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ABSTRACT: Focal Adhesion Kinase signaling pathway and its functions have been involved

in the development and aggressiveness of  tumor malignancy,  it   then presents a promising

cancer   therapeutic   target.  Several   reversible  FAK inhibitors  have been developed and are

being conducted in clinical trials. On the other hand, irreversible covalent inhibitors would

bring many desirable pharmacological features including high potency and increased duration

of action. Herein we report the structure­guided development of the first highly potent and

irreversible   inhibitor  of  the FAK kinase.  This  inhibitor  showed a very potent  decrease of

autophosphorylation of FAK in squamous cell carcinoma. A cocrystal structure of the FAK

kinase domain in complex with this compound revealed the inhibitor binding mode within the

ATP binding site and confirmed the covalent  linkage between the targeted Cys427 of the

protein and the inhibitor.

Focal adhesion kinase (FAK) is an ubiquitously expressed non­receptor protein tyrosine

kinase and a scaffold protein localized to focal adhesions,  which plays important  roles  in

many biological  process  including survival,  proliferation,  angiogenesis,  adhesion,  motility,

metastasis, tumor microenvironment, epithelial to mesenchymal transition (EMT) as well as

cancer stem cell renewal.1–2 FAK is also over­expressed in a variety of solid and non–solid

tumors, which make it a promising therapeutic target.3–4  In recent years, numerous clinical

trials   have   been   developed   with   small   FAK   inhibitor   molecules.5–6  The   results   of   such
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inhibitors are interesting since the decrease of tumor growth and metastasis development was

observed in some preclinical models and in cancer patients, even if some adverse events have

been revealed.7 In order to enhance the efficacy of anti­FAK cancer treatments the trials are

conducted either individually or in combination.  Recent advances in the evaluation of FAK

inhibitors   in  preclinical  and clinical  models  are very promising.7–8  Furthermore,  FAK has

recently  been  shown  to  be   localized   in   the  nucleus  and could  promote   survival   and cell

proliferation by interacting directly  with p53.9  FAK inhibition could also trigger  immune­

mediated   tumor   regression   through   the   control   of   regulatory   T­cell   (Treg)   in   the   tumor

environment.10 

The  development   of   covalent   irreversible   inhibitors   to   target   kinases  have   recently

garnered significant interest.11–12  From a therapeutic point of view, the main advantages of

irreversible   inhibitors   are   i)   an   increase   of   the   target   residence   time   to   obtain   durable

inhibition without maintaining continuous drug exposure; ii)  a better  ability to  avoid  drug

resistance by reducing the development of resistance mutations.13 Although there is only very

few  of   irreversible   tyrosine   kinase   inhibitors   used   as   therapeutic   agents   in   the   fields   of

oncology nowadays, the number of these new inhibitors is steadily increasing to enter clinical

trials.

RESULTS AND DISCUSSION

Design   of   Irreversible   Covalent   Inhibitors.   In   order   to   assess   the   feasibility   of

designing irreversible inhibitors of FAK, our strategy entailed identifying a suitable cysteine

residue within or next to the ATP binding pocket. This approach would be amenable by using

a   kinome­wide   sequence   analysis   in   connection   with   3D   structure   of   the   ATP   site.   In

particular, we noticed that FAK contains a cysteine residue in the Glycine­rich loop region

closer to the ATP site, a feature which is not observed in most of other human kinases (Figure

1A).  The distance between Cys427 and a reversible  inhibitor,  such as TAE226 (PDB ID:

2JKK)14 or PHM16 (PDB ID: 4BRX)15 in the ATP binding site is less than 10 Å (Figure 1B).

Based on the two­step process for kinase inhibition, we designed our inhibitors, which

first bind reversibly to the enzyme, forming a non­covalent complex, and then form a covalent

binding with the residue Cys427 of the enzyme to provide an irreversible complex (Figure S1,

equation 1). Pyrimidine derivatives, especially 2,4­dianilinopyrimidine derivatives, are one of
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the important scaffolds found in many compounds described by pharmaceutical companies

and academic laboratories.6,16–18 These pyrimidine­containing inhibitors efficiently target the

FAK scaffolding function and suppress tumor growth through inhibition of Akt signaling or

activation  of p53 signaling and its  downstream targets.10  Our design strategy required the

synthesis of 2,4­pyrimidine derivatives as a scaffold to maintain affinity similar to reversible

inhibitors (compound 2, Figure 1C), and inclusion of a linker with Michael acceptor which

could react with the nucleophilic Cys427 residue. A number of diverse linkers were evaluated,

we quickly focused upon two linkers, a squarate (3,4­bisaminocyclobutane­1,2­dione) (5 and

6) and a 1,2,3­triazole (7 and 8) motif which are able to sustain a good orientation to target

Cys427  in   the Glycine­rich   loop region of   the FAK kinase.    Concerning  the electrophile

motif, an acrylate group was chosen to maintain reactivity (5, 7 and 8 in Figure 1C).

Figure 1. Design of a potent and electrophilic inhibitor of FAK guided by structural

bioinformatics.  (A) Partial  sequence alignment of FAK with 15 other protein kinases,  (B)

Structural  assessment  of  cysteine residue 427 for covalent  binding to  FAK. The structure

shows the FAK kinase (tan ribbon) bound to TAE226 (white sticks) (PDB ID: 2JKK). The
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Cys427 side chain is colored in green and its distance to TAE226 indicated. (C) Reversible

and irreversible inhibitors of FAK.

Synthesis of FAK Inhibitors. The synthetic route of new 2,4-pyrimidine compounds is

outlined in Scheme 1 (for compounds  5  and 6) and Scheme S1 (for compounds  7  and 8).

Starting  from commercially  available  2,4,5-trichloropyrimidine,  the  first  chlorine  atom in

position 4 of 2,4,5-trichloropyrimidine is displaced by 2-amino-N-methylbenzamide in the

presence of NaHCO3  in EtOH at reflux to afford monosubstituted intermediate in a yield of

93%. This was further substituted to compound 1 in the presence of the corresponding (9H-

fluoren-9-yl)methyl(4-aminobenzyl)carbamate and HCl in n-BuOH in a yield of 53%. The

amino  protecting  Fmoc  group  of  1 was  removed  using  piperidine  to  provide  the  key

intermediate  2. Then, the electrophilic 1,4-addition reactions occurred between compound 1

and dimethyl squarate in the presence of DIPEA at room temperature to afford compound 3 in

a yield of 81%. This was further condensed with tert-butyl (2-aminoethyl)carbamate in the

presence of DIPEA, followed by the deprotection of Boc group to give compound 4. Finally,

acylation  of  the  primary  amine  with  acryloyl  chloride  or  propionyl  chloride  gave  the

expected, targeted covalent inhibitor  5 and the corresponding reversible inhibitor  6, without

the electrophilic warhead. Another potential irreversible inhibitors  7 and  8 bearing a 1,3,5-

triazole linker were also synthesized in a similar manner (Scheme S1).

Scheme 1. Synthesis of FAK targeted covalent inhibitor  5 and reversible inhibitor matched-

pair 6. Reagents and conditions: a) 2-amino-N-methylbenzamide, NaHCO3, EtOH, reflux; b)

(9H-fluoren-9-yl)methyl  (4-aminobenzyl)car-bamate,  HCl,  n-BuOH, 120 °C; c)  piperidine,

DMF, RT; d) dimethyl squarate, DIPEA, DMF, RT; e) tert-butyl (2-aminoethyl)carbamate,

DIPEA, DMF, 70 °C; f) TFA, DCM, RT; g) Acryloyl chloride or propionyl chloride, NEt 3,

DMF, RT.
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Biochemical Characterization of FAK Inhibitors. To establish whether our rationally

designed targeted  covalent  inhibitors  5,  7 and  8 could  form irreversible  complexes,  their

inhibitory potency were  first  assessed  using  an  ADP-GloTM kinase  assay. One previously

reported inhibitor of FAK, TAE226, was used as a control. In this assay, TAE226 showed IC50

value of 5.8 nM against the kinase activity of FAK (Table 1), which was similar to previously

reported data.19

Table 1. In Vitro Enzymatic Activities of Novel 2,4-diarylaminopyrimidines compared with

TAE226

N° R IC50 (nM)

2 H 26 ± 2.2

5 Sq(CH2)2NHCOCH=CH2 0.6 ± 0.04

6 Sq(CH2)2NHCOCH2CH3 4.7 ± 0.5

7 CH2Tr(CH2)2NH COCH=CH2 2.3 ± 0.3

8 CH2Tr(CH2)3NH COCH=CH2 1.2 ± 0.1

TAE226 5.8 ± 0.6

Sq: squaramide group; Tr: 1,2,3-triazole group

As expected,  our  selected  2,4-dianilinopyrimidine  scaffold  (compound  2)  showed  a

potent  inhibitory activity to  FAK (IC50 = 26 nM), as shown in Table 1.  Interestingly, the

introduction of different groups on the amine function of the benzylamino moiety (ring B)

resulted in a very large increase in inhibitory potency on FAK kinase activity (compounds 5,

6,  7 and  8),  showing specific  contributions of these groups.  Compounds bearing a  1,2,3-

triazole group (7 and 8) gave an inhibitory potency of 2.3 and 1.2 nM, respectively, which are

more potent than TAE226. Interestingly, compound 5 bearing a squarate group demonstrated

the best inhibitory activity (IC50 = 0.6 nM), which was largely better than that of the matched

pair 6, without a reactive acryloyl group (IC50 = 4.7 nM).

As  irreversible  inhibitors  always  increase  inhibitory  potency  over  time,  we  then

investigated time-dependence inhibition of FAK kinase by the putative irreversible inhibitors

5,  7 and  8,  as  compared with the reversible matched pair  6.  As shown in Figure 2,  only

compound  5 displayed an increase in its inhibitory potency over 2 h, which was consistent
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with the formation of a covalent bond. As expected, the reversible matched pair 6 displayed

no  time-dependence.  Unfortunately,  the  putative  irreversible  inhibitors  of  FAK  7 and  8

displayed no time-dependence in this assay.

Figure 2. (A) Targeted covalent inhibitor 5 shows time-dependent inhibition of FAK kinase,

(C-D) No time-dependent inhibition of FAK kinase with targeted reversible inhibitors 6, 7, 8. 

Since high intracellular ATP concentrations under physiological conditions influence the

cellular  potency  of  ATP-competitive  inhibitors  of  protein  kinases,  non-ATP  competitive

inhibitors  provide  distinct  advantages  to  conventional  ATP-competitive  binders.  Thus,

developing irreversible inhibitors is an attractive and alternative strategy to achieve the non-

ATP  competitive  inhibition  of  kinase-mediated  signaling.  Therefore,  we  studied  non-

competitive character versus ATP of the putative irreversible inhibitor  5, compared with the

reversible  matched  pair  6. Indeed,  as  shown  in  Figure  3,  inhibitor  5  showed  the  same

inhibition at the different concentrations of ATP. On the contrary, the inhibitory potency of the

matched pair 6 on FAK kinase activity decreased with increasing concentration of ATP.
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Figure 3.  (A) Targeted covalent  inhibitor  5 shows non-ATP dependent  inhibition of FAK

kinase, (B) ATP-dependent inhibition of FAK kinase with targeted reversible inhibitor 6.

Crystal  Structure  of  FAK  Bound  to  Inhibitors.  To confirm  the  formation  of  a

covalent bond and to verify that the binding mode of the bis-anilinopyrimidine part is similar

to the reversible counterparts, we resolved the cocrystal structures of  FAK kinase domain

successively with compounds  5  (PDB ID: 6GCX),  6 (PDB ID: 6GCW)  and  7  (PDB ID:

6GCR). As shown in Figures 4, the mode of interaction of these compounds with the FAK

kinase domain is very similar to that observed in complex with TAE226 or PHM16. Indeed,

our inhibitors stabilize an unusual helical conformation of the DFG motif (D564-F565-G566)

in which the phi torsion angle of Asp564 is rotated by 113°, compared to the active kinase

domain.  Compounds  5,  6 and  7 contain  a  common  5-chloro-2-anilino-4-(2-

methylcarbamoyl)anilinopyrimidine scaffold, which binds well to the hinge region of the FAK

kinase.  Three  hydrogen  bonds  are  observed  in  the  crystal  structure  of  FAK  bound  to

inhibitors. Among them, two are formed between the nitrogen in the pyrimidine and 2-aniline

moieties with the backbone nitrogen and the carbonyl group of Cys502 in the kinase hinge

(Figure 4A-C). Another one is formed between the CO of carboxamide group of our inhibitor

and the backbone nitrogen of Asp564 of the DFG motif. Some of hydrophobic interactions are

observed between the carbon atomes of the 2-aniline ring and Ile428 and Gly505, but also

between carbons in the pyrimidine ring and Ala452 and Leu553. As already observed in the

crystallographic  structure  of  a  complex  between  FAK  kinase  domain  and  TAE226,  the
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chlorine  atom  on  the  pyrimidine  ring  is  located  into  the  ATP  binding  pocket,  near  the

gatekeeper residue Met499 (Figure S2).

Figure 4. Crystal structures of the FAK kinase domain in complex with inhibitors 5 (PDB ID:

6GCX), 6 (PDB ID: 6GCW) and 7 (PDB ID: 6GCR). (A-C) The active site of the FAK kinase

domain bound  5,  6 and  7 are shown. Inhibitors are shown in grey for ordered regions and

white for disordered regions. Although the white regions are modeled, they are not supported

by  electron  density  as  can  be  seen  in  panels  A-C.  Key  hydrogen  bonds  between  the

compounds and the FAK kinase are shown as orange dashed lines.  (D-F) 2Fo-Fc electron

density countered a 1 is shown for the compounds (blue mesh) and Cys427 (cyan mesh),

which are shown in stick representation. The FAK kinase is shown as ribbon in tan. Note that

only compound 5 exhibits continuous density connecting to Cys427.

Interestingly, for 5, it is observed that two hydrogen bonds are formed between the side

chain nitrogen of Arg426 and the carbonyl of the squarate, and the CO of Ile428 forms a

hydrogen bond with the NH of the squaramide attached to the benzylamino moiety (Figure 5).

On the contrary, 1,2,3-triazole group can not make this type of the interaction (Figure 5),

supporting that the binding of the squarate group to the FAK active site is crucial to guide the

electrophilic group of 5 for reaction with the nucleophilic thiol group of Cys427 (Figure 4A).

Furthermore, only the cocrystal structure with  5 revealed a strong and continuous electron
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density  between  C427  and  the  electrophilic  carbon  in  5 (Figure  4D)  and  thus  clearly

confirmed a covalent bond formation.

Figure 5.  Superposition of the two structures of compounds  5 and  7 bound to FAK. The

compounds  5 (green),  7 (blue) and side chains in FAK interacting with the compound are

shown in stick representation. Hydrogen bonds are shown as orange dashed lines.

Anti-proliferation  activity  of  compound  5  in  SCC  cells.  Having  established  the

potency  and  irreversibility  of  inhibitor  5 binding  to  the  FAK  active  site  in  vitro,  we

investigated the inhibition of the full-length FAK kinase by  5 in squamous cell carcinoma

(SCC) cells, which were induced in K14CreER FAKflox/flox mice using a two stage chemical

skin  carcinogenesis  assay  as  previously  described.20  In  a  previous  study,  we  have

demonstrated that PF-562,271, a reversible inhibitor of FAK kinase was able to block the 3D

proliferation of the SCC cells, cause squamous cell carcinoma regression and inhibit tumor

growth in vivo.21  The anti-proliferation of the irreversible inhibitor  5 against  SCC cells was

first assessed using cell nuclei counts, and  VS-4718, a  highly potent reversible inhibitor of

FAK which is under clinical development,22 was used as a control. Treatment of SCC FAK-

WT cells with  5  resulted in a dose-dependent inhibition of proliferation with similar ED50

(1.73 ± 0.1 M) as that of VS-4718 (1.49 ± 0.2 M) (Figure S3).  

Covalent inhibition of FAK by compound 5 in SCC cells. We tested the inhibition of

FAK autophosphorylation in  SCC cell  line  with the irreversible  inhibitor  5.  As shown in

Figure 6a,  compound  5 blocked Tyr397 phosphorylation in a  dose-dependent manner  and

FAK autophosphorylation was significantly inhibited at low concentrations in these cancer

cell lines, which is comparable to VS-4718. This is also consistent with its inhibitory activity
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against the FAK kinase, suggesting that this compound is able to effectively inhibit cellular

FAK autophosphorylation and phosphorylation of kinase targets at low concentrations. Then,

we examined the reversibility of the autophosphorylation of Tyr397 of FAK by performing

washout experiments. Upon washout, VS-4718 lost its inhibition capacity against FAK, which

is coherent with its reversible property. In contrast, 5 retained potent inhibition of FAK after

washing out the inhibitor, and demonstrated covalent binding (Figure 6d).

Figure 6. Inhibition of FAK autophosphorylation in SCC cells. (a-b) 5 and VS-4718 inhibited

the autophosphorylation of  FAK in a  dose-dependent  manner;  (c-d)  Washout  experiments

showed that the inhibition of FAK autophosphorylation could be reversed for the reversible

inhibitor VS-4718, but not for the irreversible inhibitor  5.  The experiments were repeated

three times and were consistent.

Kinase  Selectivity  Profile  of  Covalent  Inhibitor  5.  In  order  to  investigate  the

selectivity of the irreversible inhibitor 5, we tested this compound in vitro against a panel of

ten  kinases  (EGFR,  HER2/ERBB2,  IGF1R,  c-Kit,  PDGFR,  Pyk2,  c-Src,  IRR,  and  IR)

determined  by  Eurofins  Pharma  Discovery  Services,  Poitiers,  France  to  investigate  its

selectivity (Table S1, Supporting Information). A TR-FRET based kinase protocol was used

with human recombinant protein in the presence of 1 μM of compound 5. Interestingly, this

compound showed only 21% inhibition on the IR (insulin receptor) kinase even at the high

concentration of 1 μM. This is in contrast to TAE226, which exhibited high potency towards

IR (IC50 = 26 nM).19 Even if TAE226 has displayed a potent antitumor effect both in vitro and

in  vivo  in  a  large  variety  of  cancers  such  as  brain  tumors,23 esophageal  cancer,24 breast

cancer,25 ovarian cancer,26 and gastrointestinal stroma tumor,27 TAE226 never entered in clinic

studies, because this compound inhibited the insulin receptor with a high potency and showed

important side effects in animal studies.19 

CONCLUSIONS
10



In  summary,  we  described  the  first  irreversible  sub-nanomolar  inhibitor  of  FAK

containing a pyridimine scaffold and a Michael acceptor as electrophile up to date through

structure-based and medicinal chemistry optimization. The crystal structure of the FAK kinase

domain in complex with this inhibitor was resolved to display the formation of a covalent

bond. Beyond generating and characterizing the covalent FAK inhibitor, our approach can

direct  the  design  of  new  electrophilic  inhibitors  which  target  a  noncatalytic  cysteine  in

proteins. The irreversible inhibitor 5 showed a highly potent decrease of autophosphorylation

of FAK in SCC cells, suggesting that this compound could efficiently block a key event of the

intracellular FAK signaling pathway. It is worth noting that  5 exhibited an anti-proliferative

effect  in  SCC cells  similar  to  that  of  VS-4718, which is  currently under  phase I  studies.

Moreover, this compound displayed low inhibition against the IR (insulin receptor) kinase,

which might provide a new mode of action and overcome the side effects  observed with

TAE226. Further studies into molecular mechanisms of this type of compounds against cancer

including anti-proliferation of human cancer cells and the regulation of tumorigenesis and

metastatic progression is underway in the laboratory to demonstrate the advantages for the

development of novel cancer therapies.

METHODS

Chemistry. Methods for the synthesis of compounds, characterization, and spectra are

described in detail in the Supporting Information. 

Enzyme  Inhibition  Studies.  Inhibitory  potency  in  a  FAK  enzymatic  assay  was

determined using an ADP-GloTM kinase assay. Briefly, 4 μL of assay mixture containing 0.5

g FAK substrate, 5 ng FAK, 8 μM ATP and 1 μL of compounds at desired concentrations in

Kinase reaction buffer (40 mM Tris, 20 mM MgCl2, 0.1 mg/mL BSA, 2 mM MnCl2, 2  M

DTT) was added into a 384-well plate. After incubation at 37 °C for 1 h, the kinase reaction

was stopped by the addition of 5 μL of ADP-Glo™ Reagent to deplete the unconsumed ATP

and leave only ADP. The plate was incubated at room temperature for 40 min, and added by

10 μL of Kinase Detection  Reagent  to convert  ADP to ATP and introduce  luciferase and

luciferin  to  detect  ATP.  After  incubation  at  room  temperature  for  15–20  minutes,  the

luminescence signal was detected with an Enspire plate reader. The IC50 value was determined

for each compound, from a sigmoid dose−response curve using Graph-Pad Prism (GraphPad

Software, San Diego, CA, USA).
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Inhibition  of  FAK Autophosphorylation  in  SCC cells.  SCC FAK-WT cells  were

cultured in Glasgow Minimum Essential Medium (10% foetal calf serum, 2 mM l-glutamine,

NEAA, sodium pyruvate and MEM vitamins). Cells were seeded in 6 well plates at 100,000

cells per well. Compounds were made up in DMSO to 1000x final concentration and 24 hours

after cell seeding were added to the culture media resulting in a final DMSO concentration of

0.1%.  Compounds  were  incubated  on  cells  for  48h  before  cell  lysis.  For  wash  out

experiments, cells were washed with PBS twice and fresh media was added for 3 hours.

For cell lysis, briefly, wells were washed in ice-cold PBS, drained and cells lysed in MD

Anderson buffer (1% Triton X 100, 50 mM Hepes pH 7.4, 150 m M NaCl, 1.5 mM MgCl2 and

1 mM EGTA) supplemented with a protease and phosphatase tablet  (Sigma-Aldrich). Cell

lysates  were  clarified  by  centrifugation  at  12,000x  g  for  10  minutes  and  the  protein

concentration determined by Bradford assay (Thermo Fisher Scientific). 20 g protein of each

lysate was resolved using 4–15% polyacrylamide gels (Bio-Rad) and transferred to PVDF

membranes,  blocked and probed with primary antibodies  overnight.  Blots were washed in

TBS/0.1% Tween and incubated  with anti-rabbit  conjugated  horseradish peroxidase.  Blots

were  washed  in  TBS/0.1%  Tween  and  visualised  with  BM  Chemiluminescence  Western

Blotting Substrate (Sigma-Aldrich) on a Bio-Rad ChemiDocimager. Blot densitometry was

determined using Image Lab software (Bio-Rad). 

Crystallization and Structure Determination. The kinase domain of the avian FAK

protein (FAK411–686) was expressed and purified following a previously described assay.28

The inhibitor-FAK complex was formed by incubation of the compound (final concentration

10 mM) with the protein (8 mg/mL) at 4 C overnight. Crystals of the complex were grown,

mixing an equal volume of the complex with the crystallization condition (100 mM Tris, pH

8.5, 100 mM Li2SO4, 20–24% PEG4000, 10 mM TCEP). Crystals were cryoprotected by a

quick  soak into  the  following cryosolution  100 mM Tris  pH 8.5,  100 mM Li2SO4,  24%

PEG4000, 10 mM TCEP, 35% ethylene glycol and then flash-frozen. Diffraction data were

collected  at  synchrotron  facilities  in  beamline  ID30-1  at  ESRF  (Grenoble,  France)

(compounds  5,  7)  or  the  XALOC beamline  at  ALBA (compound  6)  and  processed  with

XDS.29 To provide an initial set of phases, the molecular replacement protocol in Phaser was

used using the FAK kinase model from PDB 2JKK.30 Refinement was carried out using the

program  Refmac  and  manual  rebuilding  was  performed  with  Coot.31–32 The  Dundee
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PRODRG2 Server was used to create the initial model for inhibitors 5, 7 and 10.33 Final R-

factors are 22.3/26.2 (Rwork/Rfree) for FAK/5, 19.5/22.3 for FAK/6 and 21.7/27.4 for FAK/7.
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