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Extracellular matrix components indicate remodelling activity in different fibrosis stages of
human non-alcoholic fatty liver disease

Aims: The composition of several important extracel-
lular matrix components (ECM) has not yet been elu-
cidated in human non-alcoholic fatty liver disease
(NAFLD). We aim to investigate the proportion of
hepatic stellate cells (HSCs) and activity of matrix
metalloproteinases (MMPs) and tissue inhibitors of
MMPs (TIMPs) in human NAFLD liver tissue with
respect to severity of inflammation and fibrosis.
Methods and results: Histopathological features were
quantified by NAFLD activity score and grading
assignment. The collagen proportionate area (CPA)
was measured. Slides were stained with alpha-smooth
muscle actin (a-SMA), as a marker of activated HSCs,
and a-SMA was quantified digitally. Zymography was
performed to measure the proteolytic activity of
MMP-2 and MMP-9. TIMP-1 and TIMP-2 protein
concentration was measured with enzyme-linked
immunosorbent assay (ELISA). a-SMA was higher in

severe fibrosis (6.3%, interquartile range 2.9–13.1)
than mild and no fibrosis (median 1.1 and 0.9%,
P < 0.001) and correlated strongly with CPA
(Rs = 0.870, P < 0.001). ProMMP-2 activity in sev-
ere (4.1%, IQR 2.6–16.2) and mild fibrosis (2.7%,
IQR 1.9–3.9) was higher than in no fibrosis (1.5%,
(IQR 0.95–2.1); P = 0.001 and P = 0.046) and
showed a moderate positive correlation with CPA
(Rs = 0.495, P = 0.001). TIMP-1 and TIMP-2 were
significantly higher in severe fibrosis than mild or no
fibrosis. Both showed moderate correlation with CPA
(TIMP-1: Rs = 0.471, P = 0.002 and TIMP-2:
Rs = 0.325, P = 0.036). MMP-9 correlated as the
only ECM component to inflammation severity.
Conclusions: Advanced human NAFLD-fibrosis has a
distinct ECM composition with increased HSCs and
increased TIMP inhibition, but there is also ongoing
remodelling activity of MMP-2.

Keywords: extracellular matrix, histopathology, human study, liver fibrosis, NAFLD

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a
chronic liver disease marked by fat accumulation.
Prevalence is increasing, and this disease now affects
approximately 25% of the global population.1

NAFLD consists of a wide disease spectrum,
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extending from simple steatosis to non-alcoholic
steatohepatitis (NASH). NASH is a risk factor for
fibrosis, and depending on host-related factors may
progress to cirrhosis and even hepatocellular carci-
noma.2

The role of the extracellular matrix (ECM) in fibro-
sis progression in NAFLD is complex and dynamic,
and our understanding is incomplete.3,4 The onset of
inflammation in a steatotic liver triggers a cascade
that results eventually in liver fibrosis. Inflammatory
injury activates hepatic stellate cells (HSCs) to differ-
entiate into a proliferative and profibrogenic pheno-
type, and to secrete several fibrotic components
(collagens, proteoglycans and elastin), profibrogenic
enzymes and cytokines.5

The histopathological pattern of fibrosis in NAFLD
has a typical distribution, usually starting in the peri-
central, zone 3, region.6 It is believed that as fibrosis
progresses, accumulated ECM components mature,
cross-link and destroy normal liver architecture.7 A
recent study, however, shows that even in advanced
NAFLD cases, there is active fibrosis matrix remod-
elling signalling the possibility of reversibility of
fibrosis.8

Matrix metalloproteinases (MMPs) and their inhibi-
tors (TIMPs) are involved in the turnover of fibrosis
and play an important role in ECM homeostasis.9

TIMP-1 and -2 are secreted by HSCs, and are abun-
dantly present in the human liver. Blocking MMPs,
such as MMP-2 and -9, prevents degradation of fibro-
sis. Investigation in experimental models of liver fibro-
sis suggests that an imbalance between TIMP and
MMP drives fibrogenesis. Specifically, the increase of
TIMPs and blocked MMP activity advances
fibrosis.10,11

Although these model systems have allowed us to
gain a deeper understanding of the complexity of
liver inflammation and repair, the composition of
the ECM in human NAFLD is less well studied.12 A
number of studies have attempted to shed light on
this issue. One study found that MMP-9 mRNA
expression, but not MMP-2, was up-regulated in
liver tissue from NASH patients.13 Another study
saw that MMP-2 mRNA and serum levels were up-
regulated in NASH, but a third study could not con-
firm this and found only increased TIMP-1 serum
levels.14,15 Human data on pro- and antifibrotic
ECM components in relation to fibrosis stage or
inflammation grade are lacking. Exploring this bal-
ance could lead to clearer insight into the activity of
ECM remodelling. Therefore, we embarked upon a
study to investigate the tissue activity of HSCs,

MMP-2, MMP-9, TIMP-1 and TIMP-2 in relation to
NAFLD fibrosis and disease severity.

Methods

S T U D Y D E S I G N

We performed a cross-sectional study using biopsy
material from patients with non-alcoholic fatty liver
disease. Patients with evidence of alternative or
coexistent liver disease (viral hepatitis, autoimmune
hepatitis, Wilson’s disease, haemochromatosis or
alpha-1-antitrypsin deficiency) during standard work-
up were excluded. Patients who consumed more than
210 g of alcohol per week for males and 140 g for
females were also excluded.
Biopsies were collected between 2011 and 2016.

Immediately after collection, liver tissue was divided
in two parts: one formalin-fixed and paraffin-
embedded (FFPE) for histopathological scoring and a
second part snap-frozen in liquid nitrogen and stored
at �80°C until activity assays [zymography, enzyme-
linked immunosorbent assay (ELISA)] were performed
[for the Biospecimen Reporting for Improved Study
Quality (BRISQ) TIER-1 list], see Table S1. The study
was approved by the Institutional Review Board of
the Radboud University Medical Centre (no. 2016-
2823) and patient material was used according to
the Code of Conduct for Responsible Use of Human
Tissue and Medical Research.16 Clinical data and lab-
oratory results up to 3 months prior to liver biopsy
were obtained through chart review.

H I S T O L O G Y

Histopathological scoring was performed on FFPE
slides. Slides were stained with a haematoxylin and
eosin and picrosirius red stain and reviewed by expe-
rienced liver pathologists. Staging of fibrosis (0–4)
was assessed using the ordinal scale associated with
the NAFLD activity score, and patients were grouped
into no fibrosis (stage 0); mild (stages 1–2) and severe
fibrosis (stages 3–4).17 Furthermore, the collagen pro-
portionate area (CPA; the tissue percentage occupied
by collagen, as stained with picrosirius red) was
assessed digitally, as described previously.18 Disease
activity was graded with NAFLD activity score (NAS;
0–8) by summing the scores of steatosis (0–3), lobu-
lar inflammation (0–3) and hepatocyte ballooning
(0–2). Histological NASH was determined with the
fatty liver inhibition of progression (FLIP) algorithm,
in which at least 1 point for ballooning and inflam-
mation, in addition to steatosis, has to be present to
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define histological NASH.19 Groups were also divided
into patients with a total NAS of 0–2, NAS of 3–4
and NAS ≥5.17 Tissue sections were cut consecutively
and immunostained with antibody against a-SMA
(1:3200, clone 1A4; Sigma-Aldrich, St Louis, MO,
USA). Of the slides, 10 pictures were taken randomly
at 920 magnitude (Zeiss microscope, AxioVision ver-
sion 2.0 software; Carl Zeiss Ltd, Cambridge, UK,
attached to a personal computer), and images were
quantified digitally (after exclusion of artefacts and
blood vessels) with use of a colour deconvolution plu-
gin in the ImageJ processing program (FIJI).20

A mean a-SMA proportionate area in % (area posi-
tive a-SMA staining/total area of the biopsy speci-
men) was calculated for each slide.

G E L A T I N Z Y M O G R A P H Y

Protein extraction from snap-frozen liver tissue, deter-
mination of protein concentrations and gelatin
zymography were performed as described previ-
ously;21 see Supporting information. In short, gelati-
nolytic activity of pro- and active forms of MMP-2
and MMP-9 were determined on a gelatin-impreg-
nated sodium dodecyl sulphate-polyacrylamide gel
(SDS-PAGE). Samples were loaded with a fixed
amount of protein in duplo. An internal standard was
included as a reference for quantification of prote-
olytic activity. After electrophoresis and incubation,
gels were stained with Coomassie Blue. Quantification

of proteinase activity, which is expressed as relative
percentage to the reference standard, was performed
with computerised densitometry. The mean of dupli-
cates is presented. For the layout of the gels and posi-
tions of the pro- and active forms of MMP-2 and
MMP-9 see Figure 1.

E L I S A

TIMP-1 and -2 concentrations were measured in the
supernatant of the snap-frozen liver tissue using
sandwich ELISA (R&D Systems, Minneapolis, MN,
USA), according to the manufacturer’s instructions.
Absorbance was read at 450 nm on an Infinite200-
PRO plate reader (Tecan, Z€urich, Switzerland). TIMP-
1 and TIMP-2 concentrations (in pg/lg protein) were
calculated using the Magellan program.

S T A T I S T I C A L A N A L Y S I S

Categorical variables (gender) are expressed in num-
ber and percentage and analysed by Fisher’s exact
test. Continuous data are presented as mean with
standard deviation (SD) or median with interquartile
range (IQR, 25th–75th percentile) and analysed with
an independent-samples t-test or Mann–Whitney U-
test, one-way analysis of variance (ANOVA) or Kruskal–
Wallis test, Pearson’s or Spearman’s rank correlation
coefficient, according to distribution. A two-sided level
of P < 0.05 is considered statistically significant.

Positive Controls Internal Standard
(in duplo) S1-1 S1-2 S2-1 2-2 S3-1 S3-2 S4-1 S4-2 NC

MMP-9 homodimer (220-kDa)

MMP-9 heterodimer (135-kDa)

proMMP-9 (92-kDa)
ActiveMMP-9 (82-kDa)

ActiveMMP-2 (62-kDa)
proMMP-2 (72-kDa)

Samples (in duplo)

MMP-2  MMP-9

Figure 1. Zymography (layout). Proteolytic matrix metalloproteinase (MMP) activity in human liver tissue extracts detected by quantitative

zymography. Proteolytic activity was measured with Total Lab Quant, in which the intensity of the bands was measured as a relative per-

centage of the internal standard. NC = sample buffer was loaded as a negative control on position 15. Position 5 remained blank. Active

MMP-9, located at 82 kDa and active MMP-2 at 62 kDa are not identifiable by eye in these tissue extracts.10

© 2018 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 73, 612–621.
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Statistics are performed using SPSS statistical software
package (version 22.0; SPSS Inc., Chicago, IL, USA).
Figures are created using Graphpad Prism (version
5.03; Graphpad Software Inc., La Jolla, CA, USA).

Results

C L I N I C O P A T H O L O G I C A L C H A R A C T E R I S T I C S

The total cohort consisted of 42 patients with a clinical
and histological diagnosis of NAFLD or NASH. The
mean age was 51 � 11 years and 55% were male.
Median NAS was 4 (IQR = 3–5), and 16 (38%)

patients had histological evidence of NASH, as indi-
cated by NAS ≥5. Based on the FLIP algorithm, 28
(67%) patients had histological NASH. Characteristics
of patients with and without histological NASH are
shown in Table 1. Patients with histological NASH
had significantly higher aspartate transaminase (AST)
levels compared to those without NASH (see Table 1).
AST was 144 (IQR = 63–155) U/l in severe (NAS 2)
inflammation and 75 (IQR = 50–134) U/l in mild
(NAS 0–1) inflammation (P = 0.020). Alanine
transaminase (ALT) was 67 (IQR = 48–101) U/l in
severe compared to 42 (IQR = 33–54) U/l in patients
with mild inflammation (P = 0.028).

Table 1. Characteristics of patients with and without histological NASH

No NASH (n = 14) Histological NASH† (n = 28) P-value

Demographics

Age (years) 50.6 � 12.1 50.6 � 10.8 0.985

Male gender 7 (50.0%) 16 (57.1%) 0.661

Diabetes mellitus type 2 3 (21.4%) 9 (32.1%) 0.719

BMI (kg/m2) 28.3 � 2.6 32.7 � 5.7 0.020

Laboratory results

Alanine transaminase (IU/l) 66 (47–103) n = 13* 77 (59–139) n = 24 0.422

Aspartase transaminase (IU/l) 36 (30–53) n = 12 54 (42–78) n = 21 0.030

Alkaline phosphatase (IU/l) 86 (65–125) n = 12 109 (82–131) n = 21 0.187

Gamma-glutamyltransferase (IU/l) 135 (53–335) 102 (59–260) n = 23 0.922

Bilirubin (lmol/l) 10 (6–11) n = 12 10 (7–16) n = 21 0.518

C-reactive protein (mg/l) 1 (1–8) n = 5 9 (5–45) n = 7 0.073

Ferritin (lg/l) 258 (205–553) n = 6 214 (96–804) n = 16 0.590

ECM components

a-SMA (%) 1.2 (0.7–2.4) 1.8 (0.7–6.0) 0.272

ProMMP-2 (relative %) 2.0 (1.4–2.8) 2.8 (1.8–4.3) 0.147

ActMMP-2 (relative %) 0.4 (0.2–0.9) 0.4 (0.2–0.8) 0.927

ProMMP-9 (relative %) 40.5 (23.2–71.1) 34.0 (23.0–62.5) 0.626

ActMMP-9 (relative %) 0.2 (0.1–0.4) 0.2 (0.1–0.3) 0.607

TIMP-1 (pg/lg) 2.4 (2.1–2.8) 2.7 (2.0–3.4) 0.607

TIMP-2 (pg/lg) 3.2 (2.8–3.6) 3.4 (2.7–3.9) 0.589

Results are shown as count and percentage (n, %), mean with standard deviation or median and interquartile range (25th–75th per-

centiles). NASH, Non-alcoholic steatohepatitis; BMI, Body mass index; ECM, Extracellular matrix components; a-SMA, Alpha-smooth muscle

actin; MMP, Matrix metalloproteinases; TIMP, Tissue inhibitors of MMP; FLIP, Fatty liver inhibition of progression.

*Number of patients with laboratory results within 3 months prior to liver biopsy are specified in the columns.

†Histological NASH, based on FLIP algorithm.19
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Fibrosis was absent from the liver biopsy in nine
patients, while 22 patients had mild fibrosis (15 stage
1, seven stage 2), and 11 patients had severe fibrosis
(six stage 3, five stage 4). Median CPA in the whole
cohort was 4.2% (IQR = 2.3–10.6), and CPA corre-
lated strongly with the histopathologically determined
fibrosis stage (Rs = 0.749, P < 0.001). See Table 2
for characteristics of the fibrosis groups.

C O R R E L A T I O N E X T R A C E L L U L A R M A T R I X

C O M P O N E N T S A N D F I B R O S I S S T A G I N G

The area of a-SMA staining was significantly higher
in samples with severe fibrosis compared to samples
with mild or absent fibrosis, and there was a strong
correlation of a-SMA with CPA (Rs = 0.870,

P < 0.001, see Table 2 and Figure 2A, B). The gelati-
nolytic activity of proforms of both MMPs was
increased compared to the active forms regardless of
stage; median proMMP-2: 2.7% (IQR = 1.7–4.1),
proMMP-9: 36.2% (IQR = 23.3–61.0), actMMP-2:
0.4% (IQR = 0.2–0.8) and actMMP-9: 0.2%
(IQR = 0.1–0.3).
Median proMMP-2 activity was significantly higher

in severe and mild fibrosis compared to samples with-
out fibrosis, and showed a moderate positive correla-
tion with CPA (Rs = 0.495, P = 0.001). The activity
of actMMP-2 was not statistically significantly differ-
ent between groups (see Table 2 and Figure 3A).
Both forms of MMP-9 were distributed similarly
among different fibrosis groups (see Table 2 and Fig-
ure S1), and were not correlated with CPA (see

Table 2. Characteristics of patients within fibrosis groups

No fibrosis
F0 (n = 9)

Mild fibrosis
F1–2 (n = 22)

Severe fibrosis
F3–4 (n = 11) P-value

Demographics

Age (years) 48.9 � 10.0 47.1 � 10.3 58.9 � 9.8 0.011

Male gender 6 (66.7%) 13 (59.1%) 4 (36.4%) 0.335

Diabetes mellitus type 2 1 (11.1%) 5 (22.7%) 6 (54.5%) 0.069

BMI (kg/m2) 30.6 � 4.1 32.1 � 5.6 30.0 � 7.1 0.570

Histology

Collagen proportionate area 1.54 (0.91–2.59) 4.07 (2.56–5.86) 13.02 (10.46–17.84) <0.001

NAFLD activity score 0–2 5 (55.6%) 4 (18.2%) 0 0.005

NAFLD activity score 3–4 4 (44.4%) 6 (27.3%) 7 (63.6%) 0.005

NAFLD activity score ≥5 0 12 (54.5%) 4 (36.4%) 0.005

Histological NASH* 2 (22.2%) 17 (77.3%) 9 (81.8%) 0.006

ECM components

a-SMA (%) 0.9 (0.5–2.1) 1.1 (0.6–1.9) 6.3 (2.9–13.1) <0.001

ProMMP-2 (relative %) 1.5 (1.0–2.1) 2.8 (1.9–3.9) 4.2 (2.6–16.2) <0.001

ActMMP-2 (relative %) 0.4 (0.2–0.7) 0.3 (0.1–0.7) 0.7 (0.2.2.0) 0.278

ProMMP-9 (relative %) 36.9 (16.7–78–.1) 36.8 (24.5–69.6) 34.0 (28.0–46.1) 0.848

ActMMP-9 (relative %) 0.2 (0.1–0.5) 0.1 (0.1–0.2) 0.2 (0.1–0.5) 0.286

TIMP-1 (pg/lg) 2.4 (1.9–2.6) 2.3 (2.0–3.1) 3.4 (2.9–5.0) 0.007

TIMP-2 (pg/lg) 3.0 (2.8–3.4) 3.3 (2.3–3.6) 4.1 (3.5–4.6) 0.007

Results are shown as count and percentage (n, %), mean � standard deviation or median and interquartile range (25th–75th percentiles).

NASH, Non-alcoholic steatohepatitis; BMI, Body mass index; ECM, Extracellular matrix components; a-SMA, Alpha-smooth muscle actin;

MMP, Matrix metalloproteinases; TIMP, Tissue inhibitors of MMP; FLIP, Fatty liver inhibition of progression; NAFLD, Non-alcoholic fatty

liver disease.

*Histological NASH, based on FLIP algorithm.19
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Table 3 for all correlations on ECM components and
fibrosis staging).
TIMP-1 and TIMP-2 (in pg/lg protein) levels were

significantly higher in severe fibrosis than mild or
absent fibrosis (see Table 2 and Figure 3B). Both
TIMP-1 and TIMP-2 levels correlated with CPA
(TIMP-1: Rs = 0.471, P = 0.002 and TIMP-2:
Rs = 0.325, P = 0.036; see Table 3).

C O R R E L A T I O N E X T R A C E L L U L A R M A T R I X

C O M P O N E N T S A N D D I S E A S E A C T I V I T Y /

I N F L A M M A T I O N

Median a-SMA in patients with histological NASH
was comparable to that of patients without histologi-
cal NASH (see Table 1). a-SMA did not correlate with
total NAS grade or individual components of NAS
grading (steatosis, ballooning or inflammation; see

Table 3). ProMMP-9 levels were higher in patients
with severe inflammation (58.0% IQR = 29.2–85.5)
compared to mild inflammation (30.1% IQR = 21.8–
44.7, P = 0.035). ActMMP-9 was similar in mild and
severe inflammation (see Figure S1). Both actMMP-9
and proMMP-9 were similar between patients
with and without histological NASH (see Table 1). a-
SMA and MMP-9 showed no correlation to ALT or
AST levels (data not shown).

Discussion

This study documents that liver biopsy samples from
patients with advanced NAFLD-associated fibrosis
possess a distinct ECM composition, with increased
levels of a-SMA, proMMP-2 and both TIMP-1 and -2.
These results suggest that advancing fibrosis in
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NAFLD is driven by activated HSCs, creating an envi-
ronment which permits inhibition of matrix degrada-
tion and contributes to fibrosis accumulation.
Increased activation of HSCs in the context of severe
fibrosis in human NAFLD has been reported previ-
ously,22 but data on MMP and TIMP activity were
lacking. Increase of proMMP-2, TIMP-1 and TIMP-2
activity in NASH fibrosis is consistent with data
obtained for other chronic liver diseases.11,23–25

The increase of proMMP-2 and, to a lesser
extent, of active MMP-2, suggests there is still
active matrix turnover in advanced NAFLD fibrosis.
This is consistent with another study that quanti-
fied hepatic fibrogenesis flux rates in liver tissue
and blood from NAFLD patients.8 In experimental
models, the early phase of liver injury resulted in
increased levels of MMP-3, MMP-13 and, to a lesser
extent, MMP-2. During the later phase of HSC

activation, expression of MMP-2, TIMP-1 and
TIMP-2 increased.26 The protein concentration of
TIMPs appears to be critical for the actual prote-
olytic activity of MMPs. Low concentrations of
TIMPs mediate activation of MMP-2, while higher
TIMP levels inhibit MMP-2 activation.27 MMP-2
degrades collagen type IV (present in the basal
membrane in normal liver), but MMP-2 also pos-
sesses elastase and collagenase activity in vitro.9

Furthermore, there is evidence that MMP-2 and
MT1-MMP (a membrane type MMP) work synergis-
tically to degrade fibrillar collagens, and that their
combination is poorly inhibited by TIMP-1.28,29

Although we were not able to measure the activity
of MT1-MMP and specific collagen subtypes, it can
be speculated that MMP-2 could also have a role
in degrading mature fibrosis, which consists of col-
lagen type I, III and elastin.
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sis. B, TIMP-1 and TIMP-2 levels (in pg/lg protein) with group median (line) are shown for three fibrosis groups. Analyses were performed

with the Kruskal–Wallis test; *P < 0.05; **P < 0.01.
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In clinical practice, it is important to stratify
NAFLD patients based on fibrosis stage, in view of the
10–40 times fold increase in liver-related mortality
among patients with progressing stages of fibrosis.30

There is evidence to suggest that advanced fibrosis or
cirrhosis may still be reversible after removal of the
causal agent (hepatitis C treatment, reduction of hep-
atic steatosis through weight loss in NAFLD and alco-
hol cessation in alcoholic liver disease). Profiling ECM
composition may be used to stratify patients accord-
ing to fibrosis remodelling capacity. Compounds tar-
geting ECM components could be explored further as
new antifibrotic strategies in NAFLD.31,32

The absence of correlation between proportion of
activated HSCs and AST, ALT or NASH in our study
could imply that fibrogenesis is maintained indepen-
dently of inflammatory stimuli. HSCs display several
collagen receptors, such as integrins, that receive
cytokine signals [notably transforming growth factor
(TGF)-b] from ECM components, which induce differ-
entiation and proliferation of HSCs to maintain a
profibrogenic phenotype.3,7 TIMPs have the ability to
inhibit programmed cell death of HSCs.33 A positive
feedback loop with ECM components that affect HSCs
promotes fibrosis progression. Conversely, this model
is possibly an (over)simplification of the pathogenesis
of fibrosis. NASH is a heterogeneous and multifacto-
rial disease and insulin resistance, alcohol use,

presence of other toxins, virus or cholestasis all con-
tribute to fibrosis progression.
ProMMP-9 was the only ECM component increased

in inflamed tissue. Other studies co-localised MMP-9
with inflammatory cells, such as K€upffer cells, macro-
phages and neutrophils.34,35 Proinflammatory cytoki-
nes C-X-C motif chemokine ligand 8 (CXCL-8),
interleukin (IL)-1b and tumour necrosis factor (TNF)-
a are known substrates for MMP-9. MMP-9 increases
the biological activity of these cytokines, leading to
an exacerbation of inflammation. The composition of
inflammatory cells was beyond the scope of this
study, but further research on the interaction of
immune cells, MMP-9 and fibrosis in human NAFLD
may elucidate this.
Our study comes with several strengths: we had

access to a well-defined cohort of NAFLD patients,
encompassing the whole spectrum of NAFLD activity
and fibrosis. Zymography allowed us to measure
gelatinolytic activity, which resembles true proteolytic
ability. Active matrix turnover in tissue is reflected
more clearly with this assay than with mRNA expres-
sion or serum markers. We performed computer-aided
quantitative measurements of immunohistochemical
staining, minimising possible interobserver variability
and lack of power to discriminate between stages,
inherent to grouping and scoring. The correlation of
ECM components not only to fibrosis stage, but also

Table 3. Correlations of ECM components and fibrosis staging and NAS grading

CPA (%) Fibrosis stage (0–4) NAS grade (0–8) Steatosis (0–3) Ballooning (0–2) Inflammation (0–3)

a-SMA Rs = 0.720**
P = 0.000

0.667**
0.000

0.086
0.587

0.032
0.841

0.182
0.248

�0.011
0.943

proMMP-2 40.95**
0.001

0.647**
0.000

0.191
0.226

0.1741
0.280

0.112
0.480

0.108
0.495

actMMP-2 0.180
0.253

0.198
0.209

�0.004
0.979

�0.024
0.880

0.124
0.434

�0.041
0.796

proMMP-9 �0.088
0.579

0.001
0.996

0.040
0.804

�0.043
0.788

�0.078
0.624

0.211
0.180

actMMP-9 0.033
0.837

0.041
0.794

�0.193
0.221

�0.113
0.477

�0.104
0.511

�0.104
0.349

TIMP-1 0.471**
0.002

0.400**
0.009

0.027
0.866

�0.129
0.414

0.132
0.405

0.145
0.358

TIMP-2 0.325*
0.036

0.482**
0.001

0.071
0.866

�0.015
0.923

0.031
0.848

0.143
0.365

Spearman’s rank (Rs) correlation coefficients and P-values are shown for correlations between ECM components and fibrosis staging and

NAS grading. ECM, Extracellular matrix components; a-SMA, Alpha-smooth muscle actin; MMP, Matrix metalloproteinases; TIMP, Tissue

inhibitors of MMP; CPA, Collagen proportionate area; NAS, Non-alcoholic fatty liver disease activity score.

*Correlation significant at <0.05 level; **Correlation significant at <0.01 level.
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to the quantitative amount of collagen (CPA)
strengthens our conclusions.
However, this study design also brings limitations.

We could only examine two MMPs, as no assays are
available to measure proteolytic activity of other
MMPs, such as MMP-12, MMP-13, MMP-3 and
MT1-MMP.36 We could not correct for all possible con-
founders involved in the multifactorial fibrogenesis in
NAFLD. The lack of follow-up biopsies in our cohort
did not allow us to assess the predictive role of ECM
components in progression or regression of fibrosis.
In conclusion, in this study the severity of human

NAFLD liver fibrosis is associated with increasing a-
SMA, proMMP-2 and TIMP-1 and -2. ProMMP-9 cor-
relates with the severity of inflammation. The chan-
ged ECM composition in advanced NAFLD fibrosis
suggests that inhibition of matrix degradation is
maintained by activated HSCs secreting exceeding
amounts of TIMPs, favouring fibrosis accumulation.
MMP-2 activity in advanced fibrosis stages suggests
that there is still active matrix turnover and could
signal the possibility of reversibility, which should be
assessed further in longitudinal follow-up studies.
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