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ABSTRACT

CARMA (Collective Adaptive Resource-sharing Markovian Agents) is a process-algebra-based quantita-
tive language developed for the modeling of collective adaptive systems. A CARMA model consists of an
environment in which a collective of components with attribute stores interact via unicast and broadcast
communication, providing a rich modeling formalism. The semantics of a CARMA model are given by a
continuous-time Markov chain which can be simulated using the CARMA Eclipse Plug-in. Furthermore,
statistical model checking can be applied to the trajectories generated through simulation using the Multi-
VeStA tool. This advanced tutorial will introduce some of the theory behind CARMA and MultiVeStA as
well as demonstrate its application to collective adaptive system modeling.

1 INTRODUCTION

CARMA, Collective Adaptive Resource-sharing Markovian Agents (Bortolussi et al. 2015; Loreti and
Hillston 2016), is a modeling language, based on stochastic process-algebra, developed in the EU-funded
QUANTICOL project to support the quantitative analysis of Collective Adaptive Systems (CAS).

CAS consist of massive numbers of components, featuring complex interactions among components
and with humans and other systems. Each component in the system may exhibit autonomic behavior
depending on its properties, objectives and actions. Decision-making in such systems is complicated and
interaction between their components may introduce new and sometimes unexpected behaviors. CAS also
operate in open and non-deterministic environments. Components may enter or leave the collective at any
time. Components can be highly heterogeneous (machines, humans, networks, etc.) each operating at
different temporal and spatial scales, and having different (potentially conflicting) objectives.

CARMA combines the lessons which have been learned from the long tradition of stochastic process
algebras – like PEPA (Hillston 1995), EMPA (Bernardo and Gorrieri 1998), Stochastic π-Calculus (Priami
1995), and others (Hermanns et al. 2002; Bortolussi and Policriti 2010) – with those more recently acquired
from developing languages to model CAS, such as SCEL (De Nicola et al. 2014) and PALOMA (Feng
and Hillston 2014), which feature attribute-based communication and explicit representation of locations.
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Over the years, a number of modeling formalisms have been developed that consider space or attribute-
based communication including Cardelli and Gordon (2000), John et al. (2008), Parvu et al. (2015), Abd
Alrahman et al. (2016), and Reinhardt and Uhrmacher (2017), but it is beyond the scope of this tutorial
to offer a comparison.

A CARMA system consists of a collective operating in an environment. The collective is a multiset of
components modeling the behavior of a system; it describes a group of interacting agents. The environment
models all aspects that are intrinsic to the context where the agents are operating, and it mediates agent
interactions. This is one of the key features of CARMA. The environment is not a centralised controller
but rather something more pervasive and diffusive – the physical context of the real system – which is
abstracted within the model to be an entity that exercises influence and imposes constraints on the different
agents in the system. The role of the environment is also related to the spatially distributed nature of CAS
– we expect that the location where an agent is has an effect on what an agent can do.

To support the analysis of CAS with CARMA, a set of tools have been developed. The CARMA toolset
consists of a rich Eclipse plug-in and of a Command Line Inteface (CLI) that, thanks to the integration with
MultiVeStA (Sebastio and Vandin 2013), a statistical model checker (Agha and Palmskog 2018), supports
statistical analysis and model checking of CAS.

CARMA has been used to model a number of different scenarios including taxi usage (Hillston and
Loreti 2015), carpooling (Zoń et al. 2016), ambulance deployment (Galpin 2016), pedestrian mobility
(Galpin et al. 2018) and network security (Chen et al. 2018). MultiVeStA has also been applied in
different domains, including software product lines (ter Beek et al. 2015; ter Beek et al. 2018), crowd-
steering (Pianini et al. 2014), public transportation systems (Gilmore et al. 2014; Ciancia et al. 2016), and
swarm robotics (Belzner et al. 2014).

The CARMA Eclipse Plug-in provides a rich editor that can be used to develop models in CaSL, the
CARMA Specification Language. In addition to syntax highlighting, the editor continuously checks the
model for syntax errors and ensures that it adheres to the CaSL standard. In case of problems, a tool-tip
message explains to the user which error has been encountered. Given a CaSL specification, the CARMA
Eclipse Plug-in automatically generates the Java classes needed to simulate the model. This generation
procedure can be specialised to different kinds of simulators.

The CLI tool is available as an executable and does not require the installation of Eclipse or of any
additional library. It can, therefore, be used on any machine where Java is installed and on any major
operating system. The main task of the command line tool is to serve as an interface to the CARMA
simulation engine. This is useful for running jobs over server machines or for scheduling consecutive
simulations, avoiding the need to initiate and oversee each individual task through the graphical interface.

In this advanced tutorial, we will show how CARMA and its toolset can be used to support the quantitative
analysis of collective adaptive systems. A simple case study will be used. We will consider a robot search
example where a swarm of robots move over city streets after a disaster. The robots enter the search area
and spread out, searching. The first robot to find a casualty stops and communicates its location to other
robots. When a base radio receives the location of a victim, it starts broadcasting a return signal, which is
repeated by all robots outside the base, as they move home.

In Section 2, a brief description of CaSL is provided together with a description of the considered
case study. In Section 3, the CLI and its integration with MultiVeStA is provided. In Section 4, we show
the results of experiments with the robot search model, after which the conclusion is presented.

2 CaSL: CARMA SPECIFICATION LANGUAGE

CARMA has been designed with the goal of identifying basic interaction mechanisms that are specific to
CAS. For this reason, CARMA is in a certain sense minimal and abstracts from many details, such as the
precise syntax of expressions or values, which are definitively needed when a concrete specification has to
be provided. For this reason, CaSL, the CARMA specification language, has been introduced to ease the
task of modelling for users who are unfamiliar with process algebra and similar formal notations. CaSL
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incorporates all the features of CARMA. However, it also provides rich syntactic constructs that are inspired
by mainstream programming languages and that simplify the work of system designers and modellers.

In the rest of this section we provide a gentle introduction to the main CaSL constructs that are
needed to understand the considered case study. An interested reader can refer to the CaSL Web site
(http://quanticol.github.io/CARMA/), where a detailed user manual is available. The model and scripts for
its analysis are available at http://quanticol.github.io/CARMA/extra/wsc2018.html.

We now present the case study of this tutorial. We consider a robot search example where a swarm
of robots move over a city landscape in a disaster recovery scenario. The robots enter the grid of streets
from a base loction and randomly move around the streets, searching for a casuality. When a robot finds a
casualty, it stops and and broadcasts its location. Other robots rebroadcast the location while still traversing
the streets. This is a flooding/gossiping protocol over a mobile ad-hoc network (Haas et al. 2002). Once
the location of the casualty has been received by the base radio, it broadcasts a return signal. Each robot
which receives this signal, repeatedly rebroadcasts it, until that robot has returned to base.

In stochastic process algebras, data are typically abstracted away. The influence of data on behaviour is
captured only stochastically. When data are important to differentiate behaviours, they must be implicitly
encoded in the state of processes. For CAS, where we want attribute-based communication to reflect the
flexible and dynamic interactions that occur in such systems, data cannot be abstracted.

For this reason, CaSL supports four kinds of basic types: booleans, integers, reals, and spatial locations,
where the latter refer to locations where agents operate. Moreover, to model complex structures in CaSL,
custom types can be declared: enumerations and records. The former is a data type consisting of a set
of named values that behave as constants in the language, while the latter consist of a sequence of typed
fields. CaSL also supports collections as aggregations of homogeneous data, which can be either sets or
lists. As usual, a set does not contain duplicated elements, while a list is a sequence of elements of the
same type.

CaSL has a rich set of expressions that combine expressiveness and compact representation. Besides
standard arithmetic and logical operators, CaSL expressions include operators for collections.

To model random behavior, CaSL expressions provide different mechanisms for sampling random
values. When the expression RND is evaluated, the term is replaced with a value that is randomly selected
from the interval [0,1). To perform uniform selection of elements from a collection or sequence of values,
the expression U( e1 , ... , en ) can be used.

A CaSL model can contain constant and function declarations. A constant can be declared by using
the following syntax:

const < name> = < exp>;

where < name> is the constant name, while < exp> is the expression defining its value. Constants are not
explicitly typed. This is because the type of a constant is inferred from the assigned expression < exp>.

Constants can be used in our robot scenario to represent some parameters in the model like, for instance,
the dimension of the city (city_w and city_h) or the number of robots (num_robots):

const city_w = 11;
const city_h = city_w;
const num_robots = 25;

A function declaration has the following syntax:
fun < type> < name>( < type1 > < arg1 > ,..., < typen > < argn > ) < body >

where < name> is the function name, < argi > is the name of parameter i of type < typei >, while
< type> is the return type. Finally, < body > contains the statements (in a high-level programming
language) used to compute the returned value.

In our scenario, a function OneBlock selects (randomly) the next location of a robot:
fun location OneBlock (location current_loc){

return U(current_loc.post); }

http://quanticol.github.io/CARMA/
http://quanticol.github.io/CARMA/extra/wsc2018.html
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Base

Figure 1: An example city grid where the red circle indicates the location of the casualty and the blue dots
represent robots

Function declaration has the following syntax:
fun < type > < name >( < type1 > < arg1 > ,..., < typen > < argn > ) < body >

where < name > is the function name, each < argi > is the name of parameter i of type < typei >, while
< type > is the type of the value returned by the function. Finally, < body > contains the statements used
to compute the returned value. Elements in < body > are standard statements in a high-level programming
language.

Case Study (3/7): In our robotic scenario, a function OneBlock can be used to select (randomly) next
location of a robot:

fun location OneBlock (location current_loc){
return U(current_loc.post); }

above current_loc is a location, while current_loc.post indicates the collection of its neighbours out
of which one is randomly selected. 2

Space models. Each CaSL model consists of a set of components, which are elements that are deployable
in a physical system, and an environment, which imposes limitations on, and defines the general rules for,
communication. This approach allows us to separate system behaviour, identified by components, from the
specification of the context which regulates the interaction of components.

It is important to avoid hardcoding the environment inside components’ stores or behaviours, as this
leads to cumbersome models which can less readily be used in experiments on how components perform in
different contexts. When system behaviour is clearly separated from the environment the resulting models
are flexible in terms of being able to easily represent the performance of the components when subjected
to different kinds of external conditions.

Following this approach, we can think of space and components as two distinct layers of the model.
Components reside in the top, behaviour layer and they can only perform their actions if the topological
structure defined in the underlying space layer allows that. The initial focus has been on graphs at the
prototypical spatial structure. The space where a system operates can be defined as a graph in which
edges have labels that contain tuples of properties. For example we can have a road lane with attribute
buses = true, which means that buses can travel on it.

Each space is associated with a universe — a collection of nodes with information about their location
in space. This can be, for example, a grid with an indexing system, or a bounded plane with a coordinate
system. The nodes block specifies which subset of nodes from the universe is used in the model. The
connections block contains the specification of how these nodes are connected to each other. The areas
block allows the user to define attributes associated with subsets of nodes belonging to the space.

Case Study (4/7): In our scenario we assume a city grid of the form given in Figure 1. In the model, this
spatial structure is specified as space GridPlusBase where the appropriate number of nodes are generated,
one for each intersection of the grid using an x- and y-coordinate. An additional node is defined for the
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Figure 4: Von Neumann neighbourhood of size one, Von Neumann neighbourhood of size two, Moore
neighbourhood of size one, Moore neighbourhood of size two (from left to right). The blue dots define the
additional grid points that are included in the neighbourhood, which includes the grid point of the red dot.

The MultiVeStA experiments consider movement rates. In the first experiment, with results given on
the right in Figure 5, the time taken to find the casualty is considered for different robot swarm sizes and
different search movement rates. It can be seen that for larger swarm and high rates, the time to reach the
casualty is under 20 time units but then the time increases as the sizes and rates decrease. The data for
this experiment was obtained with the MultiVeStA query

time_to_find() = if {s.rval("CasualtyFound")>0}
then {s.rval("time")} else #time_to_find()

fi;
eval E[ time_to_find() ] ;

which considers if the casualty has been found. If it has been found, it returns the current simulated time
(s.rval() allows to query observations on the current state of a simulation). If they haven’t been found,
then the query triggers the computation of a new step of simulation (the # operator is a one-step next
operator), and then time to find will be recursively evaluated in the next simulation state. For this and
the following experiment, a 11x11 city grid was used. In terms of MultiVeStA parameters, a was set at
0.1, d was set at 10, meaning that the average value t obtained for the number of time units to find the
casualty is in the interval [t �5, t +5] with probability 0.9. Hence, for each combination of robot number
and movement rate, sufficient simulations were run to meet these constraints. The highest values for the
number of simulations were 21800 and 6800, with another 6 over 500, with the most of the remainder
taking 100 simulations (which was the minimum permitted).

It also possible to consider the probability of events happening within a certain time. Figure 6 presents
the results of the following MultiVeStA query which is parameterised by different deadlines. Here 40.0

is the first parameter, 100.0 is the last parameter and 20.0 specifies the increment to be used to calculate
the other parameters.

time_to_report(t) = if {s.rval("LocationReported")>0}
then {1}
else if {s.rval("time")>t}

then {0} else #time_to_report({t})
fi

fi;
eval parametric( E[ time_to_report(x)],x,40.0,20.0,100.0 ) ;

The experiment shows the trade-off between different search rates and different non-search rates. In the
case of an 80 time unit deadline, reporting the location to the base station is very likely to happen for any
search rate of 1 or more. Even for the lower rates, there is still a more than 50% chance of meeting the
deadline. By contrast, for deadlines 40 and 60, a search rate of 0.50 cannot be paired with non-search
rates, if there is to be a reasonable chance of reporting the casualty’s location before the deadlines. In this
experiment, the number of robots was fixed at 20, and the confidence interval was set at (0.1,0.05), and
hence with a 90% probability, the actual expected value of the probability of meeting the deadline p is in
the interval [p�0.025, p+0.025].

Figure 1: (Left) An example city grid where the red circle indicates the location of the casualty and the blue
dots represent robots. (Right) Von Neumann neighbourhood of size one, Von Neumann neighbourhood of
size two, Moore neighbourhood of size one, Moore neighbourhood of size two (from left to right). The
blue dots define the grid points in the neighbourhood, which includes the grid point of the red dot.

In the above, current_loc is a location, while current_loc.post indicates the collection of its neighbours
out of which one is randomly selected.

Each CaSL model consists of a set of components, which are elements that are deployable in a physical
system, and an environment, which imposes limitations on, and defines the general rules for, communication.
This approach allows us to separate system behaviour, identified by components, from the specification of
the context which regulates the interaction of components.

It is important to avoid hardcoding the environment inside components’ stores or behaviours, as this
leads to cumbersome models which can less readily be used in experiments on how components perform in
different contexts. When system behaviour is clearly separated from the environment, the resulting models
are flexible in terms of being able to easily represent the performance of the components when subjected
to different kinds of external conditions.

Following this approach, we can think of space and components as two distinct layers of the model.
Components reside in the top, behaviour layer and they can only perform their actions if the topological
structure defined in the underlying space layer allows for that. The initial focus has been on graphs as
the prototypical spatial structure. The space where a system operates can be defined as a graph in which
edges have labels that contain tuples of properties. For example, we can have a road lane with attribute
buses = true, which means that buses can travel on it.

Each space is associated with a universe — a collection of nodes with information about their location
in space. This can be, for example, a grid with an indexing system, or a bounded plane with a coordinate
system. The nodes block specifies which subset of nodes from the universe is used in the model. The
connections block contains the specification of how these nodes are connected to each other. The areas
block allows the user to define attributes associated with subsets of nodes belonging to the space.

In our scenario we assume a city grid similar to the form given in Figure 1. In the model, the spatial
structure we use is specified as space GridPlusBase where the appropriate number of nodes are generated,
one for each intersection of the grid using an x- and y-coordinate. An additional node is defined for the
base. The connections between the grid intersections which represent the streets are specified and the base
is linked to the bottom left hand corner of the grid. The definition of space GridPlusBase in CaSL is as
follows and defines a complete grid.

space GridPlusBase(int width, int height){
universe <int x, int y>
nodes { for x from 0 to width {

for y from 0 to height { [x,y];} }
[-1,0]; }

connections {
for i from 0 to width {
for j from 0 to height {
if (i < width-1) {[i,j] <-> [i+1,j] { }; }
if (j < height-1) {[i,j] <-> [i,j+1] { }; } } }

[0,0] <-> [-1,0] { }; }
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areas { base {[-1,0];} } }

A component prototype provides the general structure of a component that can be instantiated in a
CaSL system. Each prototype is parameterised with a set of typed parameters and defines the store, the
component’s behaviour and the initial configuration. The syntax of a component prototype is:

component < name>( < type1 > < arg1 > ,..., < typen > < argn > ) {

store {
attrib < type1 > < name1 > = < exp1 >;

...
attrib < typem > < namem > = < expm >;

}
behaviour {

< pdef1 >

...
< pdefp >

}
init { < pname1 >|...|< pnamek > }

}

Each component prototype has a (possibly empty) list of arguments. These arguments can be used in
the body of the component. The latter consists of three (optional) blocks: store, behaviour and init.

The block store defines the list of attributes (and their initial values) exposed by a component. The
special attribute loc is always available in any store. An appropriate value is assigned to this attribute
when the component is instantiated. Block init is used to specify the initial behaviour of a component.
It consists of a sequence of terms < pnamei > referring to processes defined in the block behaviour or a
process in the argument list. The block behaviour is used to define the processes that are specific to the
considered components and consists of a sequence of definitions of the form

<pname> = <pbody>;

where <pname> is the process name while <pbody> is the process body and can be one of the following:

<pbody_1> + <pbody_2>

[<expr>]<pbody>

<act>.<proc>

Above, <pbody_1> + <pbody_2> indicates the choice between the behaviours <pbody_1> and <pbody_2>.
The guard [<expr>]<pbody> indicates that behaviour <pbody> is enabled when boolean expression <expr>

evaluates to true. Finally, <act>.<proc> is a process that performs action <act> and then evolves to
<proc>, representing the behaviour activated after the action execution; this can be a process name <pname>
or one of the process constants nil or kill. These represent the inactive process and the process that
destroys the component. When kill is activated, the hosting component is removed from the system.

In CaSL, as in CARMA, two kinds of synchronisation are provided: broadcast synchronisation and
unicast synchronisation. The former represents a one-to-many interaction, while the latter is the usual
one-to-one interaction. In both cases, the senders and the receivers select their counterpart(s) in the
communication via an activity and a predicate (a boolean expression) that filters possible receivers and
senders depending on the values of their attributes. The execution of an action may trigger some updates
on the store.

The syntax of broadcast output is the following:
<name>*[ g ]< e_1 , ... , e_n >{ <updt> }

Above <name> is the activity name, g is the boolean guard expression used to select receivers, e_i are the
values sent with the action, and <updt> is the update performed after the action execution. The latter is a
sequence of assignments of the form:
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a1 = exp1;
...
an = expn;

where each ai is the attribute to update, while expi is the new value assigned to ai.
In g, attributes prefixed with my will be evaluated with the local store. For instance,

forward*[ my.group == group ]< v >{ my.counter = my.counter + 1; }

is used to send with activity forward the value v to the components with attribute group equal to my.group
(the one evaluated locally). After the action is executed, attribute counter is incremented by 1. Note that
this action is executed even if there are no components ready or able to execute a complementary action.
It is required that g and all the sent values ei are deterministic expressions (i.e., without random values).

The syntax of broadcast input is similar:

<name>*[ g ]( x_1,...,x_n ){ <updt> }

However, in this case the guard g can also contain references to received variables xi. For instance:

forward*[ my.value < x ]( x ){ my.value = x; }

guarantees that the synchronisation occurs only when the received value is greater than the attribute value.
When such a value is received, attribute value is updated.

The syntax of unicast output is the following:

<name>[ g ]< e_1 , ... , e_n >{ <updt> }

Differently from broadcast output, this action is executed only if a complementary input is executed at
the same time. Like for broadcast output, g and all the sent values e_i must be deterministic expressions.

A unicast input has the following shape:

<name>[ g ]( x_1,...,x_n ){ <updt> }

In our scenario, we have three kinds of components, which are shown in Figure 2. The component
Casualty is very simple; it is ready to communicate a request for help to anything or anyone in AudioRange

and then has no further behaviour. For this model, AudioRange requires co-location and hence the casualty
can only be found by a robot at the same location.

The Robot component has five states, four of which are described by the comments above the state
definitions R1,...,R4 in Figure 2, and a final state nil in which no further behaviour is possible. Initially,
each robot leaves the base and moves randomly through the grid – this movement is generated by the prefix
move_one_block*[false]<>{my.loc:=OneBlock(my.loc);} where broadcast with a false predicate is
used to specify an internal action. Since broadcast is non-blocking and no other component can match
false, only the sending component can take part in such an action.

The update calls the function OneBlock, which chooses randomly and uniformly from the post-set of
the current location of the robot using the expression U(current_loc.post). The post-set of a location
is defined as all locations that are linked to it using -> in the space description. The robot that finds the
casualty remains at that location and starts broadcasting that location. Other robots that hear the location
broadcast start broadcasting it as well as still moving randomly.

Component Base models a base station that listens for the location broadcast and then starts to broadcast
a return-home signal once it knows the location. It counts in all but one robot.

Communication between the casualty and any robot, as well as counting-in communication between the
base station and any robots, are unicast. All other communication is broadcast. CARMA allows the range
of that communication for easily being expressed with a model with an explicit description of space. Three
functions are defined to describe the range of talking or shouting (AudioRange), the range of robot radio
broadcast (RadioRange), and the range of base station broadcast (BaseRange). These in turn depend on two
functions VonNeumannNgbrhd and MooreNgbrhd (not shown) which are defined using current_loc.post
where current_loc is the current location of the component.
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component Robot (){
store{ bool found = false;

location cloc = none; }
behaviour{
// searching for casualty
R1 = move_one_block*[false]<>{my.loc:=OneBlock(my.loc);}.R1 +

help[AudioRange(my.loc,loc)](){my.found=true;}.R2 +
relay_location*[RadioRange(my.loc,loc)](c){my.cloc:=c;my.found:=true;}.R3+
return_signal*[RadioRange(my.loc,loc)]().R4;

// found casualty, stop moving
R2 = relay_location*[RadioRange(my.loc,loc)]<my.cloc>.R2;
// received casualty location, continue moving while broadcasting location
R3 = relay_location*[RadioRange(my.loc,loc)]<my.cloc>.R3 +

move_one_block*[false]<>{my.loc:=OneBlock(my.loc);}.R3 +
return_signal*[RadioRange(my.loc,loc)]().R4;

// received return signal, continue moving while broadcasting return signal
R4 = return_signal*[RadioRange(my.loc,loc)]<>.R4 +

move_one_block*[false]<>{my.loc:=OneBlock(my.loc);}.R4 +
[my.loc in base]at_base[true]<>.nil; }

init{R1} }

component Base (){
store{ bool report = false;

bool returned = false;
location cloc = none;
int count = 0; }

behaviour{
B1 = relay_location*[BaseRange(my.loc,loc)](c){my.cloc:=c;my.report:=true;}.B2;
B2 = return_signal*[BaseRange(my.loc,loc)]<>.B2 +

at_base[my.loc==loc](){my.count:=my.count+1;}.B2 +
[my.count==Num_robots-1]stop*[false]<>{my.returned:=true;}.nil; }

init{B1} }

component Casualty (){
store{}
behaviour{ C1 = help[true]<>.nil; }
init{C1} }

Figure 2: Robot, base, and casualty components.

These return true whenever the current location of a component and the location of the component with
which it potentially could communicate, are in the Von Neumann neighbourhood and Moore neigbourhood
of the specified size, respectively. Figure 1 illustrates the definition of these neighbourhoods, for size 1 and
size 2, and it can be seen that the Moore neighbourhood is larger than the Von Neumann neighbourhood.

Communication between two components can only take place if the predicates in both components are
satisfied, i.e., if the locations of the two components taking part in the communication are in the specified
neighbourhood. In the case of the base communicating with a robot, both RadioRange and BaseRange

must be satisified. In the example, RadioRange defines a smaller region than BaseRange, hence it is the
truth value of RadioRange that determines whether communication is possible. Note that AudioRange is
set to a neighbourhood of size zero; this is equivalent to requiring that components be colocated.

A system definition consists of a space instantiation and two blocks, namely collective and
environment, which are used to declare the collective in the system and its environment, respectively:

system < name> {
space < name>(< exp1 >,...,< expn >)
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collective {
< cblock>

}
environment { · · ·
}

}

Space instantiation is used to define the space model where components are located. This instantiation
is optional and can be omitted.

Above, < cblock> indicates a sequence of commands that are used to instantiate components. The
basic command to create a new component is:

new < name>( < exp1 >,..., < expn > )@< expl ><< exp>>

where < name> is the name of a component prototype, < expi > are the parameters, < expl > is the
(optional) location where the created component is located (and that will be assigned to attribute loc having
type location), and < exp> is the integer expression identifying the multiplicity (i.e., the number of
copies) of the created component.

However, a large number of collectives can occur in a system. For this reason, following the same
approach used to create spatial models, we can use for-loops and selection constructs for instantiating
multiple components.

The syntax of an environment block is the following:

environment {
store { · · · }
prob { · · · }
weight { · · · }
rate { · · · }
update { · · · }

}

The store block defines the global store and has the same syntax as the similar block already considered
in the component prototypes. Blocks prob and weight are used to compute the probability to receive a
message, while rate is used to compute the rate of an unicast/broadcast output.

As can be seen from the definition of the collective (contained in the definition of system RS) in
Figure 3, one casualty component and one base component are instantiated as well as a number of robots.
Both the base and the robots are initially located at the base location. The casualty is located within the
city, and for our experiments we will assume a fixed location as specified in the collective definition. In
the collective, space is instantiated using the description in Figure 3 and takes two parameters that describe
the width and the height of the city grid.

We can observe that robots move at different speeds depending on their current task. In the case of
searching, they typically move at a slower speed compared with when they are broadcasting the location or
return-home signal. This is captured in the environment where the rate of move_one_block* is dependent
on the value of found in the component (see Figure 3).
Measure definitions. To extract observations from a model, a CaSL specification also contains a set of
measures. Each measure is defined as:

measure < name>( < type1 > < name1 >, ... ,< typen > < namen >) = < exp>;

Above, < exp> can contain specific expressions that can be used to extract data from the population of
components. To count the number of components in a given state, the following term can be used. For
instance,

#{ Π | < exp> }
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system RS {
space GridPlusBase (city_h,city_w)
collective{
new Casualty()@[city_h/2,city_h/2];
new Base()@U(base);
new Robot()@U(base)<num_robots>; }

environment{
rate{ move_one_block* {if (!sender.found) return move_search;

else return move_nosearch;}
default {return 100.0;} }

store{} prob{} weight{} update{} }

Figure 3: System definition.

can be used to count the number of components in the system satisfying the boolean expression < exp>
where a process of the form Π is executed. In turn, Π is a pattern of the following form:

Π ::= *
∣∣ *[ proc ]

∣∣ comp[ * ]
∣∣ comp[ proc ]

To compute statistics about attribute values of components operating in the system one can use the
expressions: min{ < exp> | < expg > }, max{ < exp> | < expg > } and avg{ < exp> | < expg > }. These
expressions are used to compute the minimum/maximum/average value of expression < exp> evaluated
in the store of all the components satisfying the boolean expression < expg >, respectively.

In our scenario we can use measures to count the number of robots in a given state or to test if the
location of the casualty has been reported:

measure CountR1 = #{Robot[R1]|true};
measure CasualtyFound = #{Robot[R2]|true};
measure LocationReported = #{Base[*]|my.report==true};

3 CARMA TOOLS

The formal semantics of CARMA implicitly defines how to simulate models, and the implemented simulation
algorithm makes use of this to help users understand a model’s behavior. We now consider the software
that supports the use of CARMA with a focus on the command line interface (CLI) and the integration of
MultiVeStA into this interface.

3.1 Command Line Interface

Creating and editing models is made easier by the CARMA Eclipse Plug-in, which offers helpful features
such as syntax highlighting and the ability to simulate models written in CaSL (Loreti and Hillston 2016).
In addition to this, we have developed a CLI tool (http://quanticol.github.io/CARMA/cli.html). Its goal is
to allow users to perform some common tasks related to CARMA models through a simple, lightweight
interface that is also amenable to scripting, thus providing programmatic access to some of the CARMA
tools. The command line tool is available as an executable Java package and the tool (CARMA-CL.jar)
can be downloaded at https://github.com/Quanticol/CARMA/releases. It does not require an installation of
Eclipse or of any additional libraries. It can, therefore, be used on any machine where Java 1.8 is installed.

The main task of the command line tool is to serve as an interface to the CARMA simulation engine.
This is useful for running jobs over server machines or for scheduling consecutive simulations, avoiding
the need to initiate and oversee each individual task through the graphical interface.

The user provides a file describing one or more experiments to be performed, specifying parameters
such as the final time of the simulation and the measures to be recorded. If desired, the user can override

http://quanticol.github.io/CARMA/cli.html
https://github.com/Quanticol/CARMA/releases
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Summary for experiment exp1:
---------------------------
This experiment used the model /path/to/file/Model.carma. A copy has been saved

in this directory.
The scenario considered was Scenario1.
The experiment tracked the following measures: TotalUsers, MaxBikes{l=0}.
The final time of the simulation was 25.000 and 100 samplings were taken (

sampling interval: 0.25000).
10 replications were performed in 529 ms using the CARMA simulator.
The data from individual replications were combined and statistics (mean,

variance) were computed using the Apache Commons Mathematics library.
This experiment finished at 20:38:23 on 16 February 2017.

Figure 4: Sample output of the CLI tool, as a human-readable description of a simulation experiment.

certain parameters of the experiment file, such as the number of replications to be executed, and can
also set the seed of the random number generator used in the simulation. These features allow for easier
programmatic manipulation and replication of experiments.

To take advantage of the multi-core architectures found in many computing servers and clusters, the
tool allows the user to specify an optional parallelization parameter N. If provided, this will automatically
split each experiment into N subtasks and attempt to execute them in parallel, using different processing
threads or cores as determined by the operating system used. When all the subtasks are completed, the
tool collects each set of results and aggregates them to produce the overall statistics. An illustration of this
process can be found at https://quanticol.github.io/CARMA/cli.html.

Once all simulations are finished (whether executed sequentially or in parallel), the results are stored
in CSV format, with one file for each measure requested, in a location that can be controlled by the user.
For each measure, the file contains the mean and standard deviation of its value at the different time points
sampled. To help with the organisation of experimental results and to facilitate potential replications of
the experiment, several important aspects of the simulation are recorded. Specifically, in addition to the
results, the following files are created to provide metadata for the process:

• a copy of the model used for the simulation;
• a copy of the segment of the experiments file corresponding to the particular experiment (reflecting

any overriden parameters), which can then be reused as input to the tool;
• two files containing the time taken for the whole experiment to run and the time taken up only by

simulation, which can offer insight when comparing different versions of a model;
• a text file containing a human-readable summary of the experiment, including the model, aspects

of the simulation (such as the stopping time), any user-specified parameters, the time required for
the experiment, and the date and time of execution (Figure 4).

Furthermore, a script file for the gnuplot software is created, allowing the user to easily produce visualisations
from the saved results if desired. The script can be run as-is or further edited by the user as required.

While simulation is the primary goal of the CLI, it can also be used to perform more elaborate statistical
analysis through MultiVeStA (Section 3.2). In this case, the user must provide a file with the expressions to
be evaluated. This gives access to the full expressive power of MultiQuaTEx, allowing for the formulation
of complex queries. Additional parameters can be given to customise the default behavior of the algorithm,
such as by specifying the desired confidence level of the result. At the end of the analysis, the results are
stored in a text file, while a plot of them is displayed and also stored in an image file.

https://quanticol.github.io/CARMA/cli.html
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3.2 Statistical Analysis of CAS

While useful, simple simulation is by its nature limited in the information it can offer, and other approaches
such as model checking can be used to complement its insights.

To provide further analysis options for CARMA models, we have developed an interface to the MultiVeStA
platform, allowing CARMA users to access the model checking capabilities offered by this software.
MultiVeStA, originally proposed by Sebastio and Vandin (2013), has been further developed within the
QUANTICOL project (Gilmore et al. 2017). The tool belongs to the family of statistical model checkers
of VeStA (Sen et al. 2005) and PVeStA (AlTurki and Meseguer 2011), and it can be used to compute the
expected value of quantities of interest in different kinds of systems through a simulation-based procedure.

The expressions of interest are defined using the special-purpose MultiQuaTEx language, which
generalises (the transient fragments of) other languages such as the logics PCTL (Hansson and Jonsson
1994), CSL (Baier et al. 2003) for Markov chains, and UTSL (Younes 2005) for general discrete-event
systems. We refer to Agha et al. (2006) for examples of encodings in MultiQuaTEx of classic temporal
operators like bounded until. MultiQuaTEx expressions are estimated by MultiVeStA according to a
confidence interval (α,δ ) provided by the user. Specifically, MultiVeStA estimates the expected value of
a MultiQuaTEx query as the mean x of n samples (taken from n simulations), with n large enough (but
minimal) to guarantee that the size of the (1−α) · 100% confidence interval is bounded by δ . In other
words, with statistical confidence of (1−α) · 100%, the actual expected value x belongs to the random
interval [x− δ

2 ,x+
δ
2 ].

In the case of CARMA, quantities of interest that can be queried using MultiQuaTEx expressions can
involve the current time in the simulation, the value of a measure, or the number of times an action has
occurred. These give a user access to a rich set of queries to place on a model and provide deeper insights
than what could be gained by simulation alone.

4 ANALYSIS OF THE ROBOT SEARCH MODEL

This model provides a rich parameter space for exploration. We now illustrate results obtained from the
model using CARMA simulation and MultiVeStA statistical model checking.

The first experiment, whose results are shown in the left and central graphs of Figure 5, demonstrates
how the counts of robots in each state change over the time of the simulation. The number of robots in state
R1 starts to decrease once the casualty is found. Only one robot is ever in state R2, because the casualty
component no longer tries to communicate if it has been found. Few robots go into state R3 to communicate
the location, as this is quickly communicated to the base, after which the number of robots in state R4

increases and then decreases as they receive the return-home signal and then slowly (and randomly) find
their way home. This suggests that there are opportunities for improving the model to ensure faster return
and we discuss this further below. This experiment was conducted with the following parameters: 1.5 for
the search move rate, 10 for the non-search move rate, 15×15 city grid, 25 robots, and the average values
reported were obtained from 500 simulations.

The left and central graph in Figure 5 compare how this evolution of the system differs depending on
whether RadioRange is defined as a Von Neumann neighbourhood of size one or a Moore neighbourhood of
size one. As might be expected, the use of a Moore neighbourhood (which is larger) results in slightly faster
evolution. More noticeable is that the number of robots in state R3 differs between the two scenarios. This
state is the one in which the casualty location is broadcast with the aim of communicating this information
to the base. The larger neighbourhood results in faster communication and, hence, there are fewer robots
in this state, compared to the case of the smaller neighbourhood, which reflects a slower diffusion of
information.

The MultiVeStA experiments consider movement rates. In the first experiment, with results given on
the right in Figure 5, the time taken to find the casualty is considered for different robot swarm sizes and
different search movement rates. It can be seen that for larger swarms and high rates, the time to reach the
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Figure 5: Count of robot states: Von Neumann RadioRange (left) and Moore RadioRange (centre). Time
taken to find casualty (right).

casualty is under 20 time units, but then the time increases as the sizes and rates decrease. The data for
this experiment were obtained with the MultiVeStA query

time_to_find() = if {s.rval("CasualtyFound")>0}
then {s.rval("time")} else #time_to_find() fi;

eval E[ time_to_find() ] ;

which considers if the casualty has been found. If it has been found, it returns the current simulated time
(s.rval() queries observations on the current simulation state). If they haven’t been found, then the query
triggers the computation of a new simulation step (# is a one-step next operator), and then time to find
will be recursively evaluated in the next simulation state. For this and the following experiment, an 11×11
city grid was used together with a Von Neumann radio range. In terms of MultiVeStA parameters, α was
set at 0.1, δ was set at 10, meaning that the actual average value t for the number of time units to find
the casualty is in the interval [t −5, t +5] with statistical confidence of 90%, where t is the estimation of
t computed by MultiVeStA. Hence, for each combination of robot number and movement rate, sufficient
simulations were run to meet these constraints. The highest value for the number of simulations required
was 900, with most of the remainder taking 200 simulations (the minimum permitted was 100).

It is also possible to consider the probability of events happening within a certain time. Figure 6
presents the results of the following query which is parameterised by different deadlines. Here, 20 and 60

are the first and last parameters, and 20 specifies the increment to be used to calculate the other parameters.

time_to_report(t) = if {s.rval("LocationReported")>0}
then {1}
else if {s.rval("time")>t}

then {0} else #time_to_report({t}) fi fi;
eval parametric( E[ time_to_report(x)],x,20,20,60) ;

The experiment shows the trade-off between different search and non-search movement rates. In the case
of a 60-time-unit deadline, reporting the location to the base station is very likely to happen for any
search rate of 1 or more. Even for the lower rates, there is still more than 50% chance of meeting the
deadline. By contrast, for deadlines 20 and 40, a search rate of 0.50 cannot be paired with any non-search
rate, if there is to be a reasonable chance of reporting the casualty’s location before the deadline. In this
experiment, the number of robots was fixed at 20, and the confidence interval was set at α = 0.1 and
δ = 0.05. Hence, with statistical confidence of 90%, the actual probability of meeting the deadline p is in
the interval [p−0.025, p+0.025], with p the estimation of p computed by MultiVeStA.
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This model has been kept simple for the purpose of this tutorial; however, there are various modifications
that could be made to improve performance and enhance realism, as suggested by the following partial list:

• A repulsion mechanism could be introduced to ensure that when the robots are searching, they
move away from other robots.

• To ensure a faster return to base, an attraction mechanism could be added, but this could risk a
clump of robots gathering in the furthest corner from the base.

• The robots could be specified to be smarter and have some ability to map as they move. This could
then be used to move directly back to the base when the return-home signal is received, as well as
communicate a direct route to the casualty.

• When the robot is searching, there could be a probability that is dependent on the speed of movement
that affects whether the robot will hear the cry for help or not.

• Currently, the speed of the robot only depends on the task that the robot is undertaking. However,
it is possible to have different speeds depending on the conditions of each street, with some streets
blocked. This could be paired with mapping, and part of this task would be to report back the
easiest route to the casualty.

5 CONCLUSIONS

In this advanced tutorial, we have shown how CARMA and its toolset can be used for the quantitative analysis of
collective adaptive systems. CARMA, Collective Adaptive Resource-sharing Markovian Agents (Bortolussi
et al. 2015; Loreti and Hillston 2016), is a modeling language based on stochastic process-algebra developed
within the EU-funded QUANTICOL project.

We have used CARMA to model a scenario where robots move across city streets searching for casualties
after a disaster. To illustrate the features of the CARMA toolset, statistical analysis of the provided model
has been performed by using a Command Line Inteface and MultiVeStA (Sebastio and Vandin 2013).

ACKNOWLEDGEMENTS

This work is supported by the EU project QUANTICOL, 600708 and the EPSRC Platform Grant
EP/N014758/1.

REFERENCES

Abd Alrahman, Y., R. De Nicola, and M. Loreti. 2016. “On the Power of Attribute-Based Communication”.
In Proceedings of FORTE 2016, edited by E. Albert and I. Lanese, LNCS 9688, 1–18. Cham: Springer.



Galpin, Georgoulas, Loreti, and Vandin

Agha, G., and K. Palmskog. 2018. “A Survey of Statistical Model Checking”. ACM Transactions on
Modeling and Computer Simulation 28:6:1–6:39.

Agha, G. A., J. Meseguer, and K. Sen. 2006. “PMaude: Rewrite-based Specification Language for Proba-
bilistic Object Systems”. Electronic Notes in Theoretical Computer Science 153(2):213–239.

AlTurki, M., and J. Meseguer. 2011. “PVeStA: A Parallel Statistical Model Checking and Quantitative
Analysis Tool”. In Proceedings of CALCO 2011, edited by A. Corradini et al., LNCS 6859, 386–392.
Cham: Springer.

Baier, C., B. Haverkort, H. Hermanns, and J.-P. Katoen. 2003. “Model-checking Algorithms for Continuous-
time Markov Chains”. IEEE TSE 29(6):524–541.

Belzner, L., R. De Nicola, A. Vandin, and M. Wirsing. 2014. “Reasoning (on) Service Component Ensembles
in Rewriting Logic”. In Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi,
edited by S. Iida et al., LNCS 8373, 188–211. Cham: Springer.

Bernardo, M., and R. Gorrieri. 1998. “A Tutorial on EMPA: A Theory of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and Time”. Theoretical Computer Science 202(1-2):1–54.

Bortolussi, L., R. De Nicola, V. Galpin, S. Gilmore, J. Hillston, D. Latella, M. Loreti, and M. Massink.
2015. “CARMA: Collective Adaptive Resource-sharing Markovian Agents”. In Proceedings of QAPL
2015, London, UK, 11-12 April 2015, edited by N. Bertrand and M. Tribastone, EPTCS 194, 16–31.

Bortolussi, L., and A. Policriti. 2010. “Hybrid Dynamics of Stochastic Programs”. Theoretical Computer
Science 411(20):2052–2077.

Cardelli, L., and A. Gordon. 2000. “Mobile Ambients”. Theoretical Computer Science 240:177–213.
Chen, W., Y. Lin, V. Galpin, V. Nigam, M. Lee, and D. Aspinall. 2018. “Formal Analysis of Sneak-Peek:

A Data Centre Attack and its Mitigations”. In Proceedings of IFIP SEC 2018, to appear.
Ciancia, V., D. Latella, M. Massink, R. Paskauskas, and A. Vandin. 2016. “A Tool-Chain for Statistical

Spatio-Temporal Model Checking of Bike Sharing Systems”. In Proceedings of ISoLA 2016, edited by
T. Margaria and B. Steffen, LNCS 9952, 657–673. Cham: Springer.

De Nicola, R., M. Loreti, R. Pugliese, and F. Tiezzi. 2014. “A Formal Approach to Autonomic Systems
Programming: The SCEL Language”. ACM TAAS 9(2):7.

Feng, C., and J. Hillston. 2014. “PALOMA: A Process Algebra for Located Markovian Agents”. In
Proceedings of QEST 2014, edited by G. Norman and W. H. Sanders, LNCS 8657, 265–280. Cham:
Springer.

Galpin, V. 2016. “Modelling Ambulance Deployment with CARMA”. In Proceedings of COORDINATION
2016, edited by A. Lluch-Lafuente and J. Proença, LNCS 9686, 121–137. Cham: Springer.

Galpin, V., N. Zon, P. Wilsdorf, and S. Gilmore. 2018. “Mesoscopic Modelling of Pedestrian Movement
Using CARMA and Its Tools”. ACM TOMACS 28:11:1–11:26.

Gilmore, S., D. Reijsbergen, and A. Vandin. 2017. “Transient and Steady-State Statistical Analysis for
Discrete Event Simulators”. In Proceedings of IFM 2017, edited by N. Polikarpova and S. Schneider,
LNCS 10510, 145–160. Cham: Springer.

Gilmore, S., M. Tribastone, and A. Vandin. 2014. “An Analysis Pathway for the Quantitative Evaluation
of Public Transport Systems”. In Proceedings of IFM 2014, edited by E. Albert and E. Sekerinski,
LNCS 8739, 71–86. Cham: Springer.

Haas, Z., J. Halpern, and L. Li. 2002. “Gossip-based Ad Hoc Routing”. In Proceedings of IEEE INFOCOM
2002, 1707–1716. Piscataway, New Jersey: IEEE.

Hansson, H., and B. Jonsson. 1994. “A Logic for Reasoning about Time and Reliability”. Formal Aspects
of Computing 6(5):512–535.

Hermanns, H., U. Herzog, and J. Katoen. 2002. “Process Algebra for Performance Evaluation”. Theoretical
Computer Science 274(1-2):43–87.

Hillston, J. 1995. A Compositional Approach to Performance Modelling. Cambridge: CUP.
Hillston, J., and M. Loreti. 2015. “Specification and Analysis of Open-Ended Systems with CARMA”. In

Proceedings of E4MAS 2014, edited by D. Weyns and F. Michel, LNCS 9068, 95–116. Cham: Springer.



Galpin, Georgoulas, Loreti, and Vandin

John, M., C. Lhoussaine, J. Niehren, and A. Uhrmacher. 2008. “The Attributed Pi Calculus”. In Proceedings
of CMSB 2008, edited by M. Heiner and A. M. Uhrmacher, LNCS 5307, 83–102. Cham: Springer.

Loreti, M., and J. Hillston. 2016. “Modelling and Analysis of Collective Adaptive Systems with CARMA
and its Tools”. In SFM 2016, edited by M. Bernardo et al., LNCS 9700, 83–119. Cham: Springer.

Parvu, O., D. Gilbert, M. Heiner, F. Liu, N. Saunders, and S. Shaw. 2015. “Spatial-Temporal Modelling
and Analysis of Bacterial Colonies with Phase Variable Genes”. ACM Transaction on Modeling and
Computer Simulation 25:13:1–13:25.

Pianini, D., S. Sebastio, and A. Vandin. 2014. “Distributed Statistical Analysis of Complex Systems Modeled
Through a Chemical Metaphor”. In Proceedings of HPCS 2014, 416–423. Piscataway, New Jersey:
IEEE.

Priami, C. 1995. “Stochastic π-calculus”. The Computer Journal 38(7):578–589.
Reinhardt, O., and A. Uhrmacher. 2017. “An Efficient Simulation Algorithm for Continuous-time Agent-

based Linked Lives Models”. In Proceedings of the 50th Annual Simulation Symposium, edited by
S. Jafer et al., 9:1–9:12. New York: Society for Computer Simulation International/ACM.

Sebastio, S., and A. Vandin. 2013. “MultiVeStA: Statistical Model Checking for Discrete Event Simulators”.
In Proceedings of ValueTools 2013, edited by A. Horvath et al., 310–315. New York: ICST/ACM.

Sen, K., M. Viswanathan, and G. Agha. 2005, Sept. “VESTA: A Statistical Model-checker and Analyzer
for Probabilistic Systems”. In Proceedings of QEST’05, 251–252. Piscataway, New Jersey: IEEE.

ter Beek, M. H., A. Legay, A. Lluch-Lafuente, and A. Vandin. 2015. “Statistical Analysis of Probabilistic
Models of Software Product Lines with Quantitative Constraints”. In Proceeding of SPLC 2015, edited
by D. C. Schmidt, 11–15. New York: ACM.

ter Beek, M. H., A. Legay, A. Lluch Lafuente, and A. Vandin. 2018. “A Framework for Quantitative Modeling
and Analysis of Highly (Re)configurable Systems”. IEEE Transactions in Software Engineering. to
appear.

Younes, H. L. 2005. “Probabilistic Verification for black-box Systems”. In Proceedings of CAV 2005, edited
by K. Etessami and S. K. Rajamani, LNCS 3576, 253–265. Cham: Springer.
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