ 4 ∧ u = 4/5) ∨
(z = far ∧ h(s) < 4 ∧ u = 1/5).

(21)

Notice that the behavior of the sensor differs for the two values. So, for z = close the sensor considers h ≤ 3 as a
measure of closeness, and has an accuracy of 2/3. For z = far, however, the sensor takes h ≥ 4 to be a measure of
being far, and has an accuracy 4/5.

We now build a simple action theory using this sensor. For simplicity, assume noise-free physical actions and a
single fluent, h. Let D be the union of the p specification (8), the successor state axiom (7), the above likelihood
model (21), in addition to (P1), (P2) and (P3). For the actions A(z) inD, including the sensor, let

Alt(A(z), a′, u) ≡ a′ = A(u) ∧ u = z.

We now analyze belief change on the application of this sensor.

Theorem 25. The following are entailments ofD:

1. Bel(h ≤ 4, do(sensewall(close), S0)) = 3/11

By (P2), after a = sensewall(close) the term p(do(a, s′), do(a, s)) is obtained from p(s′, s) × Err(close, h(s′)),
where Err(u1, u2) denotes the error profile (21) of the closeness sensor. To compute the belief term, let us first
resolve the normalization factor γ. It is not hard to see that γ evaluates to

∫
x


.1 × 2/3 if ∃ι. h(ι) = x, x ∈ [2, 12] and h(ι) ≤ 3
.1 × 1/3 if ∃ι. h(ι) = x, x ∈ [2, 12] and h(ι) > 3
0 otherwise

Since D0 assigns a non-zero density to only those situations where h ∈ [2, 12] one obtains the above normal-
ization factor. Moreover, after doing sensewall(close), the density of those situations where h ≤ 3 is multiplied
by a factor of 2/3, while the density of the remaining situations is multiplied by a factor of 1/3.

Formulating the numerator is analogous, except that only those situations where h ≤ 4 are to be considered. To
be precise, the degree of belief in h ≤ 4 after the sensing action is:

1
γ

∫
x


.1 × 2/3 if x ∈ [2, 12], x ≤ 3, x ≤ 4
.1 × 1/3 if x ∈ [2, 12], x > 3, x ≤ 4
0 otherwise

=

1
γ

∫
x


.1 × 2/3 if x ∈ [2, 3]
.1 × 1/3 if x ∈ (3, 4]
0 otherwise

This then amounts to 3/11.

2. Bel(h ≤ 4, do([move(1), sensewall(close)])) = 5/12
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We proceed in a manner analogous to the previous item. Using (P2) and (21), we obtain:

1
γ

∫
x


.1 × 2/3 if ∃ι. h(ι) = x, h(do(move(1), ι)) ≤ 3 and h(do(move(1), ι)) ≤ 4
.1 × 1/3 if ∃ι. h(ι) = x, h(do(move(1), ι)) > 3 and h(do(move(1), ι)) ≤ 4
0 otherwise

=

1
γ

∫
x


.1 × 2/3 if x ∈ [2, 12], x − 1 ≤ 3 and x − 1 ≤ 4
.1 × 1/3 if x ∈ [2, 12], x − 1 > 3 and x − 1 ≤ 4
0 otherwise

The numerator amounts to 5/3 and the normalization factor γ is 4, leading to a degree of belief of 5/12.

7.2. A General Definition for Belief

The main idea is to simply allow the range of some fluents to be taken from finite sets. So, reconsider Definition
18, where the fluents and the action arguments were assumed to take values from R. Then, suppose fluents f1, . . . , fn
takes values from R, and fluents g1, . . . , gm take values from finite sets. Intuitively, fi is to be seen as a continuous
probabilistic variable, and gī as a discrete probabilistic variable.16 Analogously, suppose a1, . . . , ao are action types
such that Alt(a j, b, z) holds for z ∈ R, and suppose d1, . . . , dl are action types such that Alt(d j̄, r, u) holds for u taken
from a finite set. Intuitively, a j is to be seen as a noisy action characterized by a continuous probability distribution,
and d j̄ as a noisy action characterized by a discrete probability distribution. Then:

Definition 26. (Degrees of belief (discrete and continuous fluents, sensors and effectors)). Suppose φ is any
L-formula. The degree of belief in φ at s, written Bel(φ, s), is an abbreviation:

Bel(φ, s) .=
1
γ

∫
~x

∑
~y

∫
~z

∑
~u
P(~x · ~y,~z · ~u, φ, s)

where if s = do(α, S0) for α = [a1, . . . , d1, . . . , ao, . . . , dl], then

P(~x · ~y,~z · ~u, φ, s) .=
〈ι, b1, . . . , bo, r1, . . . , rl.

∧
fi(ι) = xi ∧∧

gī(ι) = yī ∧∧
Alt(a j, b j, z j) ∧∧

Alt(d j̄, r j̄, u j̄) ∧ φ[do([b1, . . . , rl], ι)]
→ p(do([b1, . . . , rl], ι), do([a1, . . . , dl], S0)) 〉.

Here, · is for the concatenation of variables, i ranges over the indices of the continuous fluents, ī over the indices of
the discrete fluents, j over the indices of the continuous actions, and j̄ over the indices of the discrete actions.

Naturally, by means of (P3), there is an initial situation for every possible real number for f1, . . . , fn and for every
possible vector of values for g1, . . . , gm. The intuition is as before. That is, owing to a bijection between situations
and the vector of fluent values, for any given value for x1, . . . , xn, y1, . . . , ym, there is a unique initial situation where
fi has the value xi and gī has the value yī. The only difference to what we had earlier is that instead of just integrating
over possible values for ~x, of course, we integrate over values for ~x and sum over possible values for ~y while using the
p-values of successor situations where φ holds. When a noisy action occurs, the space of possible successor situations
is determined by Alt(a j, b, z) for a noisy action with a continuous probabilistic model, and the space is determined by
Alt(d j̄, r, u) otherwise.

16Of course, discrete probabilistic variables can also take values from infinite sets, and by way of Section 2.5, limits can be used to define the
sum of an infinite sequence of terms, that is, a series. For simplicity of presentation, however, we assume discrete fluents and action arguments take
values from finite sets.
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7.3. Example
To demonstrate the more intricate case of discrete and continuous fluents, and discrete and continuous action

arguments, we consider an example of a robot moving towards the wall with a window, as shown in Figure 10. Like
with Figure 1, let a fluent h denote the distance to the wall. Let w be a fluent that captures the status of the window in
the sense of whether it is opened or closed, with w = 1 meaning that it is open and w = 0 meaning that it is closed.

To change the status of the window, we imagine a noisy effector setwin(x, y) where the agent intends on setting w
to x, but it is, in fact, set to y. We formally account for this effector using:

Alt(setwin(x, y), a′, z, s) ≡ a′ = setwin(x, z) (22)

l(setwin(x, y), s) = u ≡ ((x = 0 ∨ x = 1) ∧ x = y ∧ u = .75) ∨
((x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1) ∧ |x − y| = 1 ∧ u = .25) ∨
((¬(x = 0 ∨ x = 1) ∨ ¬(y = 0 ∨ y = 1)) ∧ u = 0).

(23)

This can be seen as saying that {x, y} take values {0, 1}, and the likelihood of x and y agreeing is .75, and that of
disagreeing is .25. So, it is very likely that the action succeeds.

From this, we then provide the following successor state axiom for w:

w(do(a, s)) = u ≡ ∃x, y[setwin(x, y) ∧ u = y] ∨
¬∃x, y[setwin(x, y) ∧ u = w(s)]. (24)

For simplicity, assume that the action move(z) moves the robot towards the wall by z units (that is, it is deterministic),
for which we use the successor state axiom (7).

Analogously, imagine a noisy sensor seewin(z) that provides a reading of x for the status of the window, but with
the following error profile:

l(seewin(z), s) = u ≡ (z = 1 ∧ w(s) = 1 ∧ u = .8) ∨
(z = 1 ∧ w(s) = 0 ∧ u = .2) ∨
(z = 0 ∧ w(s) = 1 ∧ u = .3) ∨
(z = 0 ∧ w(s) = 0 ∧ u = .7).

(25)

That is, when returning 1, the sensor gives the correct reading with a probability of .8, but when returning 0, the sensor
gives the correct reading with a probability of .7. Alternate action axioms are specified as usual for sensors:

Alt(seewin(x), a′, z, s) ≡ a′ = seewin(z) ∧ z = x. (26)

w

h

Figure 10: Robot moving towards a wall that has a window.

To finalize the example, letD be a union of (7), (22), (23), (24), (26), (25), together with (P1), (P2), (P3), and the
following initial axiom for p:

p(ι, S0) =


.5 × .6 if 10 ≤ h(ι) ≤ 12 and w(ι) = 1
.5 × .4 if 10 ≤ h(ι) ≤ 12 and w(ι) = 0
0 otherwise

(27)
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That is, h and w are independent, h is uniformly distributed on [10, 12] and the window being open has a probability
of .6.

Theorem 27. The following are entailed byD:

1. Bel(w = 0, S0) = .4

We are to compute the following term, which is easily shown to be equal to .4:

1
γ

∫
x

∑
y


.5 × .6 ∃ι. x ∈ [10, 12], h(ι) = x,w(ι) = y, y = 1 and w(ι) = 0
.5 × .4 ∃ι. x ∈ [10, 12], h(ι) = x,w(ι) = y, y = 0 and w(ι) = 0
0 otherwise

2. Bel(w = 0, do(move(1), S0)) = .4

Owing to Reiter’s solution to the frame problem, belief in the closed window does not change on moving
laterally. If we were to expand the belief term, we could get a logical term equivalent to the one in the previous
item.

3. Bel(w = 0, do(setwin(0, 1), S0)) = .75

After attempting to close the window, the agent’s belief about the window being closed is .75. Not surprisingly,
since the action sets the final value of w (as opposed to toggle its value), the degree of belief precisely corre-
sponds to the probability of the action getting successfully executed in (23). Expanding the belief term, we first
obtain:

1
γ

∫
x

∑
y

∑
z


.5 × .6 × δ(0, z) ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 1, (w = 0)[do(setwin(0, z), ι)]
.5 × .4 × δ(0, z) ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 0, (w = 0)[do(setwin(0, z), ι)]
0 otherwise

Here δ(0, z) is the probability assigned to the substitution of z in setwin(0, z) via (23). Simplifying the above,
we get:

1
γ

∫
x

∑
y

∑
z


.5 × .6 × .75 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 1, z = 0, (w = 0)[do(setwin(0, z), ι)]
.5 × .4 × .75 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 0, z = 0, (w = 0)[do(setwin(0, z), ι)]
0 otherwise

=

1
γ

∫
x

∑
y

∑
z


.5 × .6 × .75 if x ∈ [10, 12], y = 1, z = 0
.5 × .4 × .75 if x ∈ [10, 12], y = 0, z = 0
0 otherwise

Essentially, there are only two ways that the window can be closed after doing setwin(0, z). Either the window
is closed initially and z = 0, or the window is open and again z = 0. This leads to .75.

4. Bel(w = 0, do([setwin(0, 1), seewin(0)], S0)) = .875

After observing that the window is closed from its sensor, the robot’s belief about the window being closed
increases. Proceeding in a manner analogous to above, after simplifications, we get:

1
γ

∫
x

∑
y

∑
z


.5 × .6 × .75 × .7 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 1, z = 0, (w = 0)[do(α, ι)]
.5 × .4 × .75 × .7 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 0, z = 0, (w = 0)[do(α, ι)]
0 otherwise
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where α = [setwin(0, z), seewin(0)]. The numerator simplifies to .75 × .7. It can be shown that γ is:

∫
x

∑
y

∑
z



.5 × .6 × .75 × .7 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 1, z = 0, (true)[do(α, ι)]

.5 × .4 × .75 × .7 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 0, z = 0, (true)[do(α, ι)]

.5 × .6 × .25 × .3 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 1, z = 1, (true)[do(α, ι)]

.5 × .4 × .25 × .3 if ∃ι. h(ι) = x, x ∈ [10, 12],w(ι) = y, y = 0, z = 1, (true)[do(α, ι)]
0 otherwise

which leads to .75 × .7 + .25 × .3. Thus, the belief in the window being closed is .875.

7.4. Summary
This completes the specification for reasoning about beliefs with discrete and continuous fluents against noisy

effectors and sensors. To summarize, the generalization of the BHL scheme to arbitrary domains is defined using
convenient abbreviations for Bel, sums and integrals, and where an action theory consists of:

• D0 describing the initial state, which also includes (P1) and (P3);

• successor state axioms as before, including a fixed one for p, namely (P2);

• alternate actions axioms for noisy effectors;

• likelihood axioms for noisy sensors and noisy effectors; and

• precondition axioms and foundational axioms as before.

It is perhaps also worth noting that our specification extends BHL in a minimal way. They do not need a fixed space
of situations, which we do by (P3), but this is very reasonable [34]. Likelihood axioms are specified for us in much the
same manner as they would. Their treatment of noisy actions and sensors is slightly different in expecting the modeler
to provide indistinguishability axioms. Briefly, these axioms speculate the set of actions that are observationally
indistinguishable to the agent. Roughly, then, this serves the same purpose as our alternate actions axioms. However,
their approach requires the successor state axiom for p to include notions of indistinguishability. But perhaps most
significantly, as we mentioned earlier, their approach needs to appeal to Golog to reason about belief change after
noisy effectors, which we do not.

To conclude our technical treatment, let us attempt to simplify Definition 26. We will first abuse notation and
use a single symbol to denote either sums or integrals, with the understanding that they expand appropriately for a
given term t. For the sake of the discussion, let us use

∫
x t to mean the integration of the function t(x) from negative

to positive infinity when the function takes values from R, and the sum of terms otherwise. Under this notational
convention, let us suppose f1, . . . , fn are all the fluents in the language, some of which take values from R and others
take values from finite sets. Suppose a1, . . . , al are all the action types in the language such that for some action types
Alt(a, b, z) holds for z ∈ R, and for the remaining action types, Alt(a, b, z) holds for z taking values from finite sets.
Then, we obtain a proposal like Definition 18:

Definition 28. (Degrees of belief (simplified and general).) Suppose φ is any L-formula, and let
∫

x t denote inte-
gration or summation over term t as appropriate. Then the degree of belief in φ at s, written Bel(φ, s), is defined as an
abbreviation:

Bel(φ, s) .=
1
γ

∫
~x ·~z

P(~x,~z, φ, s)

where, if s = do(α, S0) for α = [a1, . . . , ak] and suppose β = [b1, . . . , bk], then

P(~x,~z, φ, s) .= 〈ι, b1, . . . , bk.
∧

fi(ι) = xi ∧∧
Alt(a j, b j, z j) ∧ φ[do(β, ι)]→ p(do(β, ι), do(α, S0)) 〉.

That is, i ranges over the indices of the fluents, and j over the indices of the ground action terms.
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8. Related Work

This article focused on degrees of belief in a first-order dynamic setting. In particular, the existing scheme of BHL
was generalized to handle both discrete and continuous probability distributions while retaining all the advantages.
Related efforts on belief update via sensor information can be broadly classified into two camps: the literature on
probabilistic formalisms, and those that extend logical languages. We discuss them in turn. At the outset, we remark
that the focus of our work is on developing a general framework, and not on computational considerations, efficiency
or otherwise.

From the perspective of probabilistic modeling, graphical models [28], such as Bayesian networks [7], are impor-
tant formalisms for dealing with probabilistic uncertainty in general, and the uncertainty that would arise from noisy
sensors in particular. Mainly, when random variables are defined by a set of dependencies, the density function can be
compactly factorized using these formalisms. The significance of such formalisms is computational, with reasoning
methods, such as filtering, being a fundamental component of contemporary robotics and machine learning technolo-
gies [6, 38, 13]. On the representation side, however, these formalisms have difficulties handling strict uncertainty,
as would arise from connectives such as disjunctions. (Proposals such as credal networks [39] allow for certain types
of partial specifications, but still do not offer the generality of arbitrary logical constraints.) Moreover, since rich
models of actions are rarely incorporated, shifting conditional dependencies and distributions are hard to address in
a general way. While there are graphical model frameworks with an account of actions, such as [40, 41], they too
have difficulties handling strict uncertainty and quantification. To the best of our knowledge, no existing probabilistic
formalism handles changes in state variables like those considered here.

This inherent limitation of probabilistic formalisms led to a number of influential proposals on combining logical
and probabilistic specifications [42]. (The synthesis of deductive reasoning and the probability calculus has a long
and distinguished history [43, 44] that we do not review here; see [45] and references therein.) The works of Bacchus
and Halpern [30, 3], for example, provide the means to specify properties about the domain together with probabilities
about propositions; see [46] for a recent list on first-order accounts of probability. But these do not explicitly address
reasoning about actions. As we noted, treating actions in a general way requires, among other things, addressing
the frame problem, reasoning about what happened in the past and projecting the future, handling contextual effects,
as well as appropriate semantical machinery. We piggybacked on the powerful situation calculus framework, and
extended that theory for reasoning about continuous uncertainty.

In a similar vein, from a modal logical perspective, the interaction between categorical knowledge, on the one
hand, and degrees of belief, on the other, is further discussed in [30, 47, 48]. While these are essentially propositional,
there are first-order variants [49]. Actions are not explicitly addressed, however.

Recently in AI, limited versions of probabilistic logics have been discussed, in the form of relational graphical
models, Markov logic networks, probabilistic databases and probabilistic programming [50, 51, 52, 53, 54, 55, 56, 33,
57]. Some have been further extended for continuous probability distributions and temporal reasoning [58, 59, 60, 61].
Overall, these limit the first-order expressiveness of the language, do not treat actions in a general way, and do not
handle strict uncertainty. Admittedly, syntactical restrictions in these frameworks are by design, in the interest of
tractability (or at least decidability) wrt inference, as they have origins in the richer probabilistic logical languages
mentioned above [30, 3]. From the point of view of a general-purpose representation language, however, they are
lacking in the kinds of features that we emphasise here.

From the perspective of dynamical systems, closest in spirit to our work here are knowledge representation lan-
guages for reasoning about action and knowledge, which we refer to as action logics. The situation calculus [1, 11],
which has been the sole focus of this paper, is one such language. There are others, of course, such as the event
calculus [62], dynamic logic [63, 64], the fluent calculus [65], and formalisms based on the stable model semantics
[66].

In the situation calculus, a monotonic solution to the frame problem was provided by Reiter [19]. The situation
calculus was extended to reason about knowledge whilst incorporating this solution in [12], and to reason about noisy
effectors and sensors by BHL.17 Other action logics have enjoyed similar extensions. For example, [68] proposes an

17Throughout, we operated under the setting of knowledge expansion, that is, observations are assumed to resolve the agent’s uncertainty and
never contradict what is believed. The topic of belief revision lifts this assumption [67], but it is not considered here. See [25] for an account of
belief revision in the situation calculus.
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extension to dynamic logic for reasoning about degrees of belief and noisy actions, and [69] provides a computational
framework for probabilistic reasoning using the stable model semantics, but they are propositional. In [70, 71], the
fluent calculus was extended for probabilistic beliefs and noisy actions. None of these admit continuous probability
distributions.

The situation calculus has also been extended for uncertainty modeling in other directions. For example, [72]
consider discrete noisy actions over complete knowledge, that is, no degrees of belief. In later work, [73] treat
continuous random variables as meta-linguistic functions, and so their semantics is not provided in the language of
the situation calculus. This seems sufficient for representing things like products of probabilistic densities, but it is
not an epistemic account in a logical or probabilistic sense. A final prominent extension to the situation calculus
for uncertainty is the embedding of decision-theoretic planning in Golog [74, 75]. Here, actions are allowed to be
nondeterministic, but the assumption is that the actual state of the world is fully observable. (It essentially corresponds
to a fully observable Markov decision process [76].) In this sense, the picture is a special case of the BHL framework.
It is also not developed as a model of belief. While this line of work has been extended to a partially observable
setting [77], the latter extension is also not developed as a model of belief. Perhaps most significantly, neither of these
support continuous probability distributions, nor strict uncertainty at the level of probabilistic beliefs.

It is worth noting that real-valued fluents in action logics turn out to be useful for modeling resources and time.
See, for example, [78, 79, 80]. These are, in a sense, complementary to an account of belief.

Outside the logical literature, there are a variety of formalisms for modeling noisy dynamical systems. Of these,
partially observable Markov decision processes (over discrete and continuous random variables) are perhaps the most
dominant [13]. They can be seen as belonging to the literature on probabilistic planning languages [81, 82]. Re-
cent probabilistic planning languages [83], moreover, combine continuous Bayesian networks and classical planning
languages. Planning languages, generally speaking, only admit a limited set of logical connectives, constrain the
language for specifying dynamic laws (that is, they limit the syntax of the successor state axioms), and do not handle
strict uncertainty.

In sum, to our knowledge, our proposal is the first of its kind to handle degrees of belief, noisy sensors and effectors
over discrete and continuous probability distributions in a general way. The proposal allows for partial and incomplete
specifications, and the properties of belief will then follow at a corresponding level of specificity. Moreover, to our
knowledge, no other logical formalism for uncertainty deals with the integration of continuous variables within the
language.

9. Conclusions

Many real-world applications, such as robotics, have to deal with numerous sources of uncertainty, the main culprit
being sensor noise. Probabilistic error models have proven to be essential in state estimation, allowing the beliefs of a
robot to be strengthened over time. But to use these models, the modeler is left with the difficult task of deciding how
the domain is to be captured in terms of random variables, and shifting conditional independences and distributions.
In the BHL model, one simply provides a specification of some initial beliefs, characterizes the physical laws of the
domain, and suitable posterior beliefs are entailed. The applicability of BHL was limited, however, by its inability
to handle continuous distributions, a limitation we lift in this article. By recasting the assessment of belief in terms
of fluent values, we now seamlessly combine the situation calculus with discrete probability distributions, densities
and difficult combinations of the two. We demonstrated that distributions evolve appropriately after actions, emerging
as a side-effect of the general specification. Our formal framework was then shown to easily accommodate the
interaction between discrete and continuous fluents, discrete and continuous noise models, and logical connectives.
At a specification level, the framework provides the necessary bridge between logic-based action formalisms and
probabilistic ones.

Armed with this general specification language, we are in a position to investigate specialized reasoning machin-
ery. To give a few examples, in [35, 84], we identified general projection techniques, where we transform a property
of belief after a sequence of (noisy) actions and observations to what is believed initially. In later work [85], we
provided an efficient implementation of a projection technique under some reasonable assumptions, in service of en-
abling richer domain axiomatizations for robotics applications. Finally, a version of Golog was recently embedded in
our model of belief [26], in the style of knowledge-based programming [10, 86].
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A major criticism leveled at much of the work in cognitive robotics [87], and logic-based knowledge representation
more generally is that the languages are far removed from the kind of uncertainty and noise seen in machine learning
and robotics applications. A formal language such as the one considered in this article addresses this concern. It
also shows the advantages of appealing to logical machinery: firstly, in admitting natural, rich and intuitive physical
laws; secondly, in allowing belief specifications that can exploit the full power of logical connectives, thereby going
considerably beyond standard probabilistic formalisms; and thirdly, in alleviating the burden of determining how
these probabilistic beliefs are affected in dynamical systems. In the long term, we hope it takes steps towards a
general-purpose epistemologically-adequate representation language as envisioned by McCarthy and Hayes.
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