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Abstract 

The combination of supportive biomaterials and bioactive factors to stimulate endogenous 

progenitor cells is of key interest for the treatment of conditions in which intrinsic bone healing 

capacities are compromised. To address this need a “scaffold-decoration platform” was 

developed in which a biocompatible, biotin-functionalised 3D structural polymer network was 

generated through a solvent blending process, and used to recruit avidin modified 

nanoparticles within its 3D structure through biotin-avidin conjugation. This was enabled via 

the generation of a suite of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, encapsulating 

two bioactive factors, vascular endothelial growth factor (VEGF) and L-Ascorbic acid 2-

phosphate (AA2P) and conjugated to streptavidin to allow attachment to the bone generating 

scaffold. The levels of encapsulated and released VEGF and AA2P were tailored to fall within 

the desired range to promote biological activity as confirmed by an increase in endothelial cell 

tubule formation and collagen production by osteoblast cells in response to nanoparticle 

release of VEGF and AA2P, respectively. The release of VEGF from the scaffolds produced 

a significant effect on vasculature development within the chick chorioallantoic membrane 

(CAM) angiogenic assay. Similarly, the scaffolds showed strong biological effects in ex vivo 

assays indicating the potential of this platform for localised delivery of bioactive molecules with 

applications in both hard and soft tissue engineering.  

 

 

 

 



 

 

Introduction 

The current paradigm for tissue engineering consist of 3 elements, (i) cells, (ii) an appropriate 

scaffold and, (iii) conditioning of the cells and scaffolds with appropriate mechanical forces 

and factors to create a tissue equivalent in vivo like environment.1,2  

Following severe bone trauma or bone loss as a consequence of ageing or pathological 

conditions, the application of tissue engineering and regenerative medicine has come to the 

fore with the aspiration to aid bone regeneration and health and, ultimately, to restore the 

anatomical function and structure of bone. A central requirement in such situations is the ability 

to support the function of the cells present in bone to produce extracellular matrix essential for 

mineral deposition as well as to support the development of blood vessels3. It has long been 

known that the processes of angiogenesis and osteogenesis in bone are closely interrelated 

and pivotal in bone development, growth and regeneration.4 The current principles of bone 

regeneration places vasculature formation as a critical factor for successful bone healing with 

the lack of vasculature the main cause of delayed union or non-union.5,6 Vasculature 

endothelial growth factor (VEGF) is essential for vasculature formation by endothelial cells 

and influences the proliferation and differentiation of bone-forming cells.7-10 Furthermore, the 

function of bone cells is exquisitely regulated through interaction with the collagenous 

extracellular matrix (ECM) including interactions with the central bone organic component, 

collagen, the formation of which, in turn, is regulated by ascorbic acid. 11,12 

The copolymer poly(lactic-co-glycolic acid) (PLGA) has received considerable attention as a 

delivery system given its excellent biocompatibility, high safety profile, and the Federal Drug 

Administration approval of PLGA for use in drug delivery. 13-16 In addition, PLGA is typically 

degraded into oligomers and individual monomers, which are natural metabolites.17 Previous 

studies have shown the efficacious nature of PLGA to allow the delivery of proteins in 

comparison to free protein.18,19  

The encapsulation of bioactive substances within particles at the nanometre scale confers 

several advantages over microparticle encapsulation, including a reduced risk of embolisation 

and enhanced rates of release due to large surface area to volume ratios.20,21 VEGF delivery 

via PLGA nanoparticles (PLGA NP) has already shown promise in encouraging blood vessel 

growth in tissue engineering and cardiovascular medicine applications.22 It however important 

to ensure that the delivered biologically active molecules are released at the site of tissue 

repair for extended periods of time, while retaining biological activity over this timeframe. 

Strategies such as integrating nanoparticle into polymeric hydrogels23,24 and bioactive glass 

scaffolds25,26 have been developed to support controlled delivery of bioactive molecules. A co-

delivery system for VEGF and basic FGF, loaded PLGA nanoparticles incorporated within a 

hydrogel has been reported by Jiang and colleagues to enhance tissue regeneration.27 Li and 

co-workers have shown the delivery of BSA-encapsulated BMP2 and dexamethasone within 



 

 

a polymeric nanofiber scaffold in vivo resulting in increased new bone formation compared to 

blank scaffolds.28 We hypothesised that scaffolds decorated with nanoparticles presented on 

the scaffold surface would provide an attractive and accessible delivery platform for cells with 

a stable delivery system and high local concentrations being supported by nanoparticle 

retention. 

In our previous work, ternary mixtures of natural and synthetic polymer blends displayed 

promising potential as a bone tissue engineering matrix for bone regeneration.29 In this study, 

PLGA-based nanoparticles containing VEGF and ascorbate were individually prepared and 

evaluated to determine their efficiency of release in vitro. Subsequently the nanoparticles were 

combined with a biotin-tagged polymer-blend scaffold to allow linkage of the avidin-loaded 

nanoparticles onto the biotin-conjugated scaffold thus allowing stable and controlled release 

of two bioactive molecules. This was examined in vivo using the chick chorioallantoic 

angiogenic membrane assay.  

 

Results and Discussion 

Preparation of polymer scaffolds functionalised with nanoparticles 

The current studies demonstrate that the combination of nanoparticle containing bioactive 

molecules within biotin-tagged polymer-blend scaffolds provides a platform for the localised, 

and spatial, delivery of bioactive molecules with applications in both hard and soft tissue 

engineering.  

NHS–palmitic acid was conjugated to free amino groups on avidin (0.1 equivalent to palmitic 

acid) producing a stable amide linkage and rendering the protein hydrophobic while the 

presence of 2% (w/v) deoxycholate prevented palmitate vesicle formation (Fig. 1A). 

Biotinylated polymers were generated by treating biotin with triethylamine and N, N’-

Disuccinimidyl carbonate at room temperature for 16 hours, followed by the addition of 

polyethyleneimine (PEI) to the mixture and subsequent PEI-biotin isolation (Fig 1B). Based on 

the proton NMR of PEI-biotin (see Figure S1), around 14 biotin units were attached per PEI 

unit. PLGA NPs loaded with VEGF and AA2P were prepared using a double emulsion method 

in the presence of avidin-palmitate allowing the hydrophobic chain to embed into the PLGA 

nanoparticles. Particle size analysis confirmed their submicron size and indicated a relatively 

narrow particle size distribution (637-682 nm) with only minor changes in particle size when 

loaded with different cargos. The PLGA nanoparticles displayed Zeta-potentials ranging from 

-20.3 mV to -32.1 mV, which can be attributed to the presence of carboxylate groups on the 

surface of the nanoparticle, due to the use of acid terminated PLGA polymers (Table 1).   

 

A polymer blend was generated by encompassing a number of biodegradable polymers, 

chitosan (CS), poly-L-lactide (PLLA) and polyvinyl acetate (PVAc) (Figure 2A), based on our 



 

 

previous reported work.29 To generate biotin functionalised polymer scaffolds while retaining 

the cellular binding affinity, a low percentage of PEI-biotin was used in the polymer blends 

(PLLA/PVAc/CS/PEI-biotin, 25/25/10/2, w/w). The biotin modified polymer scaffolds were 

fabricated by solvent blending PEI-biotin with CS, PLLA and PVAc followed by freeze-drying 

(see Table 2 for ratios of the polymers), with solid-liquid phase separation creating a porous 

scaffold upon solvent removal. The scaffolds were conjugated by incubation of the avidin-

modified PLGA NPs with the biotinylated-polymer scaffold in PBS at room temperature (Figure 

2B). The morphology of nanoparticles loaded with Rhodamine B (RhB) as analysed by 

scanning electron microscopy (SEM) revealed a uniform spherical structure (Figure 3A). 

Crucially, the NP structures remained intact following incorporation within the polymer 

scaffolds (Figure 3B), with cross-sectional SEM analysis demonstrating an even distribution 

of intact PLGA-NPs within the polymer network (Figure 3C). The polymer blend scaffolds 

displayed a macro-porous framework, with an overall porosity of 57% ± 3.21% and 61% ± 

4.53%, before and after nanoparticle decoration, respectively. 

 

Release profiles of AA2P and VEGF 

A range of PLGA compositions with different molecular weights and monomer compositions 

(7 kDa 50/50, 38 kDa 50/50, and 50 kDa 85/15) were employed to study biofactor release 

profiles. In the first instance, the release kinetics of Rhodamine B (RhB) encapsulated within 

NP’s generated from the three PLGA polymers were evaluated in vitro (Figure 4A). 

The release of RhB from PLGA-NP reached 10%, 40% and 22% from the 7KDa, 38KDa and 

50KDa polymers respectively during the first 1.5 hours. After 12 days, 48% of the RhB was 

observed to have been released from the 38KDa PLGA-NP compared to 22% from the 7KDa 

and 34% from the 50KDa PLGA-NP’s (Figure 4A). Based on this data, 38KDa PLGA was 

selected to encapsulate VEGF and L-Ascorbic Acid 2-phosphate (AA2P) in all subsequent 

studies. 

Loading of AA2P or VEGF into the PLGA nanoparticles was achieved using a double emulsion 

method. Burst release was observed for AA2P within 20 hours followed by gradual release of 

AA2P over 96 hours (Figure 4B). In initial experiments, the release of VEGF from PLGA 

nanoparticles was monitored over 10 days (Figure 5A). Initial burst release was reported over 

the first 30 minutes, but over a 72-hour time frame, VEGF release was observed to steadily 

increase, reaching a plateau with a concentration of 81 ng VEGF/mg of NPs (Figure 5B).  

The current studies also assessed the release profiles of AA2P from scaffolds containing 

nanoparticles functionalised with and without avidin. We observed the release of 28 µg and 

14 µg of AA2P released from scaffolds containing nanoparticles decorated with and without 

avidin, respectively (Figure S5). Since the avidin functionalised nanoparticles will be attached 

to the polymer scaffolds, as a consequence of avidin-biotin binding, scaffolds decorated with 



 

 

avidin functionalised nanoparticles would be expected to show increased collagen release as 

observed (Figure S6). 

 

Bioactivity analysis of AA2P and VEGF released from nanoparticles  

Ascorbic acid (vitamin C) is a co-factor for lysyl and prolyl hydroxylases, two essential 

enzymes in the collagen biosynthesis pathway.11 Similar attributes are associated with its 

derivatives, including 2-phosphate-L-ascorbic acid (AA2P) which exhibits higher stability in 

solution.30 Limited collagen biosynthesis, due to ascorbic acid deficiency, manifests in various 

systemic pathologies, including abnormalities in bone maturation, epiphyseal disease, 

pseudoparalysis related to bone pain, spontaneous fracturing and impaired bone healing. 31  

Therefore, the delivery of ascorbic acid or AA2P in fracture environment could stimulate the 

healing process. Collagen deposition by MC3T3-E1 cells was observed to increase after 7 

days culture, following supplementation with 2-phosphate-L-ascorbic acid or nanoparticles 

containing 2-phosphate-L-ascorbic acid (Figure 6). There was a significant 7.24 (p<0.01) and 

5.8-fold (p<0.05) increase in collagen production in MC3T3-E1 cultures maintained in medium 

containing 0.5 mg NP-AA2P compared to blank NPs and no treatment control respectively. In 

addition, a 6.95-fold (p<0.05) increase in collagen production compared to the NP-blank was 

observed in cell cultures supplemented with 1 mg NP-AA2P (Figure 6). It is important to note 

that the concentration of free 1μg AA2P/ml added to medium was reported to be sufficient to 

increase collagen production in MC3T3-E1 cells in a long-term manner and further addition of 

AA2P was not observed to correlate with collagen production.32 Calculations based on the 

release kinetics of NP-AA2P showed that the concentration of released AA2P from 0.5 mg 

NP-AA2P was 15 μg/ml (Figure 4B). Initial studies focusing on the effect of ascorbic acid and 

its derivatives on collagen production in vitro reported dose-response effects within 3 days 

that correspond to short term effects, while long term effects were not evaluated.33,34 Although, 

the administration of higher AA2P concentrations could have a beneficial effect on the earlier 

onset of cell differentiation compared to lower concentrations, in the long term, concentrations 

of 1μg AA2P per ml would appear sufficient to promote collagen production. Hence, the 

delivery of NP-AA2P could have promising effects on both, stimulation of collagen production 

and cell differentiation in vivo. 

Tubule branch length formed by HUVECs was found to correlate with VEGF concentrations 

added to the medium. A two-fold increase (±0.6; p<0.0001) in HUVEC tubule branch length 

was observed at 40 ng VEGF per ml, compared to results obtained from cultures in the 

absence of VEGF (Figure 7). The increase in HUVEC tubule branch length was 2 (p<0.001) 

and 3-fold (p<0.0001) for cells maintained in medium containing 0.5 mg NP-VEGF compared 

to cultures in the absence of VEGF or the NP-blank, respectively. There was no significant 

difference in the branching length for groups maintained in medium containing 1 mg NP-VEGF 



 

 

compared to control (0 ng VEGF/ml) and conditioned medium (CM) control groups. The 

concentration of VEGF released into medium form the NPs was approximately 70 ng VEGF/ml 

for the CM 1 group and 35 ng VEGF/ml for the CM 0.5 group as evidenced by ELISA (Figure 

5B). The lower concentration of VEGF was sufficient to stimulate endothelial tubular network 

formation and to support physiological vessel growth and limit vessel leakage.35,36 Controlling 

the dosage of VEGF released from NPs on a micro-environmental level would support optimal 

tubular network formation and angiogenesis in vivo. 

 

Chorioallantoic membrane (CAM) assay of polymer-nanoparticle scaffolds for 

angiogenic bioactivity 

The Chorioallantoic membrane (CAM) assay was used to determine the potential of VEGF-

NPs to enhance angiogenesis after 8 days culture. Scaffolds were found to be fully integrated 

within the CAM and vessel formation was clearly visible (Supplementary Figure S8).  

The activity of released VEGF from the nanoparticles contained within the scaffold was 

evaluated using the CAM assay (Figure 8A). The Chalkley score method was used to evaluate 

changes in the vasculature of the CAM in the presence of VEGF. An increase in vessel number 

was observed in CAM retrieved from eggs treated with 25 and 100 ng VEGF and CAM 

samples with scaffolds containing VEGF-NP’s (Figure 8A). The addition of VEGF to CAM at 

embryonic day 10, resulted in a significant dose-dependent increase in the Chalkley score at 

day 18 compared to the control; generating a Chalkley score of 5.1 (±0.8) for controls and for 

25 and 100ng VEGF a score of 7.8 (±1.6; p<0.001) and 10.2 (±1.7; p<0.001), respectively 

(Figure 8A). In addition, the Chalkley score was significantly higher for the VEGF-NP’s 

samples compared to scaffolds containing blank NPs (p<0.001) and the no treatment group 

(p<0.001). The Chalkley score was noted to be comparable for scaffolds containing VEGF-

NP’s (10.1±2.11) compared to exogenous 10 ng VEGF (10.2±1.7) (Figure 8A). 

Finally, we examined angiogenesis in CAM cultures treated with scaffolds containing 

nanoparticles encapsulated with VEGF and nanoparticles with AA2P. A significant increase in 

the Chalkley score observed for VEGF-NP’s, compared to control (CAM only; p<0.0001) and 

scaffold containing blank-NP’s (P<0.001), was observed (Figure 8B). The release of AA2P 

alone did not affect angiogenesis, while the combined release of AA2P and VEGF indicated 

an increased vasculature network evidenced by the increase in Chalkley score compared to 

CAM control and scaffolds containing blank-NP’s or AA2P-NP’s (Figure 8B), although, this did 

not reach statistical significance. 

 

Discussion 

The current major challenges in using synthetic scaffold materials for tissue engineering lies 

in the requirement for growth factor delivery mechanisms that mimic the in vivo release profiles 



 

 

of factors produced during natural tissue morphogenesis or repair. The biocompatibility of 

PLGA based-microparticles and scaffold delivery systems were shown via the bioactivity of 

the encapsulated growth factor VEGF and the long-lasting analogue of ascorbic acid, 2-

phosphate-L-ascorbic acid (AA2P).22,37,38 The delivery of multiple growth factors from soft and 

hard polymer scaffolds with distinct kinetics has been reported previously.39 However, the 

administration of multiple growth factors from polymer scaffolds via the incorporation of PLGA 

nanoparticles allows for more precise delivery and control of release that has not been shown 

before. In the current study, we used a combination of surface modified PLGA and biotin 

functionalised polymer scaffolds. The palmitic acid was coupled to the ligand, avidin, which 

then was introduced to the surface of PLGA nanoparticles. Biotinylated PEI, PVAc, PLLA and 

chitosan were solvent blended into 3D structural polymer networks. VEGF and AA2P were 

encapsulated within the PLGA nanoparticles, which were loaded onto the polymer 

networks/scaffolds through biotin-avidin conjugation. The release profiles of PLGA 

nanoparticles was controlled by using PLGA polymers with different molecular weights and 

monomer compositions. The in vitro release profiles from PLGA nanoparticles showed a 

moderate initial burst release followed by a sustained release. The release of VEGF and AA2P 

from the nanoparticles alone, and when attached to the scaffolds, confirmed the bioactivity of 

both factors/molecules within in vitro and ex vivo/in vivo environments. The limitation of using 

PLGA nanoparticle as a delivery system has been discussed in previous studies.39 A more 

controlled release system, such as triggering release, will potentially improve the lack of 

control of release by using PLGA nanoparticles that limited correlation between growth factor 

efficacies in the current study. Given the fundamental role of vascularisation in the bone 

healing process and production of extracellular matrix,11,40 the activity of released VEGF and 

AA2P to stimulate vascularisation and collagen production, respectively, was addressed and 

evaluated.  The release of VEGF stimulated tubule formation by endothelial cells and 

vasculature formation in CAM, while AA2P stimulated collagen deposition by osteoblasts in 

vitro. Thus, the current studies indicate the delivery of biomolecules within nanoparticles 

combined with scaffolds offers a promising platform to support angiogenesis and collagenous 

matrix formation during the bone healing process. Interestingly, the combination of VEGF and 

AA2P are particularly favourable for the treatment of osteoporotic patients whose bone is 

characterised by declining trabecular bone.41 While VEGF could stimulate angiogenesis and 

thus aid nutrient-waste exchange, AA2P administration could stimulate osteoblast function 

and, ultimately, the formation of bone. Further evaluation of scaffolds loaded with a 

combinatorial mixture of NP’s within an in vivo environment will allow evaluation of the 

potential and direct effect of the proposed strategy on bone healing. 

 

 



 

 

Experimental section 

Materials 

Dulbecco Modified Eagle Medium, alpha-MEM, penicillin/streptomycin, DPBS were obtained 

from Lonza. Ascorbic acid 2-phosphate and glycerol 2-phosphate disodium salt hydrate were 

purchased from Sigma. Fetal bovine serum and M199 medium was obtained from Gibco. 

ECGS/H were from Promocell. VEGF, TGFβ3 were from Peprotech. Poly(lactide-co-glycolide) 

(PLGA) (50:50 Resomer RG 502, RG 505, RG 504, and 85:15 PLGA ester terminated Mw 

50,000-75,000) and tween 20, biotin, Chitosan (CS) (from crab shells), polyethylenimine (PEI) 

(average Mw = 800 Da), Poly(L-lactic acid) (PLLA) (viscosity ~ 1.0dL/g) and Poly(vinyl acetate) 

(PVAc) (average Mw = 140 KDa), Palmitic acid N-hydroxysuccinimide ester (NHS-palmitic acid) 

and avidin were from Sigma. All other reagents were from Sigma and used without further 

purification. Analytical grade chloroform, glacial acetic acid, dichloromethane (DCM) were 

from Thermo Fisher Scientific, UK. Emulsions were generated using a Branson sonifier 250 

at 40% max amplification. 1H nuclear magnetic resonance spectra were recorded on a Bruker 

AVA500 spectrometer (500 MHz respectively) at 298 K in deuterated solvents. 

 

Preparation of avidin – palmitic acid conjugates  

Avidin (10 mg/ml) was reacted with 10-fold mol excess of NHS–palmitic acid in PBS (1 ml) 

containing 2% deoxycholate. The mixture was sonicated briefly and gently mixed at 37ºC for 

12 hours. To remove excess fatty acid and hydrolyzed ester, the mixture was dialyzed (MWCO 

2KDa) against PBS containing 0.15% deoxycholate. The resultant avidin–palmitate conjugate 

was analysed by reverse-phase HPLC. 

 

Biotinylated polymers 

Biotin (0.50 g, 2.04 mmol) and N,N′-Disuccinimidyl carbonate (0.52 g, 2.02 mmol) were 

dissolved in 10 mL dimethylformamide. Triethylamine (0.33 ml) was then added to the 

resulting solution. After reacting at room temperature for 16 hours, polyethyleneimine (PEI, 

Mw = 800) (1.22 g, 1:1 to biotin) was added to the mixture. After 12 hours at room temperature, 

the product was isolated by precipitation from THF and dried under reduced pressure at 40 

ºC, to give a white powder.  

 

PLGA nanoparticle fabrication 

PLGA-NPs loaded with rhodamine B (RhB), or VEGF or AA2P and were fabricated by adding 

0.1 mL of RhB (1 mg/mL), VEGF (1 mg/ml in PBS) or AA2P (5 mg/ml in PBS) to 2 mL of PLGA 

(38 kDa, 50/50) in dichloromethane (DCM, 25 mg/ml), and emulsified with a Branson sonicator 

for 40 s on an ice bath. 4 ml of a Tween-20 solution (1% in water) was added to the primary 

emulsion and sonicated for 40 s on an ice bath. The resulting emulsion was added to 50 ml of 



 

 

a Tween-20 solution (0.2% in water) containing the avidin-palmitic acid conjugate (0.05%) and 

sonicated twice for 40 seconds in an ice bath. The DCM was evaporated under reduced 

pressure at 40ºC, forming the PLGA-NP’s. The nanoparticles were collected by centrifugation 

at 10,000 rpm at 4 ºC for 10 min, washed three times to remove non-entrapped VEGF or AA2P 

and then freeze dried. The amount of entrapped AA2P was determined by HPLC (UV, 245 

nm) and VEGF was determined by an ELISA. The encapsulation efficiency was calculated by 

the following equation:  

𝐸𝐸% =  
𝐶𝑎𝑟𝑔𝑜 𝑙𝑜𝑎𝑑𝑒𝑑 

𝐶𝑎𝑟𝑔𝑜 𝑎𝑑𝑑𝑒𝑑
 ×  100 

 

Providing an encapsulation efficiency of RhB 18%, VEGF 20%, and AA2P 21%. 

 

Release profiles 

PLGA-NPs (1 mg/ml) containing RhB and AA2P were loaded into 20 kDa MWCO dialysis 

tubing and dialysed against 20 ml of phosphate buffered saline (PBS, pH 7.4) in the dark at 

37 ºC. At specified time points, 100 µl of the dialysis buffer was collected and replaced with 

equal volume of fresh PBS. The concentrations of RhB present in the dialysate were 

determined (λex 530nm and λem 590nm). 

VEGF-NPs were re-suspended in DMEM at a concentration of 2 mg VEGF-NPs per ml and 

incubated under rotation at 37°C. At specified time points, samples were centrifuged for 8 min 

at 12000rpm and a 30 μl sample was collected for analysis. The volume collected for analysis 

was replaced by fresh DMEM. Protein content in samples was determined using the human 

VEGF Quantikine ELISA (R&D Systems) according to the manufacturer protocol.  

 

Polymer scaffold fabrication 

Polymer blend scaffolds were fabricated using solutions of CS (2% w/v) in 2% acetic acid and 

98% deionized water (v/v), PLLA (10% (w/v) and PVAc (10% w/v) (both in chloroform) and 

PEI-biotin (20% w/v) in water, which were mixed at the volume ratio (using the above 

solutions) of CS/PLLA/PVAc/PEI-biotin/water (2/1/1/0.1/2). The mixture was thoroughly mixed 

using a vortex mixer for 15 min (volume approximately 12 ml). The blended solution was then 

transferred into silicon moulds with dimensions of diameter = 17 mm and height = 2 mm, 

frozen in liquid nitrogen and freeze dried while maintaining a temperature of -20 ºC until no 

solvent remained, yielding scaffold cylinders. 

 

Combination of polymer scaffold and PLGA-NP’s  

PLGA-NP’s was prepared at 10mg/mL in water; the polymer scaffold (17mm X 2mm) was 

incubated with the PLGA-NP suspension (200 µl) for 10 mins with gently shaking. Scaffolds 



 

 

were removed from the PLGA-NP solution and placed in water for 2 X 10 minutes and 

scaffolds were freeze-dried. 

 

Soluble collagen quantification 

MC3T3-E1 cells were plated at a density of 20,000 cells per cm2 in DMEM, 10% FBS and 1% 

penicillin/streptomycin. The following day, medium was removed and cell culture inserts were 

placed above the cells. Medium containing DMEM, 10% FBS and 1% penicillin/streptomycin, 

2 mM glycerol 2-phosphate was added to the well compartment while medium supplemented 

with free ascorbate at a concentration of 1, 5, 25, 50 μg/ml, containing NP or medium alone 

was added to the insert. The concentration of NP added to cell culture was 1 mg NP/ml 

medium. The medium containing free ascorbate, NP-AA2P or NP-blank was changed every 

2-3 days. After 7 days of culture, cells were washed with DPBS and lysed for collagen and 

DNA quantification. After overnight lysis with 0.5 M acetic acid containing 0.1 mg pepsin, total 

collagen content was assessed using the Sircol™ soluble collagen assay according to the 

manufacturers protocol. Briefly, 100 μl sample was incubated with 1 ml Sircol Dye Reagent 

on a mechanical shaker for 30 minutes. Subsequently, samples were centrifuged at 

12,000rpm for 10 minutes and the supernatant was removed. Samples were washed with ice-

cold “Acid-Wash Reagent” and centrifugation was repeated. After removing any liquid residue, 

samples were dissolved in the “Alkali Reagent” and the absorbance was read at 560nm. 

Concentration of collagen in samples was determined from the equation generated from a 

standard curve. Results were normalised to DNA content.  

 

DNA quantification 

DNA in samples lysed in CelLytic™ M were quantified using Quant-iT PicoGreen dsDNA 

Assay Kit according to the manufactures protocol. Briefly, samples were incubated with the 

PicoGreen reagent for 5 minutes and fluorescence was measured (480nm/520nm). DNA 

levels were determined using the standard curve.  

 

Tubule assay 

Human umbilical cords were obtained, following signed consent, from healthy mothers after 

normal, full-term deliveries from the Princess Anne Hospital, Southampton, under ethical 

approval from the Southampton & South West Hampshire Local Research Ethics Committee 

(LREC 05/Q1702/102). HUVEC were isolated and cultured as described by Jaffe9 with minor 

modifications. In brief, human umbilical cord blood vein cells (HUVEC) were isolated using 

collagenase A and expanded in M199 medium containing ECGS/H, 10% FBS and 1% 

penicillin/streptomycin. For the tubule assay 40000 cells/cm2 were seeded in tissue culture 

plates covered with 3% Laponite-fibronectin hydrogel (n=3 per group). Cells were incubated 



 

 

for 18 hours in medium containing 40 ng/ml FGF-2 and with the addition of VEGF added to 

medium or released into the medium from VEGF-NP’s at 37°C, 5% CO2 in a humidified 

atmosphere. No addition of VEGF or supernatant from NP-blank was used as negative 

controls. Medium from VEGF-NP’s and blank-NP’s was collected after 6 hours incubation of 

the NP’s at 37°C followed by centrifugation at 12000rpm. After incubation, cell cultures were 

imaged using an AxioVert200 Zeiss microscope and images were processed using 

Angiogenesis Analyzer task in ImageJ v2.0.0 to quantify total branching length. Four different 

areas from each sample were imaged and analysed.  

 

Chorioallantoic membrane (CAM) assay 

Animal procedures were carried out in accordance with the guidelines and regulations 

included in the Animals (Scientific Procedures) Act 1986, UK and chick embryo chorioallantoic 

membrane experimental protocols were approved and performed under Home Office Approval 

UK (Project licence – PPL P3E01C456) approved at the University of Southampton. The eggs 

were incubated horizontally for 10 days at 37 °C in a 60% humidified atmosphere, using a 

Hatchmaster incubator (Brinsea, UK) with one hour scheduled rotation. At day 10-post 

fertilisation, a scalpel blade was used to make an approximate 0.5 cm2 square incision on the 

eggshell under sterile conditions and the eggshell fragment was removed to access the CAM 

beneath. Scaffolds containing blank-NP’s or VEGF-NP’s were sterilised under UV for 40 

minutes and incubated in 30% antibiotic-antimitotic solution for 30 minutes. After extensive 

washing with DPBS, scaffolds were placed on the CAM of the chick embryo. For controls 30 

μl DPBS with 25 ng and 100 ng VEGF or without VEGF was placed on the CAM of the chick 

embryo. Six to eight eggs were used for each experimental condition. The incision in eggshell 

was sealed with sterile parafilm secured with autoclave tape. After incubation without rotation 

for 8 days, CAM containing scaffolds and from control groups, were isolated and the 

gestational process was terminated following Home Office specific guidelines.  

 

Chalkley point-overlap morphometry 

Isolated CAMs from chick embryos were fixed in 4% PFA for one hour and vascularisation 

evaluated using Chalkley point-overlap morphometry (Chalkley score) with a Stemi 2000-C 

Zeiss microscope at 10 cm distance of sample from objective and 1.25x magnification. Five 

areas having the most concentrated vascular structures on each CAM were assessed and the 

count of the highest collision points of Chalkley graticule and vasculature on CAM was 

recorded individually as score.     

 

 

 



 

 

 

FIGURE 1: Figure 1. Synthesis of A: An Avidin-Palmitic acid conjugate and. B: Biotinylated-

PEI. 

 

FIGURE 2: A. Scaffold preparation.The four polymers; polyvinyl acetate, chitosan, poly (L-

lactide) and PEI-biotin were solvent blended as previously described.29 B: Scaffold decorated 



 

 

combinatorially with nanoparticles. The image shows the polymer scaffold (17 mm X 2 mm) 

combined with PLGA nanoparticles. 

 

 

FIGURE 3: Morphology, size and distribution of NPs in the PLGA scaffolds. SEM images of 

A: avidin labelled nanoparticles, B: Biotin labelled scaffold and C: scaffolds combined with 

nanoparticles. NPs were uniform and had low size distributions. Nanoparticle structures 

remained intact after incorporation within the polymer scaffolds. Scale bars represent 1 µm for 

image A and B; 4 µm for image C. 

 

 

FIGURE 4: Release profiles. A: Release of rhodamine B from PLGA (7 kDa, 38 kDa, and 50 

kDa) nanoparticles. B: Release of AA2P from PLGA (38 kDa 50/50) nanoparticles (n=3; one 

batch).   



 

 

 

 

FIGURE 5: Release profiles. A: Release of VEGF from PLGA (38 kDa 50/50) nanoparticles 

over 10 days (n=3; one batch). B: Release of VEGF from PLGA (38 kDa 50/50) nanoparticles 

over 72 hours (n=9; three separate studies). The data are presented as mean ± SD.  

 

FIGURE 6: Bioactivity of released AA2P from PGLA-NP’s. Fold-changes in collagen 

production in response to AA2P supplemented into medium and released from the 

nanoparticles. 1: statistically different from 0 g AA2P/ml; 2: statistically significant from NP 

blank. Statistical significance at p<0.05 (n=9, three separate studies). The data are presented 

as mean ± SD.  



 

 

 

FIGURE 7: Bioactivity of VEGF released from PGLA-NP’s. Fold changes in total branching 

length of tubules formed in 2D HUVEC tubule formation assay on 3% Laponite-fibronectin 

hydrogel. CM: conditioned medium; CM 0.5: conditioned medium after incubation of 0.5 mg 

NP-VEGF for 6 hours; CM 1: conditioned medium after incubation of 1 mg NP-VEGF for 6 

hours. 1: statistically different from 0 ng VEGF per ml; 2: statistically significant from CM 

control. Statistical significance at p<0.05 (n=9, three separate studies). The data are 

presented as mean ± SD.  

 

FIGURE 8: Evaluation of vasculature at day 18 of embryonic chick development using 

Chalkley score method in response to single- or dual-release of bioactive molecules from 

scaffold. A: Chalkley point-overlap morphometry results indicating changes in vessel numbers 

in CAM at day 18 after 8 days incubation with VEGF, or scaffold containing NP-VEGF; B: 

Chalkley point-overlap morphometry results indicating changes in vessel numbers in CAM at 



 

 

day 18 after 8 days incubation with VEGF, AA2P or scaffolds containing NP-VEGF and/or 

AA2P. No VEGF and scaffolds with blank NP were used as controls. SC+NP-blank – scaffold 

containing PLGA nanoparticles; SC+NP-VEGF – scaffold containing nanoparticles with 

VEGF; SC+NP-AA2P – scaffold containing nanoparticles with AA2P; SC+NP-VEGF+NP-AA 

– scaffold containing nanoparticles with VEGF and AA2P; control – no treatment; VEGF – 

CAM treated with 25 ng VEGF; AA2P – CAM treated with 50 μg VEGF.  1: statistically different 

from control; 2: statistically significant from SC+NP-blank. Statistical significance at p<0.05 (9-

12 samples per group; three separate studies). The data are presented as mean ± SD.  

 

TABLE 1: Characterisation of PLGA nanoparticles. 

PLGA Cargo Mean Diameter ( nm) PDi Zeta potential (mV) 

38 KDa RhB 672 0.09 -25.2 

38 KDa - 675 0.10 -20.3 

50 KDa RhB 637 0.12 -20.8 

7KDa RhB 653 0.15 -32.1 

38 KDa VEGF 682 0.10 -29.1 

38 KDa AA2P 669 0.11 -28.2 

 

TABLE 2: Concentration of polymers (%w/v) used for scaffold preparation. 

Polymer Concentration (w/v %) Recipe  

PVAc 10% in Chloroform 2.5 ml 

PLLA  10% in Chloroform 2.5 ml 

CS  1% in water with 2% acetic acid 10 ml 



 

 

PEI-biotin  20% in water 0.1 ml 
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