

Edinburgh Research Explorer

A Modular Approach to Performance, Portability and Productivity
for 3D Wave Models

Citation for published version:
Stoltzfus, L, Dubach, C, Steuwer, M, Gray, A & Bilbao, S 2017, 'A Modular Approach to Performance,
Portability and Productivity for 3D Wave Models', Paper presented at Seventh International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance Computing, Denver, United
States, 17/11/17 - 17/11/17.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://www.research.ed.ac.uk/en/publications/500bc44f-3dc0-4f26-87fb-8d340755c4d0

A Modular Approach to Performance, Portability and
Productivity for 3D Wave Models

WOLFHPC Workshop

Larisa Stoltzfus
School of Informatics

University of Edinburgh
larisa.stoltzfus@ed.ac.uk

Christophe Dubach
School of Informatics

University of Edinburgh

Michel Steuwer
School of Computing Science

University of Glasgow

Alan Gray
Edinburgh Parallel Computing Centre

Stefan Bilbao
School of Music

University of Edinburgh

ABSTRACT

The HPC hardware landscape is growing increasingly complex
in order to meet demands in scientific computing for greater per-
formance. In recent years there has been an explosion of parallel
devices coming on to the scene: GPUs, Xeon Phis and FPGAs to
name but a few examples. As of writing, even the current lead-
ing supercomputer, Sunway TianhuLight, uses its own bespoke
on-chip accelerators[12]. Available programming models, however,
lag behind and are not currently able to provide the necessary
tools for running scientific codes across platforms in ways that are
performant, portable and productive.

This environment creates a plethora of challenges for computa-
tional scientists of which we focus on two: first the need for a high
level of productivity for codes that still get good performance and
second consistently getting good performance across platforms -
the “performance portability” problem. Existing solutions tend to
be either not productive but provide good performance or focus
on high-level abstractions requiring heuristics to get good perfor-
mance (often which are tied to particular platforms). While some
current approaches raise the productivity level, they are often try-
ing to solve the same problems over and over or trying to solve
too many issues for a niche domain. In addition, many of these
approaches have only been tested on simplistic benchmarks, which
can lose critical functionality of real-world simulation codes. We
instead propose a modular approach using existing frameworks to
target these issues separately: a high-level DSL to target the pro-
ductivity problem compiling into an IR language which addresses
the performance portability problem.

Our previous research has shown that the development of more
productive and performance portable codes for room acoustics
simulations is possible. Preliminary results using the intermediary
parallel language lift[16] confirm that this framework is capable
of handling complex stencils. Further developing lift and targeting
existing stencil-focused DSLs will create a simple, modularized ap-
proach which harnesses and expands existing functionality instead
of trying to reinvent the wheel. This modular approach can then be
used as an example to extend to other physical simulations using
similar algorithms.

WOLFHPC, November 2017, Denver, USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS

Code generation, heterogenous computing, DSLs, stencils
ACM Reference Format:

Larisa Stoltzfus, Christophe Dubach, Michel Steuwer, Alan Gray, and Stefan
Bilbao. 2017. A Modular Approach to Performance, Portability and Pro-
ductivity for 3D Wave Models. In Proceedings of WOLFHPC, Denver, USA,
November 2017, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Computer simulations are a critically important tool in scientific
fields that bridge theory with reality. Many of these simulations -
such as 3D wave-based models like room acoustics[23] or ground
penetrating radar[7] - are complicated to model and even more
difficult to abstract about. The difficulty in writing abstractions
for these algorithms stems from absorbing boundary conditions,
multiple timesteps and varying sized stencils used in the models.
However, such simulations are integral to predicting the properties
and behavior of the physical world around us. As such, the ability to
program these simulations in a productive way which can perform
well across the increasing range of HPC architectures is of growing
importance.

Computing systems have moved towards parallel (as well as
heterogeneous) architectures as greater performance can no longer
be achieved through a single core. The types of architectures avail-
able are changing and increasing in numbers to meet demands for
performance for scientific codes which have traditionally been run
on CPUs. It is therefore crucial to accommodate portability across
both traditional and emerging platforms in order to avoid having to
rewrite codes as new platforms emerge. Currently, many scientific
groups utilize multiple code bases, which is error-prone and time-
consuming to maintain. Computational scientists should be able
to focus on their own research and not require HPC expertise for
re-tuning and rewriting when newer, more performant platforms
emerge. Furthermore, even where codes can be ported from one
architecture to another, there is often no guarantee they will retain
the same performance level on the new platform.

This paper proposes a novel, modular approach to tackling these
issues of performance, portability and productivity for wave sim-
ulation models by adapting and connecting existing high-level
frameworks. Our application area of interest is 3D wave models

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WOLFHPC, November 2017, Denver, USA Larisa Stoltzfus et. al

with absorbing boundary conditions. Our approach is two-fold:
extend an existing stencil DSL with a high level of productivity to
compile into the lift language and then enable the lift language to
accommodate more complex stencils (for 3D wave models) to create
performance portable, hardware-agnostic code. The lift language
acts as an “assembly language of HPC,” which can be used for a
variety of applications including stencils. It is a pattern-based lan-
guage and compiler addressing the performance portability problem
through automatic exploration of optimizations of rewrite rules[16].
We propose to further develop this language to enable computation
and optimization for stencils from 3D wave models. We will then
extend a productive top-level DSL to compile into Lift, which can
then use Lift’s composability and rewrite rules to compile simu-
lations down into performant and portable code. This will create
a modular workflow that will enable performance, portability and
productivity for 3D wave models which could serve as a template
for other types of algorithms.

A large number of high-level parallel methodologies currently
exist which focus on stencil applications, however none provide all
three of performance, portability and productivity. The strengths
and weaknesses of these approaches will be discussed further in
Section 2. Then, some background about 3D wave models and previ-
ous related work is discussed in Section 3. The results in this section
provide baselines (as well as motivation) for our current work with
lift. Next, the lift intermediary language which addresses the
performance portability challenge is introduced in Section 4. Cur-
rent and ongoing work is discussed at length in Section 5. Future
work involving the lift framework is covered in Section 6. Finally,
the paper concludes in Section 7.

2 PERFORMANCE AND PRODUCTIVITY IN

EXISTING APPROACHES FOR STENCIL

COMPUTATIONS

There are currently a wide range of potential frameworks and
tools available that aim to provide higher levels of productivity,
portability, performance and combinations therein which could
accommodate stencil computations like 3D wave models. At the
low-level end (or libraries and tools that are much closer to machine
level) there exist a number of libraries or language enhancements.
However, these low-level solutions do not provide productivity,
so we will focus on high level solutions because this characteris-
tic is crucial. Higher-level abstraction solutions include skeleton
frameworks, code generators, DSLs and others. These high-level
approaches focus more on distinct layers of abstraction that are
far removed from the original codes and which generally aim to
support a higher level of productivity for the programmer. Many
of these higher level approaches even focus in particular on stencil
applications (ie. Halide[15], Pochoir[22] and Exastencils[11]).

2.1 Algorithmic Skeletons

Skeleton frameworks are a large subgroup of abstraction solutions
developed for enhancing productivity. These skeletons focus on
the idea that many parallel algorithms can be broken down into
pre-defined building blocks[4]. Thus, an existing code could be em-
bedded into a skeleton framework that already has an abstraction

and API built for that algorithm type, such as a stencil. These frame-
works then simplify the process of writing complex parallel code
(like OpenCL) by providing an interface which masks the low-level
syntax and boilerplate. A number of these skeleton frameworks
have been developed, many of which are intended for grid-based
applications, however few have been tested on larger simulation
models. Additionally, many of them lack 3D functionality, such as
Skepu[6] and SkelCL[17] which only support 1D and 2D stencils.
Some of the libraries also only target particular architectures - for
example PSkel, which does support 3D stencils, but only ports to
NVIDIA GPUs[14].

2.2 Code Generators

Code generators translate or compile source code from one lan-
guage into another. They are a promising area in this field of re-
search given that their modularity allows for flexibility between
languages and platforms. Petabricks is an example of a code gener-
ator, which is actually a language and a compiler capable of auto-
tuning over multiple pre-existing implementations of algorithms
to tailor to a specific hardware[1]. Kokkos and SYCL are two other
code generators that are gaining popularity, which compile down
to CUDA and OpenCL respectively, and are tailored more towards
general use and ease of programmability[5, 10]. Kokkos also has a
sophisticated memory mapping pattern for optimizing codes. SYCL
focuses more on bringing a simplified interface to OpenCL in C++.
None of these offer stencil-specific support for improving produc-
tivity, however, and they both miss out on automatic performance
portability. There is however, one code generation framework with
a similar approach to lift: Delite[21] also utilizes the concept of
“parallel patterns,” however still relies on hard-coded optimizations.

2.3 Domain Specific Languages

There are a large number of DSLs available, many of these focus-
ing on stencils including: Exastencils, Halide, Pochoir and others.
However, none of these support stencils with absorbing boundary
conditions nor do they achieve full performance portability without
heuristics. Exastencils is a DSL developed at the University of Passau
that aims to create a layered framework that uses domain specific
optimizations to build performant portable stencil applications[11].
Halide is another functional DSL with auto-tuning that specializes
in abstracting stencils by separating algorithm from execution[15].
Exastencils aims for performance portability, however its approach
is through the use of a tree of heuristics. Halide focuses primarily
on image processing stencils, which have less in common with
3D wave models. Pochoir is limited to particular hardware. Ideally
these DSLs could focus on abstraction, while another level of code
addresses the performance portability problem.

2.4 Limitations of Current Approaches

While these high-level frameworks take fairly different approaches,
none are without problems. Skeletons enable ease of programma-
bility and portability, but they alone are not enough to produce
performance-portable codewithout heuristics, especially as they are
often tied to a particular framework or architecture. A framework
that remains de-coupled from specific implementations would avoid
this problem. For the higher-level code generation frameworks,

A Modular Approach to Performance, Portability and Productivity for 3D Wave Models WOLFHPC, November 2017, Denver, USA

performance results look promising in comparison to hand-tuned
optimizations, though generally only small benchmarks have been
tested or broad domains focused on. Some of the stencil-specific
frameworks (like Halide) also focus mainly on images, simple sten-
cils or other non-HPC specific domains. The main focus of DSLs
also tends to be on productivity, which means that performance and
portability often lags behind or codes are only performant for par-
ticular architectures. These limitations mean that there currently
are no solutions that have been shown to give 3D wave model
simulations good performance, portability and productivity.

3 ROOM ACOUSTICS AND OTHER 3DWAVE

MODELS

3D wave-based simulations are an important tool in physics for
modeling the evolution of waves through space and time of various
mediums. Room acoustics simulations are an example of such a
simulation and simplified benchmarks of this type of simulation
have been studied previously in more depth[20]. Performance and
bandwidth were compared across different implementations, as
well as different data abstractions of the same implementation us-
ing a bespoke framework. This framework, called abstractCL was
developed for room acoustic simulations to test out different op-
timizations and data abstractions without rewriting the code. It
shows that productivity can be lifted for room codes, while re-
taining performance across different hardware. The results of this
research provide baseline comparison points for later work with
the lift framework. As well as this, the development of this niche
framework motivates the need for a completely different type of
approach than just writing a library to work with room codes.

3.1 Overview

The finite difference time domain method (FDTD) is a widely used
numerical approach for modelling of the 3D wave equation[3],
which is shown in Equation 1.

∂2Ψ

∂t2
= c2∇2Ψ (1)

Space is discritised into a three-dimensional grid of points, with
data values resident at each point representing the acoustic field at
that point. The state of the system evolves through time-stepping:
values at each point are repeatedly updated using “finite differences”
of values in the neighborhood of that point. This algorithm (also
known as a stencil) updates points as determined by the choice
of discretisation scheme for the partial differential operators in
the wave equation [2]. This approach can be computationally ex-
pensive, however parallelization techniques have shown great im-
provements in performance. Though there has been progress in the
development of techniques to exploit modern parallel hardware,
much of it is low-level or tied to specific platforms. Ideally, scientific
models should be able to run in a portable manner across different
architectures while retaining performance and being straightfor-
ward to program.

Room acoustics simulations were developed to model sound
waves in an enclosed three dimensional space. These simulations
use first physical principals to represent the properties of sound as
it moves through space and time. “Room codes” use grids as data

types that update values via the commonly used nearest-neighbors
technique. The output of these simulations can provide composers
or architects the ability to hear what a composition or noise would
sound like in a space without actually being there or even hav-
ing built it. However, there are many other types of wave-based
simulations, such as ground penetrating radar or lattice boltzman,
which use similar techniques for more accurate modeling. Thus,
the results found here specifically for room acoustics codes could
readily be applied to other, similar wave based models.

3.2 Previous Work

Our previous research has shown that it is possible to develop
more productive simulation codes such as room acoustics, while
still achieving high performance across platforms. A study was
done across various architectures with a number of different imple-
mentations of the same room acoustics benchmark using different
programming models to determine limiting factors and behavior.
Memory bandwidth was shown to be the limiting factor for this
benchmark as can be seen that it runs fastest on the platform with
the highest memory bandwidth (AMD R9 295X2). In addition, a
more productive, bespoke framework was developed to test out
different data layouts and optimizations without rewriting the code.

3.2.1 Performance Comparison. Four implementations of the
same room acoustics benchmark (CUDA, OpenCL, abstractCL and
targetDP) were run on six platforms (Intel Xeon CPU, Xeon Phi
Knights Corner, NVIDIA K20, NVIDIA GTX 780, AMD R280 and
AMD R9 259X2). Obviously not all versions were able to run on
all platforms - CUDA and targetDP - are limited to NVIDIA plat-
form GPUs. All other versions utilize OpenCL which can run on
all selected platforms. targetDP is a low-level library for running
simulation codes on NVIDIA GPUs, CPUs or Xeon Phis without
rewriting the codes[8]. abstractCL is the developed framework tied
to room acoustics simulations that we built using C++ macros and
OpenCL to allow simplified swapping in and out of data layouts
and optimizations[20]. Specifications for the various platforms can
be seen in Table 1.

Performance results of the runs of the four different versions
can be seen in Figure 1. The various colors indicate how much time
was spent in which part of the code: red for the time in the room
update kernel, orange for the time spent in aggregating values at
the receiver point kernel, green for the time spent copying data
around and blue for all other miscellaneous time. The graph is split
up into six sections, one for each of the platforms run on, which is
indicated at the top of each section of the graph. Then, the bars in
each section show the performance of the version of the code that
has produced the result. Performance was generally comparable
on all GPU platforms and more widely pronounced on the Xeon
Phi and CPU (though getting reproducible results on the Xeon
Phi proved to be tricky). However performance across platforms
differed tremendously, up to 40-50% between GPUs.

In addition to comparisons of the original benchmark, compar-
isons were done with an optimized version of the room acoustics
code. More about the 2.5D tiling optimization used in this version
can be found in Section 5.2. These comparisons involved the use of
local and image memory and through the use of abstractCL, this
could be swapped in and out easily without having to rewrite the

WOLFHPC, November 2017, Denver, USA Larisa Stoltzfus et. al

Platform Number of Cores/ Peak Bandwidth (GB/s) Peak GFlops Memory (MB)

Stream Processor (Double Precision)
NVIDIA K20 2496 208 1175 5120

NVIDIA GTX 780 2304 288.4 165.7 3072
AMD R280 2048 288 870 3072

AMD R9 259X2 2816 320 716.67 4096
Xeon Phi 5110P 60 320 1011 8000

Intel Xeon E5-2670 32 51.2 166.4 126000

Table 1: Platform Specification Table. This table shows the

specifications of the various platforms used in previous

work on comparing versions of a room acoustics simulation.

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi Intel Xeon E5

0

200

400

ab
st

ra
ct

C
L

O
pe

nC
L

ab
st

ra
ct

C
L

O
pe

nC
L

ab
st

ra
ct

C
L

C
U

D
A

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

C
U

D
A

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

O
pe

nC
L

ta
rg

et
D

P

Code Version [Platform]

T
im

e(
s)

Kernel1
Data Copy Total
Kernel2
Other Time

Figure 1: Performance timings for simple room acoustics

benchmark implementations across various platforms us-

ing room sizes of 512x512x404 grid points.

whole benchmark. Results of adding these optimizations can be
seen in Figure 2, where the blue graphs show more optimal mem-
ory usage than the original version shown in green which led to
performance increases of up to 15%.

AMD R9 295X2 NVIDIA K20

0

30

60

90

120

ab
st

ra
ct

C
L

op
en

cl

ab
st

ra
ct

C
L

cu
da

op
en

cl

Code Version [Platform]

T
im

e(
s)

sharedtex
shared
none

Figure 2: Local memory optimizations for CUDA, OpenCL

and abstractCL versions of the room acoustics benchmarks

run for room sizes of 512x512x404 grid points.

3.2.2 abstractCL. A new framework, abstractCL, was created as
a more productive solution for generating room simulation kernels
on-the-fly, depending on the type of run a user wants to do. The
type of variations can be between different data layouts of the grid
passed in to represent the room, hardware-specific optimizations
or both. This is done through flags which swap in and out rele-
vant files that include overloaded functions and definitions in the
main algorithm itself. Certain functions must always be defined as
dictated by a parent class. Those functions’ implementations can
be pulled in from different sources and concatenated together to
create the simulation kernel before compilation. The data abstrac-
tions and optimizations investigated for this project include: thread
configuration settings, memory layouts and memory optimizations.
Algorithmic changes can be introduced by adding new classes to
the current template for more complicated codes.

This framework runs similarly to the other benchmark versions,
apart from that the kernel is created before the code is run (which
creates some initial overhead). It was developed in C++ (due its
built-in functionality for classes, templates, inheritance and strings)
as well as OpenCL. However, as shown in Figure 1, the framework
produces code that is on par with hand-tuned OpenCL codes. How-
ever it raises the level of productivity, which in previous work we
have shown comparisons of to other versions using LOC (lines of
code), where abstractCL has significantly fewer[19].

Optimizations must be tuned manually for each architecture,
which is a limitation in its performance portability. Another limita-
tion of this framework is that while it could be extended to other
types of models, it is currently only designed for room acoustic
simulations. Additionally, it is still relatively low-level compared
to other DSLs. Finally, though it can provide some level of perfor-
mance portability, this is done through hard-coded optimizations.
Our goal is to improve upon all of these issues with our modularized
approach using the lift language.

4 A MODULAR APPROACH USING THE LIFT

LANGUAGE

In the next section, we discuss our modular approach aimed at
achieving productivity, performance and portability automatically
using the lift language. However, lift is more than just a language:
it is also a framework. The language provides the algorithmic prim-
itives to compose algorithms in and the framework handles the
language compilation, rewrite rule search space and low-level code
optimization. Its goal is to target a multitude of application domains,
not just stencils, so the bespoke language used in the framework
is rich in functionality. To better understand this process, we step
through a simplified example of a room acoustic simulation written
in lift.

4.1 Our Vision

Instead of writing yet another stencil library or DSL to address
the shortcomings of current solutions, this project aims to take
advantage of what is available already and create a modularized
approach to HPC 3D wave model development using existing DSLs
and the Lift framework. In an ideal world, DSLs would use a com-
mon compiler, so that the writers of these languages could focus on
the needs of their specific domain in the abstraction layer instead of

A Modular Approach to Performance, Portability and Productivity for 3D Wave Models WOLFHPC, November 2017, Denver, USA

also having to manage hardware-specific low-level optimizations.
This is where the lift language provides great leverage. lift is
designed to be used as an intermediate layer targeted by DSLs to
handle the low-level implementation details and relevant optimiza-
tions. Unlike many existing approaches, the lift language and its
corresponding compiler are designed to address the performance
portability challenge as a first priority. Because of its modular de-
sign using a suite of composable algorithmic primitives, lift can
be used to target a host of different applications. This also means
that lift is hardware-agnostic and can readily be adopted to future
platforms.

4.2 Lift Overview

The lift language has been developed in Scala as a modular so-
lution to the performance portability problem[16, 18]. The idea is
that by separating HPC programming into separate levels of ab-
straction, then each level can be restricted to its particular purpose.
An overview of this process can be seen in Figure 3. At the top level
(“high level abstractions”) a DSL would compile into the lift lan-
guage which is comprised of a suite of algorithmic primitives (such
as map, reduce, zip, etc). This may require a version of an API to be
developed in lift to connect these layers more fluidly. Different ver-
sions of an algorithm composed using these primitives (as well as
more low level language specific ones) can then be explored using
rewrite rules, which explore different optimization options. These
versions can then be run on different platforms to determine the
best-performing version for a different platform and this is done by
generating OpenCL kernels from the different rewrite rule versions.
The only backend that lift currently supports is OpenCL, which
provides portability to a number of different hardware platforms.

The lift language provides three key functionalities: (1) func-
tional, reusable high-level primitives (2) rewrite rules describing
exchangeable relationships between compositions of primitives
and (3) a code generating search space which determines the best
version of a kernel to run on a particular platform. At the higher
level, the language is composed of “reusable primitives,” written
in a functional style. Algorithms for a wide variety of applications
(including stencils) can be rewritten as compositions of these prim-
itives. “Rewrite rules” describe a variety of transformations of a
given algorithm decomposition, which are formalized and proven
not to change a program’s semantics. While the only backend lift
supports so far is OpenCL, the modular design of the language
makes it easily extensible to other parallel programming frame-
works. One limitation of lift is that it is not productive on its own,
however we see this as a feature meaning the language can focus
on producing portable and performant code for a wide range of
applications without having to provide a high-level interface to
program them in.

4.3 Working Example: Room Acoustics

Simulation in Lift

In order to better explain how lift works, we step through a sim-
plified example of a room acoustics simulation benchmark. This
algorithm can be seen in Listing 1. This simulationwas developed by
HPC physicists [23] and models the behavior of a sound wave as it
propagates from a source to a receiver in an enclosed 3-dimensional

high level abstractions

rewrite rule exploration

hardware optimized OpenCL

algorithmic primitives

map zip join

code generation

Figure 3: Overview of the Lift Framework

space (the updates at the receiver end are done in another less com-
putationally intensive kernel not shown here). Where the sound
encounters a physical boundary (in this example, the walls are only
the boundaries of the grid), the coefficients used in calculating the
physical properties of the sound wave are adjusted according to
the reflection. Sound waves are discritised in space as well as time,
but only spatial discretisation is parallelizable, which is shown in
this example.

Multiple Grid Inputs The two inputs used in this benchmark
(дridt−1 and дridt on lines 1- 2) are the same size and indicate pre-
vious and current time steps in order to update the state of the room
across time (and which get swapped on each iteration). This type
of inputs is often found in real world physical simulations, which
span three dimensions for physical space and one for time. These
grids are zipped together as one input to the algorithm along with
an on-the-fly array which calculates the number of neighbors for a
given point based on a provided function (computeNumNeighbors).
This last grid serves as a mask for the boundaries. The first grid
is taken point-by-point, however the second grid uses slide3D to
calculate 27-point neighborhoods around the point of interest in
order to retain neighboring points for the stencil. In this 3D case,
slide returns a cube of values each one point away from the original
value resulting in the 27 points. The number of neighborhoods
correctly matches up to the size of the дridt input array as the
дridt−1 input is padded using the pad3D primitive first so that no
out of bounds accesses occur. These inputs are then zipped together
with their number of neighbors (same for each grid) resulting in a
tuple of: {valuet−1, neighborhoodt , numNeighbors} as seen on
lines 14- 17. The resulting output of the next timestep of the room
state is calculated using parts of all three elements of this tuple.

Calculating the Stencil For the neighborhood part of the amal-
gamated input, the at primitive (expressed with []) makes it easy to
calculate a more complicated stencil as can be seen on lines 5- 7. The
result can then be combined with the other inputs in an equation

WOLFHPC, November 2017, Denver, USA Larisa Stoltzfus et. al

1 acousticStencil(gridt−1:[[[float]m]n]o ,
2 gridt :[[[float]m]n]o) {
3 map3D(m -> {
4 val valueGridt = m.0
5 val sumGridt−1 =
6 m.1[0][1][1] + m.1[1][0][1] + m.1[1][1][0] +
7 m.1[1][1][2] + m.1[1][2][1] + m.1[2][1][1]
8 val numNeighbor = m.2
9 return getCF(m.2, CSTloss1 , 1.0f) * ((2.0f -
10 CSTl2 * numNeighbor) * m.1[1][1][1] +
11 CSTl2 * sumGridt−1 - getCF(m.2,
12 CSTloss2 , 1.0f) * valueGridt)
13 },
14 zip3D(gridt ,
15 slide3D(3, 1,
16 pad3D(1,1,1,zero ,gridt−1)),
17 boundaryGrid(m,n,o,computeNumNeighbors))

)
18 }

Listing 1: Room acoustic simulation as expressed in the

LIFT language

to model the sound (lines 9–12). In this case, 27 points are passed in
for the neighborhood of points one value away in any 3D direction
and any of these points could be pulled out in any shape. In this
instance, only 7 points are used for the equation to calculate the
stencil: values to the left, right, up, down, top and bottom.

Boundary Handling One of the most difficult problems for
wave-based simulations is accurate physical boundary handling,
which can involve the use of states to retain memory. This sim-
plified version uses state-free boundary conditions, which involve
variable coefficients, however the same ideas could be applied to
more complicated state conditions. The variable coefficients (also
known as “loss” at the boundary, in the physical sense) are handled
through the use of a mask, which returns a different value depend-
ing on whether it is on a boundary or not. The mask is calculated
on the fly as an input using the boundaryGrid generator function
and contains a value at each point in the grid of the number of
available neighbors for a point (ranging from 3 at a corner to 6 on
the insides). The coefficients are then calculated using the getCF
function as can be seen on line 9. For those values which are on
the border (i.e., numNeighbors < 6), a lossy coefficient is used in the
equation (CSTloss1 or CSTloss2). The overall computation is based
on a discretized version of the 3D wave equation to simulate the
energy at different points in the room.

5 3D WAVE MODEL DEVELOPMENT USING

THE LIFT FRAMEWORK

Our current work focuses on enhancing lift to accommodate room
acoustics stencils. These codes now run with comparable results
to the original hand-written versions (those shown in Section 3).
Several additions to the language have been made to obtain these
results. Performance still lags behind optimized versions, however,
so 2.5D-tiling (which was used in versions of the original bench-
mark) and other optimizations are being investigated as additions
to the language as well.

5.1 Updating Lift to Accommodate Complex

3D Stencils

Preliminary results have shown that Lift is capable of expressing
stencils of varying types and sizes[9]. In particular, simplified room
acoustics simulations have been thoroughly investigated in the
framework and a number of other 2D and 3D stencil benchmarks
have also been implemented. Additionally, ground penetrating radar
algorithms are also being implemented in the language as they have
similar wave behavior to room acoustics. Though both simulations
are modeled using the 3Dwave equation and have absorbing bound-
ary conditions, GPR codes require modeling both the electric and
magnetic fields interacting with each other.

Performance values for various versions of room acoustics im-
plementations can be seen in Figure 4. The two bars furthest to the
right on each of the platforms show the original room acoustics
codes written in C and OpenCL. The black line across the graph
indicates the level of the unoptimized original benchmark. The
three bars on the left are versions of the lift implementations with
optimization additions. As can be seen, these have dramatically
improved the implementation, but have not yet completely closed
the performance gap of the optimized version of the original code.

AMD R280 NVIDIA GTX780

0.000

0.005

0.010

0.015

0.020

0.025
un

op
tim

is
ed

 li
ft

se
le

ct
 o

pt
im

is
ed

se
le

ct
 a

nd
 b

ou
nd

ar
y

O
pe

nC
L

or
ig

in
al

O
pe

nC
L

op
tim

is
ed

un
op

tim
is

ed
 li

ft

se
le

ct
 o

pt
im

is
ed

se
le

ct
 a

nd
 b

ou
nd

ar
y

O
pe

nC
L

or
ig

in
al

O
pe

nC
L

op
tim

is
ed

Code Version [Platform]

T
im

e
(s

)

Figure 4: Comparison of optimization versions in the lift

framework implementation of room acoustic benchmark

with grid size of 512x512x404 grid points.

As shown, implementation of the room acoustic stencils involved
two stages of optimizations. These were adding a select and a bound-
ary optimization. Figure 5 shows a visual representation of this as
well as how the code differs in C versus lift. At the top left, it can
be seen that the neighborhoods produced are pulled out into the
shape of interest - in this case a 5-point 2D stencil - using select.
Previously, all nine values in memory were being accessed as that
is what the neighborhood collected by slide returns. This is shown
by the blue square blotted out by a green cross, showing that only
the green cross values are now being accessed. Additionally, masks
of the same size as input arrays were originally passed in as param-
eters in order to determine where boundaries lay. The boundary
optimization now computes these values on-the-fly, again leading

A Modular Approach to Performance, Portability and Productivity for 3D Wave Models WOLFHPC, November 2017, Denver, USA

to fewer unnecessary computations. This can be seen below left in
Figure 5, where an on-the-fly mask is now used in conjunction with
the original array instead of passing in a hard-coded mask. This
depiction shows that originally matrices of values of the room were
having to be pre-padded manually to show where the boundary
was. Now, these grids can be padded on-the-fly without passing in
extra data.

Figure 5: Visual representation of the select and boundary
optimizations in lift.

5.2 Optimizations for Rewrite Rules for

Stencils

z

thread space x

th
re

ad
 s

pa
ce

 y thread n

thread view

Figure 6: A visual representation of the 2.5D tiling optimiza-

tion for 3D stencil codes.

The performance of 3D stencils, however, still lags behind optimized
versions of the original benchmark, so current work is focusing on
developing and formalizing stencil optimizations for 3D models,
beginning with 2.5D tiling[13]. The intention is for this optimiza-
tion (and any others added) to be encoded as a rewrite rule when
it is finished. This is because it does not necessarily give better
performance for all architectures and grid sizes. Thus, as a rewrite

rule, it can be tested out for more optimal performance and be
rejected where it does not provide that.

For the 2.5D tiling optimization, previous results showed per-
formance improvements of up to 15% when using this method
with local memory on GPUs for room acoustics benchmarks[19].
Figure 2 in Section 3.2.1 shows these results. However, this opti-
mization has been used elsewhere successfully[13] - it is not just
limited to room acoustics simulations but can be used with any 3D
time-stepping stencil. This method can be described as an XY-tiling
method that iterates sequentially over the Z dimension of the room.
This means that the Z index of a grid point is held constant while
X and Y indices are calculated for a tile spanning the XY plane.
For subsequent iterations, the Z index is incremented and the next
tile is updated. Local memory is also utilized for points which are
reused across tiles. This method is shown visually in Figure 6. The
large tiles represent the L number of 2D tiles that comprise a JxKxL
sized 3D grid. The smaller internal tiles represent the smaller grid
that each thread computes over. The thread space is then divided
up into two dimensions instead of three, where the third dimension
(L) is computed over sequentially.

To add this method in lift, the optimization needs to be de-
composed into a lift language primitive that can be written in
functional ways. We have done this by implementing a mapseq
followed by a slide. Mapseq stands for “map sequential.” Whereas
normally a map can apply a function in parallel, amapseq performs
a function across a dimension sequentially. This means that the
sequential loop for the Z-dimension is formed by the mapseq and
the neighborhoods to access the stencil (and reuse memory) are
created by the slide. How these primitives work independently is
described in more detail in [18].

This work has proven challenging as many sequential algorithms
do not have a natural one-to-one mapping in functional languages.
Overcoming this has required several iterations of brainstorm, test,
throw away, repeat. While we currently have a solution available
for simple 3D (and similarly 2D and 1D) stencils such as Jacobi, im-
plementing this optimization specifically for room acoustics codes
(or similar “time-stepping” stencils) requires more work. This is
because the values in the stencil must correspond to previous values
in the previous timestep which complicates the windows created
for memory accesses. We are still working on overcoming this issue
by enabling shapes to be imprinted using this primitive, in the same
fashion as the shape optimization as explained in Section 5.1.

6 FUTUREWORK

So far only simplified versions of 3D wave models have been imple-
mented in lift. Thus, how to best abstract out absorbing boundary
conditions needs to be investigated in more detail and primitives
to accommodate these conditions need to be designed and added.
Additionally, a stencil-based DSL needs to be extended to compile
into the Lift language for use as a front end. As well as these larger
contributions, smaller issues such as targeting multiple cores or
GPUs and iterative stencils need to be explored further.

6.1 Absorbing Boundary Conditions

So far the room acoustics benchmarks used in this project have been
“state-free” or in other words using constant values at the boundary.

WOLFHPC, November 2017, Denver, USA Larisa Stoltzfus et. al

While this produces a usable model, for better accuracy states need
to be maintained at the boundary to model the absorption of waves
there. These need to be retained for all of the timesteps being
used (so two in the current benchmark, but at least three in more
advanced codes) and updated accordingly for each iteration. This
is difficult to model both because it makes the algorithm more
computationally intense, but also makes memory accesses for the
states non-contiguous.

6.2 DSL Extension

Lift is not a productive language intended for use by computational
scientists. Though it does have “high-level” primitives, these are not
intended to be programmed directly. Instead, lift is an intermediate
language: an algorithm should be programmed in a higher level DSL
that compiles into lift, which then handles the generation efficient
of hardware-optimized code. Of the DSLs investigated, Exastencils
seems the best potential fit so far for extending to 3D wave models
and compiling into lift, as it already uses a modular approach.
First it will need to be extended to handle these advanced boundary
conditions. Then, it will need to be adapted to compile into the lift
language. lift may also require a sort of API to communicate with
the DSL in a layer above. The lift language already handles the
low-level code generation. Connecting this pipeline of functionality
in a modular way allows for each layer to focus on its own part.

6.3 Updating Lift

Currently lift is missing a few integral features that would allow
for large scale simulations to run. First of all, iterative stencils are
not a natural fit to the language. This is crucial for time-stepping
models like room acoustics and ground-penetrating radar which
swap arrays of values corresponding to snapshots in time at each
iteration. Secondly, many large scale simulations require the ability
to program across multiple devices. This is not something that
lift currently supports, but would be necessary for widespread
adoption. Additionally it would be ideal for lift to accommodate
more backends. Currently, it only supports OpenCL, which while
portable to many devices is not a universal answer.

7 CONCLUSION

The goal of this project is to provide a modular, reusable work-
flow for developing performance portable and easily programmable
physical simulation models, in particular 3D wave models with ab-
sorbing boundary conditions. Developing this will largely involve
three steps: extending the lift intermediary language to support
complex 3D stencils, extending an existing stencil-focused DSL to
support these stencils as well and then adding functionality for
this DSL to compile into the lift language. In this manner, we
will combine the strengths of the optimizing code generator lift
- addressing the performance portability problem - with a stencil-
focused DSL, offering good productivity. Other types of DSLs could
then follow a similar approach, given that lift is composed of
reusable primitives intended to be used with a variety of different
applications. Ideally, this will lead by example to other opportuni-
ties for performance portable and programmable code for scientific
models targeting HPC systems.

8 ACKNOWLEDGMENTS

This work was supported in part by the EPSRC Centre for Doctoral
Training in Pervasive Parallelism, funded by the UK Engineering
and Physical Sciences Research Council (grant EP/L01503X/1) and
the University of Edinburgh.

REFERENCES

[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. 2009. PetaBricks: A Language and Compiler for
Algorithmic Choice. Vol. 44. ACM.

[2] Stefan Bilbao, Brian Hamilton, Alberto Torin, et al. 2013. Large Scale Physical
Modeling Sound Synthesis. In Stockholm Musical Acoustics Conference (SMAC).
593–600.

[3] Dick Botteldooren. 1995. Finite-Difference Time-Domain Simulation Of Low-
Frequency Room Acoustic Problems. The Journal of the Acoustical Society of
America 98, 6 (1995), 3302–3308.

[4] Murray Cole. 1989. Algorithmic Skeletons: Structured Management of Parallel
Computation. Ph.D. Dissertation. University of Edinburgh. http://homepages.inf.
ed.ac.uk/mic/Pubs/skeletonbook.ps.gz

[5] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling Manycore Performance Portability Through Polymorphic Memory
Access Patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216.

[6] Johan Enmyren and Christoph Kessler. 2010. SkePU: A Multi-Backend Skele-
ton Programming Library for Multi-GPU Systems. HLPP 2010: Proceedings
of the Fourth International Workshop on High-Level Parallel Programming
and Applications, Baltimore, Maryland. https://www.ida.liu.se/~chrke55/skepu/
SkePU-HLPP-2010.pdf

[7] Antonis Giannopoulos. 2005. Modelling Ground Penetrating Radar By GprMax.
Construction and building materials 19, 10 (2005), 755–762.

[8] Alan Gray and Kevin Stratford. 2014. targetDP: An Abstraction of Lattice Based
Parallelism with Portable Performance. In High Performance Computing and
Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014
IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE
Intl Conf on. IEEE, 312–315.

[9] Bastian Hagedorn. 2016. An Extension of a Functional Intermediate Language for
Parallelizing Stencil Computations and Its Optimizing GPU Implementation Using
OpenCL. Master’s thesis. University of Muenster. http://www.lift-project.org/
publications/2016/hagedorn16masterthesis.pdf

[10] Ronan Keryell, Ruyman Reyes, and Lee Howes. 2015. Khronos SYCL for OpenCL:
a Tutorial. In Proceedings of the 3rd International Workshop on OpenCL. ACM, 24.

[11] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig,
Harald Köstler, Ulrich Rüde, Jürgen Teich, Alexander Grebhahn, Stefan Kron-
awitter, et al. 2014. Exastencils: Advanced Stencil-Code Engineering. In European
Conference on Parallel Processing. Springer, 553–564.

[12] Timothy Prickett Morgan. 2016. China’s Triple Play for Pre-Exascale Systems.
(July 2016). Retrieved August 24, 2017 from https://www.nextplatform.com/2016/
07/11/chinas-triple-play-pre-exascale-systems/

[13] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and Pradeep
Dubey. 2010. 3.5-D Blocking Optimization For Stencil Computations On Mod-
ern CPUs And GPUs. In High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for. IEEE, 1–13.

[14] Alyson D Pereira, Luiz Ramos, and Luís FW Góes. 2015. PSkel: A Stencil Pro-
gramming Framework for CPU-GPU Systems. Concurrency and Computation:
Practice and Experience 27, 17 (2015), 4938–4953.

[15] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language And Compiler
For Optimizing Parallelism, Locality, And Recomputation In Image Processing
Pipelines. ACM SIGPLAN Notices 48, 6 (2013), 519–530.

[16] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating Performance Portable Code Using Rewrite Rules: From High-Level
Functional Expressions To High-Performance OpenCL Code. ICFP 2015 Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, Vancouver, Canada. http://homepages.inf.ed.ac.uk/slindley/papers/
array-gpu-draft-february2015.pdf

[17] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gorlatch. 2014. High-
Level Programming of Stencil Computations on Multi-GPU Systems Using the
SkelCL Library. Parallel Processing Letters 24, 3 (Sept. 2014). http://homepages.
inf.ed.ac.uk/msteuwer/papers/ppl2014.pdf

[18] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: A Func-
tional Data-Parallel IR For High-Performance GPU Code Generation. In Proceed-
ings of the 2017 International Symposium on Code Generation and Optimization.
IEEE Press, 74–85.

[19] Larisa Stoltzfus. 2016. Performance, Portability and Productivity for Room Acoustics
Codes. Master’s thesis. University of Edinburgh. http://homepages.inf.ed.ac.uk/
s1147290/papers/StoltzfusMasters.pdf

http://homepages.inf.ed.ac.uk/mic/Pubs/skeletonbook.ps.gz
http://homepages.inf.ed.ac.uk/mic/Pubs/skeletonbook.ps.gz
https://www.ida.liu.se/~chrke55/skepu/SkePU-HLPP-2010.pdf
https://www.ida.liu.se/~chrke55/skepu/SkePU-HLPP-2010.pdf
http://www.lift-project.org/publications/2016/hagedorn16masterthesis.pdf
http://www.lift-project.org/publications/2016/hagedorn16masterthesis.pdf
https://www.nextplatform.com/2016/07/11/chinas-triple-play-pre-exascale-systems/
https://www.nextplatform.com/2016/07/11/chinas-triple-play-pre-exascale-systems/
http://homepages.inf.ed.ac.uk/slindley/papers/array-gpu-draft-february2015.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/array-gpu-draft-february2015.pdf
http://homepages.inf.ed.ac.uk/msteuwer/papers/ppl2014.pdf
http://homepages.inf.ed.ac.uk/msteuwer/papers/ppl2014.pdf
http://homepages.inf.ed.ac.uk/s1147290/papers/StoltzfusMasters.pdf
http://homepages.inf.ed.ac.uk/s1147290/papers/StoltzfusMasters.pdf

A Modular Approach to Performance, Portability and Productivity for 3D Wave Models WOLFHPC, November 2017, Denver, USA

[20] Larisa Stoltzfus, Alan Gray, Christophe Dubach, and Stefan Bilbao. 2017. Per-
formance Portability for Room Acoustics Simulations . International Conference
on Digital Audio Effects (2017). http://homepages.inf.ed.ac.uk/s1147290/papers/
StoltzfusDafx.pdf

[21] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2014. Delite: A Compiler Architecture For
Performance-Oriented Embedded Domain-Specific Languages. ACM Transactions
on Embedded Computing Systems (TECS) 13, 4s (2014), 134.

[22] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk,
and Charles E Leiserson. 2011. The Pochoir Stencil Compiler. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 117–128.

[23] Craig Webb. 2014. Parallel Computation Techniques For Virtual Acoustics And
Physical Modelling Synthesis. Ph.D. Dissertation. University of Edinburgh. www.
ness-music.eu/wp-content/uploads/2014/07/CJWebb_thesis-1.pdf

http://homepages.inf.ed.ac.uk/s1147290/papers/StoltzfusDafx.pdf
http://homepages.inf.ed.ac.uk/s1147290/papers/StoltzfusDafx.pdf
www.ness-music.eu/wp-content/uploads/2014/07/CJWebb_thesis-1.pdf
www.ness-music.eu/wp-content/uploads/2014/07/CJWebb_thesis-1.pdf

	Abstract
	1 Introduction
	2 Performance and Productivity in Existing Approaches for Stencil Computations
	2.1 Algorithmic Skeletons
	2.2 Code Generators
	2.3 Domain Specific Languages
	2.4 Limitations of Current Approaches

	3 Room Acoustics and Other 3D Wave Models
	3.1 Overview
	3.2 Previous Work

	4 A Modular Approach Using the Lift Language
	4.1 Our Vision
	4.2 Lift Overview
	4.3 Working Example: Room Acoustics Simulation in Lift

	5 3D Wave Model Development Using the Lift Framework
	5.1 Updating Lift to Accommodate Complex 3D Stencils
	5.2 Optimizations for Rewrite Rules for Stencils

	6 Future Work
	6.1 Absorbing Boundary Conditions
	6.2 DSL Extension
	6.3 Updating Lift

	7 Conclusion
	8 Acknowledgments
	References

