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Abstract 37 

Archaeological records provide a unique source of direct data on long-term human-38 

environment interactions and samples of ecosystems affected by differing degrees of human 39 

impact. Distributed long-term datasets from archaeological sites provide a significant contribution 40 

to establish local, regional, and continental-scale environmental baselines and can be used to 41 

understand the implications of human decision-making and its impacts on the environment and the 42 

resources it provides for human use. Deeper temporal environmental baselines are essential for 43 

resource and environmental managers to restore biodiversity and build resilience in depleted 44 

ecosystems. Human actions are likely to have impacts that reorganize ecosystem structures by 45 

reducing diversity through processes such as niche construction. This makes data from 46 

archaeological sites key assets for the management of contemporary and future climate change 47 

scenarios because they combine information about human behavior, environmental baselines, and 48 

biological systems. Sites of this kind collectively form Distributed Long-term Observing Networks 49 

of the Past (DONOP), allowing human behavior and environmental impacts to be assessed over 50 

space and time. Behavioral perspectives are gained from direct evidence of human actions in 51 

response to environmental opportunities and change. Baseline perspectives are gained from data 52 

on species, landforms, and ecology over timescales that long predate our typically recent datasets 53 

that only record systems already disturbed by people. And biological perspectives can provide 54 

essential data for modern managers wanting to understand and utilize past diversity (i.e., trophic 55 

and/or genetic) as a way of revealing, and potentially correcting, weaknesses in our contemporary 56 

wild and domestic animal populations. 57 

 58 

1. Introduction 59 
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Archaeological data is a vital but underutilized resource for environmental managers and 60 

policy makers. Archaeological sites are currently valued for preserving cultural heritage, tourism, 61 

and place-based education for sustainability, but they can also generate very large, well-62 

documented collections of animal and human bone, shells, insects, and carbonized and 63 

waterlogged botanical materials that span thousands of years. Advances in stable isotope, ancient 64 

DNA (aDNA), and macrofossil analyses have improved the resolution of diverse organic samples, 65 

improving key archives for understanding long-term biogeographical change (Hofman et al., 66 

2015), food web structure (Dunne et al., 2016), marine and terrestrial resource fluctuations 67 

(McKetchnie et al., 2014, Moss et al., 2016), and the long-term impacts of climate and human 68 

settlement on both individual species and whole ecosystems (Erlandson et al., 2008). Improved 69 

archaeological and palaeoecological datasets have significant relevance to contemporary 70 

researchers and resource managers who face the challenge of shifting baselines syndrome in which 71 

each successive generation of natural resource managers falsely identify their contemporary (and 72 

already heavily depleted) ecosystems as a pristine natural baseline (e.g., Jackson et al., 2001; 73 

Bolster et al., 2012). Identification of accurate environmental baselines has an essential relevance 74 

to major challenges of our time, including food security through overexploitation of marine and 75 

terrestrial ecosystems (Yletyinen et al., 2016), restoring biodiversity in heavily degraded 76 

environments, and the preservation of sustainable resource-use practices (Klein et al., 2007; 77 

Barthel et al., 2013). The relevance of long-term (century- to millennial-scale) perspectives offered 78 

by archaeologists and the natural sciences are recognized increasingly as key data sources for 79 

future sustainable resource use (Engelhard et al., 2015; Laparidou et al,. 2015). The authors of this 80 

article are generally operating in a time scale that encompasses the last millennium. Archaeology 81 

in the most general sense operates on two temporal scales. The last ten thousand years, meaning 82 
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the period beginning with the Neolithic and the appearance of plant and animal domestication, and 83 

then the last two million years, meaning the period beginning with the emergence of our genus and 84 

the appearance of material culture. The authors belong to the first group. In each case the matching 85 

of millennial and century-scale to the lived experience of humans at the generational-scale is a 86 

central priority of archaeology. 87 

While many archaeologists have been aware of the potential of the growing global 88 

assemblage of well-dated, well-excavated sites with comprehensive archives of ecological material 89 

since the birth of our discipline, it can be challenging to communicate this potential to scientists 90 

from other disciplines engaged in global change research or to a wider public whose perceptions 91 

of archaeology are conditioned by images of Indiana Jones and Laura Croft. A challenge for 92 

archaeologists has been to shrug-off the perception of archaeology as an antiquarian pursuit 93 

focused on collecting high-value artifacts, rather than a science-based discipline that, among other 94 

pursuits, provides unique datasets for understanding long-term human interactions with changing 95 

environments. As highlighted in Kintigh and colleagues’ (2014, pp. 6) Grand Challenges for 96 

Archaeology, “archaeological data and interpretations have entered political and public, as well as 97 

scholarly, debates on such topics as human response to climate change, the eradication of poverty, 98 

and the effects of urbanization and globalization on humanity.” Communicating the relevance of 99 

archaeological data to practitioners, such as resource managers, using deep time perspectives 100 

illustrate not only the value of establishing environmental baselines and understanding ecosystem 101 

structures, but also supply narratives spanning multiple centuries to millennia of human resource-102 

use and adaptation (Nelson et al., 2016; Spielmann et al., 2016).  103 

At a 2013 meeting in Paris between the interim Future Earth management team 104 

(http://www.futureearth.org) and representatives of the Integrated History and Future of People on 105 
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Earth (IHOPE) group (http://www.ihopenet.org), the IHOPE presenters (Carole Crumley, Tom 106 

McGovern, Jago Cooper, Steven Hartman, Andy Dugmore) coined the phrase ‘distributed 107 

observing network of the past’ (DONOP) to communicate the value of archaeological sites for 108 

global change research (GCR), and adopt a vernacular more familiar to the wider scientific 109 

community and help argue the case for better inclusion of archaeologically-derived data sets into 110 

the Future Earth agenda. The DONOP concept resonates with the description of existing 111 

instrumental observation networks that monitor the current impacts of human activities on 112 

environmental change (Hari et al., 2016; Proença et al., 2016; Theobald, 2016; Marzeion et al., 113 

2017). For examples, the Intergovernmental Panel on Climate Change (IPCC) occupies an 114 

authoritative position monitoring the impacts of climate change on biophysical systems and human 115 

societies. The International Oceanographic Commission (IOC) of UNESCO operates a Global 116 

Ocean Observation System (GOOS) to monitor global changes to ocean temperature, its 117 

ecosystems, and human communities reliant on the resources it provides. But long-term human 118 

processes have been largely absent from many major monitoring efforts reports despite being in a 119 

position to disseminate data relevant to GCR. This paper explores the relevance of DONOP with 120 

a specific focus on work carried out in the North Atlantic region. 121 

Archaeological sites are a core aspect of DONOP as they have the ability to both show 122 

change through time as well as reveal local and regional dynamics. Ideally, the best DONOP sites 123 

would be those that have deep temporal range and are parts of networks of sites that can cover 124 

spatial scales from the local through the regional. Given the variety of sites and projects in the 125 

Archaeological community such data can be relevant from the scale of the household (i.e. how a 126 

particular individual settlement interacted with its local environment) to regional scales of varying 127 
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size. The examples offered by this article show some of the spatial and temporal range of the 128 

application of DONOP.  129 

2. Archaeological Sites as Distributed Long-term Observing Networks of the Past 130 

Through the analysis of archaeological datasets, we have the potential to access long-term 131 

records of human interactions with natural systems at a wide variety of temporal and spatial scales 132 

and thus both reconstruct past environmental conditions and reveal the human dimensions of these 133 

processes. There is a rich record of research into the shifting relationship between culture, climate, 134 

and landscape change using archaeological data (Brown et al., 2012; Golding et al., 2015a; 135 

McGovern et al., 2007; Simpson et al., 2001a; Streeter et al., 2012; Thomson and Simpson, 2006). 136 

This effort has intensified as the key role of people within ecological systems and the wide 137 

spectrum of natural and anthropogenic environmental change have been recognized (Crumley, 138 

2016). Alongside this, there have been major developments in the quantity and quality of 139 

paleoclimate reconstructions at multiple temporal and spatial scales that make possible effective 140 

connections to human systems. The increasing availability of sophisticated climate data sets whose 141 

scales match those of human societies and the human experience has made a profound difference 142 

to the ways in which we can understand interactions of people and environment (Hoggarth et al., 143 

2016). The growing recognition in the scientific, global policy, and political arenas of 144 

anthropogenic climate change and the levels of extreme disruption that this will bring to 145 

contemporary societies have served as a final, and possibly most potent, influence on current 146 

research agendas and raising new questions that can only be answered with long-term perspectives 147 

of our interactions with the natural world (Anderson et al., 2013).  148 

The development of refined, high-precision chronologies has played a key role in the 149 

translation of DONOP into a practical and very worthwhile reality. With tight chronological 150 
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controls, such as those provided by AMS radiocarbon dating using a Bayesian framework, data 151 

from multiple sites can be combined with greater confidence. Thus, the extensive spatial 152 

distribution of archaeological sites, each with variable temporal continuity, can be transformed 153 

from a perceived weakness of DONOP to a real strength. Highly detailed but temporally-154 

inconsistent records can be combined to chart the waxing and waning interactions of people and 155 

environment. An example of this is provided by the coastal middens that record long-term human 156 

exploitation of marine ecosystems. This data illustrates the reality of ‘shifting baselines’ and the 157 

chronic limitations of short observational timescales in fisheries management, as discussed in 158 

Bolster’s (2014) The Mortal Sea (see also Jackson et al., 2001). There is a clear need for the 159 

effective integration of the longue durée with urgent issues of fisheries and marine resource 160 

management (Moss et al., 1990; Holm, 1995; Ogilvie and Jónsdóttir, 2000; Jackson et al., 2001; 161 

Perdikaris and McGovern, 2009). A major EU-funded initiative, the Oceans Past program 162 

(http://www.tcd.ie/history/opp), has begun to correct the effects of shifting baselines that can result 163 

in fundamentally flawed decision making with historical and archaeological data sets (Pinnegar 164 

and Engelhard, 2008). 165 

Archaeological DONOP are our best (and for many regions and periods of time our only 166 

realistic) source of information on the resilience of past cultures to natural hazards. Past cultures 167 

provide a vast range of human interactions with different climatic and ecological conditions 168 

(Cooper and Sheets, 2012). Contrasting outcomes illustrate the consequences of different social 169 

organizations, alternative adaptive strategies, and contrasting approaches to resource use, 170 

sustainability, and building resilience. Though the past cannot be used as a direct analogue to 171 

explain how present and future populations will deal with external environmental threats, it does 172 

offer us significant opportunities to better understand processes of social interactions with 173 
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environmental change and to generate both data and new theory that can contribute to a wide 174 

spectrum of managerial issues raised by contemporary anthropogenic climate change.  175 

Distributed long-term observing networks have been (and can be) used to emphasize the 176 

anthropogenic dimensions of data sourced from archaeological sites because the record is created 177 

by people and extracted from the lived environment (Crumley, 2015). By aggregating in situ 178 

evidence of human impacts on their local environments – through extirpation of local resources 179 

and engineering of cultural landscapes (Smith, 2007) – to the regional and continental scale, 180 

DONOP assimilate comparative interactions between humans and their environments with 181 

chronological controls. 182 

Firstly, the physical assemblages have been deposited as a direct result of human actions. 183 

They will have specific biases created by diverse ways in which the environment has been sampled 184 

and contrasts that reflect the beliefs, values, and knowledge of different social groups. As such, 185 

DONOP provide comparative data reflecting different human behaviors. Secondly, DONOP data 186 

is sourced from an environmental context that has been directly impacted and in many cases 187 

directly formed through human actions. Whether the sample is from a wild species that is subject 188 

to human predation or from an ecosystem that is shaped by the interaction of human actions, 189 

ecosystem dynamics, Earth surface processes, and climate, this type of data holds information 190 

about both natural and human processes. 191 

 Humans selectively sample the surrounding ecology and they collect specimens 192 

(consciously and unconsciously) from across trophic webs, landscapes, and seascapes. Then, given 193 

favorable post-depositional conditions, these samples are preserved in one place – the 194 

archaeological site. Wherever (and whenever) humans and our ancestors have lived, and when 195 

conditions allow for survival and preservation, it is possible to find these sites. Some DONOP 196 
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records are scattered and of limited duration but can be linked together to create a coherent regional 197 

picture of change through the rigorous application of both relative and absolute dating. If these 198 

sites accumulate long-term records they can produce very deep cultural layers and thus large 199 

accumulations of material for analysis. Very high temporal resolutions can be achieved within 200 

such contexts due to the wide range of dating methods that can be applied to both organic (e.g., 201 

dendrochronology or radiocarbon dating within a Bayesian framework) and inorganic artifacts 202 

(e.g., ceramic seriation). In turn, these datasets contain the signatures of environmental, climatic, 203 

and cultural dynamics (Figure 1). Additionally, archaeological survey and environmental analysis 204 

of landscapes dotted with small, ephemeral sites can reveal patterns in the timing and nature of 205 

past landscape occupations, ecosystem impacts and resource usage that are important for 206 

understanding complex processes such as colonization, adaptation and abandonment (e.g., 207 

Altschul and Rankin 2008) and engaging with other grand challenge agendas for research that 208 
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have relevance for contemporary debates (Kintigh et al., 2014; Jackson et al., in review). All of 209 

these optimal conditions are dependent on a wide set of variables that span from the effectiveness 210 

of the excavation strategy and methods, the local environmental conditions and the potential for 211 

organic remains to survive in situ until excavation, and the availability of continuous and deep 212 

chronological control. Yet such assemblages do exist and their number and spatial and temporal 213 

resolution are increasing.  214 

There is a growing body of work focusing on archaeological data as a proxy for the 215 

complex relationships between cause, response, and outcome in human ecodynamics (Hegmon et 216 

al., 2008; Dugmore et al., 2013; Vésteinsson et al., 2014; Boivin et al., 2016; ďAlpoim Guedes et 217 

al., 2016). DONOP provide detailed records of these completed long-term human ecodynamics 218 

experiments of the past and the range of outcomes stemming from different pathways taken by 219 

Figure 1- Observation records of natural and human processes in the past. DONOP is the aggregation of short sequences 
within the archaeological and environmental record to build a multidimensional record of human-environmental interaction 
and modification. Greenland Ice Sheet Project 2 (GISP2) data provides a local-to-regional scale proxy record of climate, 
storm and sea ice conditions, but provides no direct evidence of influence on human processes in the past (Dugmore et al., 
2007). In regions with significant volcanic activity, such as Iceland, human impact on the environment and vegetation 
change can be measured using the tephra profile as a chronological control (Streeter and Dugmore, 2013). At the individual 
settlement scale, excavation data (for example: diet, artifacts, and architecture) can be aggregated to form regional and even 
continental-scale networks of subsistence, trade, and environmental modification.  
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past cultures in the face of environmental change (Diamond and Robinson, 2010; Hegmon et al., 220 

2014). They can serve as examples of alternative choices and the pathways they create, and these 221 

case studies can be used to assess contemporary ideas of how to build resilience and reduce 222 

vulnerability in the face of both environmental and social stresses. They can provide both 223 

inspiration and warnings.  224 

The ideal of deep temporal and broad spatial data that is at the core of DONOP aligns it, 225 

and reveals a debt to, attempts to conceptually break down the borders between the ideas of nature 226 

and culture (Chakrabarty, 2009). For example the concepts of coupled natural and human systems 227 

(CNH) and socio-environmental systems (SES) both inspire much of the following scholarship 228 

(Zeder et al., 2014).  When examined over the longue durée, the myriad interconnections between 229 

human and natural systems becomes clearer and the idea of static and pristine ecosystems that host 230 

humans but that see no anthropogenic impact becomes much harder to support. The history of the 231 

impact of humans, and other organisms, on landscapes continues to be pushed deeper in time 232 

through archaeological work. The dynamics behind these impacts is being revealed as more 233 

nuanced and increasingly complex. Niche Construction Theory is perhaps the best expression of 234 

these relationships and is relevant to all the projects presented in this article (Boivin et al., 2016; 235 

Sullivan et al., 2017; Zeder, 2016). 236 

The utility of DONOP sites and the data they contain for contemporary global change 237 

research can be explored from three perspectives: those that are 1) concerned with human 238 

behaviors, 2) related to shifting baselines, and 3) addressing biology. The behavioral perspective 239 

examines human action within intertwined social and natural systems. The shifting baselines 240 

perspective emphasizes the contrasting implications of baseline data for species, landforms, and 241 

ecology set before industrial expansion, commercial-scale resource exploitation, the ‘great 242 
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acceleration’ and other trends representing significant human impacts on their environments – all 243 

in stark contrast to the typical temporally shallow modern data currently in use (Pinnegar and 244 

Engelhard, 2008; Steffen et al., 2015a, 2015b). Finally, the biology perspective seeks to understand 245 

and utilize past diversity (i.e., trophic and/or genetic) as recovered through archaeological remains 246 

in order to develop tools and datasets that can be used to better manage contemporary wild and 247 

domestic animal populations (Hofman et al., 2015; Boivin et al., 2016; Zeder, 2015, 2016).  248 

In the following section, we evaluate archaeological sites as DONOP within the conceptual 249 

frameworks of human behavior, shifting baselines, and biological systems. We argue that 250 

archaeological sites contain valuable, and at times unique, data that have the potential to provide 251 

solutions to problems in the present and future. For this reason, there is a need to view and value 252 

archaeological sites as ‘observable networks’ that capture the resourcefulness of the past for 253 

understanding the impacts of human populations on their environments, establish accurate 254 

environmental baselines, and learn from human adaptation to climate change over century-to-255 

millennial timescales. Furthermore, given the current and increasing threats to archaeological sites 256 

from anthropogenic climate change, there is a pressing need to act quickly and decisively to collect 257 

critical archives before they are lost forever (Dawson, 2015; Hambrecht and Rockman, 2017).  258 



13 
 

 259 

 260 

Figure 2. A map of the eastern North Atlantic region showing the locations of sites in the Faroe Islands, Iceland, and 261 
Greenland that are discussed in this article. 262 

 263 

2.1 Human Behavior and DONOP 264 

Over the last thirty years, research in the North Atlantic by the North Atlantic Biocultural 265 

Organization (NABO, http://www.nabohome.org) has, in part, been focused on comparing 266 

datasets from separate geographical areas towards understanding the contrasting fates of Norse 267 

medieval communities in the Faroe Islands, Iceland, and Norse Greenland (Figure 2; see Nelson 268 

et al., 2016). These settlements were established by Scandinavians over several centuries, starting 269 

with: the Faroes (ca. 860 CE), Iceland (ca. 870 CE), and Greenland (ca. 985 CE). These three areas 270 
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were settled by people of a shared cultural and biological heritage (Jesch, 2015). Yet the paths 271 

chosen by these communities and their long-term fates contrast starkly. The Faroes survived 272 

centuries of relative economic isolation, limited natural resources, and numerous socio-political 273 

challenges, enduring to this day as a small but resilient nation (Brewington, 2015). Despite 274 

environmental, economic, and epidemiological challenges, Iceland was able to transform its 275 

economy, and has since become a highly-developed society with among the highest living 276 

standards and health care in the world (Karlsson, 2000). The Norse settlement in Greenland, by 277 

contrast, came to an end in the late fifteenth century. The contrasting fates of Iceland and 278 

Greenland have come to be discussed in popular discourses around ideas of ‘collapse’ (Diamond, 279 

2005) and remain active subjects for international interdisciplinary research (Dugmore et al., 2012, 280 

2013; Streeter et al., 2012; Nelson et al., 2016).  281 

Viewing these cases through the lens of DONOP distills the research down to a series of 282 

narratives that have important implications for current debates. First, the simple ‘collapse’ 283 

narrative of why societies choose to fail through maladaptation is too simplistic and actively 284 

misleading for these cases (Dugmore et al., 2009, 2012). DONOP-based long-term perspectives of 285 

the Scandinavian communities of the Atlantic islands in general, and Iceland and Greenland in 286 

particular, provide specific examples of human behavior that was environmentally-nuanced, 287 

adaptive, and sustainable over multi-century time scales. This creates a picture that is far more 288 

disturbing than the simple collapse thesis because it shows that societies may undertake entirely 289 

rational, adaptive strategies in the face of unprecedented challenges and yet still undergo painful 290 

transformational changes (Butzer, 2012; Dugmore et al., 2012). 291 

The example of Norse Greenland, which has often been used as a parable of human inaction 292 

in the face of increasingly hazardous climates to the point of self-extinction, offers a complex and 293 



15 
 

bleak message (Diamond, 2005). A combination of new data acquisitions, reinterpretation of 294 

established knowledge, and a somewhat different philosophical approach to the question of 295 

collapse has revealed a society that was, in fact, flexible and adaptive in the face of changing 296 

climates (Dugmore et al., 2012). Within the first generation of settlement in the late tenth and early 297 

eleventh centuries CE, the Norse Greenlanders adjusted their diet to fit the seasonal availability of 298 

local resources: fishing ceased and the large-scale exploitation of migrating seals began (Ogilvie 299 

et al., 2009; Arneborg et al., 2012). The Norse went on to create an effective economic network 300 

for communal provisioning and international trade (i.e., walrus ivory). Provisioning networks 301 

consisted of imported domesticated species (sheep, goats, cattle, horses, and pigs) supplemented 302 

with a broad set of wild resources (seals, caribou, seabirds, small mammals, and some berries and 303 

herbs). Zooarchaeological and stable isotope data from DONOP show that native caribou and non-304 

migratory seal populations were managed sustainably over multiple centuries (Arneborg et al., 305 

2012; Dugmore et al., 2012; Ascough et al., 2014) . Organization of economic networks emerged 306 

from the twelfth century, integrating domestic subsistence systems with wild resource cycles, such 307 

as the spring harp seal migration, late-summer bird collections, and walrus hunting (Ogilvie et al., 308 

2009; Frei et al., 2015). In the mid-to-late thirteenth century, further adjustment of lifeways and 309 

diet towards a deeper exploitation of marine mammals in response to unprecedented climate 310 

change can be seen in the zooarchaeological record as well as in stable isotope analysis of human 311 

burials (Arneborg et al., 2012). The poignant and rather grim conclusion to this is that even with 312 

adaptive flexibility and, in some cases, sustainable management systems, the Scandinavian 313 

settlement of Greenland still failed. This was not a collapse due to simple maladaptation but change 314 

driven by a variety of factors: spatial, climatic, demographic, social, political, and economic 315 

(Dugmore et al., 2012). While a full explanation of the current understanding of the nature of the 316 
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Greenland Norse collapse is outside of the remit of this article, a recent assessment of the North 317 

Atlantic by Nelson and colleagues (2016) offers a good summary of current research.  318 

On a more successful note, DONOP records of archaeofauna from the Mývatn region in 319 

the north of Iceland documents a millennial-scale case of successful, community-level 320 

management of migratory waterfowl beginning at first settlement (Landnám) and continuing to 321 

the present day (McGovern et al., 2006; Hicks et al., 2016). Today, there is an annual collection 322 

of eggs from nesting migratory waterfowl that does not adversely impact these species 323 

(Guðmundsson, 1979). Nesting waterfowl are monitored and protected; only a few eggs per nest 324 

are taken and adults are rarely hunted (Beck, 2013). Looking further back in time, the restricted 325 

collection of waterfowl eggs is documented in mid-nineteenth century written records, such as 326 

diaries, journals, and visitors accounts. Using DONOP we can create even longer time 327 

perspectives; some terrestrial (non-waterfowl) bird hunting has happened alongside waterfowl 328 

conservation and egg utilization since the Viking age; archaeofaunal assemblages are rich in 329 

waterfowl eggshells while bones were mostly from ptarmigan (grouse), a non-aquatic terrestrial 330 

species (McGovern et al., 2006, 2007). This suggests that a community-level avian management 331 

system produced a valuable crop of eggs while maintaining adult waterfowl populations. This 332 

management strategy was not only useful in conserving waterfowl populations over the long term: 333 

there is also historical and archaeological evidence that careful use of wild resources helped 334 

Mývatn inhabitants buffer themselves against starvation during hard times caused by climate 335 

change (McGovern et al., 2013). 336 

Successful long-term resource management is also evident from DONOP records in the 337 

Faroe Islands, where zooarchaeological (Brewington and McGovern, 2008; Brewington, 2011, 338 

2014) and documentary (Baldwin 1994, 2005) evidence suggests that local seabird colonies have 339 
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been sustainably exploited for over a millennium. As in Mývatn, fowling in the Faroes has long 340 

been carefully controlled by local communities (Nørrevang, 1986; Baldwin, 2005). This 341 

community-level management regime employs a sophisticated body of local ecological knowledge 342 

to gauge the relative vulnerability of individual bird species and nesting areas on a year-by-year 343 

basis. Faroese resource managers (traditionally, landowners) are thus able to determine sustainable 344 

harvest limits for birds and eggs each season (Williamson, 1970, pp. 153–156; Nørrevang, 1986). 345 

Also of critical importance for the success of the system has been the ability to effectively monitor 346 

and manage nesting sites, protecting this sensitive resource both from overexploitation by people 347 

and from destructive domesticates such as pigs (Brewington et al., 2015).  348 

In terms of behavior, DONOP from the North Atlantic can be used to draw two key lessons 349 

relevant to the present and future: sustainable millennial-scale management of natural resources is 350 

an attainable goal and adaptability in the short- or even medium-term is no guarantee of long-term 351 

survival.  352 

 353 

2.2 Shifting Baselines and DONOP 354 

Shifting baseline syndrome is a concept that describes situations in which communities 355 

formulate natural resource management decisions on ideas about primal or pristine natural 356 

resource populations that are inaccurate (Pauly, 1995; Pinnegar and Engelhard, 2008). Given that 357 

decisions about the management of natural resources can often be based on a ‘baseline’ standard 358 

that is constructed around an idea of a minimally exploited population, then the assumptions 359 

behind this baseline are very important. This can be a problem in conservation and resource 360 

management if the baselines used to define sustainable exploitation of populations are based on 361 

inaccurate, misleading data such as that from flawed human memory or temporally shallow data 362 



18 
 

sets (Papworth et al., 2009). Recent discussions of fishery management in the North Atlantic have 363 

a distinct relevance to DONOP. The problem centers on what datasets people are using to define 364 

a sustainable fish population. Pauly (1995) and others have described a phenomenon where 365 

fishermen and fisheries managers use a combination of their own memory of the early days of their 366 

fishing careers and catch data with a shallow time depth as baselines for what a sustainable fish 367 

population should be. This concern runs deeper into environmental movements, the media, and 368 

scientific works about rewilding (Monbiot, 2013). A specific example of this is described by 369 

Bolster and colleagues (2012) in which they argue that the North Atlantic fisheries, especially cod 370 

fisheries, have seen significant human impacts on fish populations from at least the early 371 

nineteenth century. Yet consistent catch data on North Atlantic Cod (Gadus morhua) in the North 372 

Atlantic has only been consistently collected since the beginning of the twentieth century (Bolster 373 

et al., 2012). Thus, many of the assumptions about what baseline cod populations and catch levels 374 

should be are based on populations that were already significantly impacted by human 375 

exploitation. This situation can lead to a misperception of the level of human impacts on a natural 376 

resource that can lead to much higher levels of stress on these populations than anticipated. 377 

Zooarchaeology (the analysis of animal remains sourced from archaeological sites) can help clarify 378 

if this is in fact a problem, especially when it utilizes recent advances in the analysis of aDNA and 379 

stable isotopes of animal remains. Though there has been significant and innovative research on 380 

shifting baselines in the North Atlantic that focuses on past ecological conditions and past 381 

landforms, this article, in the interest of brevity, will discuss examples that are addressing the 382 

species level of analysis (i.e., Dugmore et al., 2000; Simpson et al., 2001; Dugmore and Newton, 383 

2012; Streeter and Dugmore, 2013, 2014; Golding et al., 2015).   384 
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In 2012, Atlantic cod (Gadus morhua) was ranked by the Food and Agriculture 385 

Organization of the Union Nations (2014) as the 11th-most fished species in the world. In addition 386 

to being an important contemporary marine resource, this species was also crucial in both the 387 

medieval and early modern European colonial expansions. It was, and continues to be, a key 388 

species for both subsistence and the economic well-being of communities across the Atlantic from 389 

Maine to Norway. 390 

The DONOP data represented by fish bones found in middens (refuse deposits from which 391 

archaeologists often excavate organic remains) across the North Atlantic region have long been of 392 

interest to zooarchaeologists focusing on the origins of the trade in dried cod and the onset of 393 

intensified non-subsistence fishing in North West Europe (Barrett et al., 2004). Zooarchaeological 394 

analysis charting the changing patterns of fish utilization has produced data crucial to 395 

understanding Atlantic cod’s transformation from a subsistence good to an internationally traded 396 

commodity (Perdikaris, 1999; Perdikaris et al., 2007). Stable isotope analysis of fish bones is now 397 

revealing what regional populations of Atlantic cod are represented in the archaeological record 398 

(Orton et al., 2014). 399 

CodStory is a current project that examines demographic and ecological data of Atlantic 400 

cod derived from archaeological excavations of DONOP fishing sites (Ólafsdóttir et al., 2014). In 401 

2011, a pilot project began to investigate the feasibility of using Atlantic cod vertebrae to examine 402 

the historical genetic structure of Atlantic cod populations, and showed that this work is both 403 

feasible and rewarding. DNA was successfully extracted from fish bones and the cytochrome B 404 

gene sequenced from a time series of zooarchaeological samples in western Iceland dated from 405 

1500-1910 CE. Further analysis of the genetic variation indicates a sharp decline in effective 406 

population size of Atlantic cod in the fifteenth century, and further population size fluctuations 407 
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coinciding with recorded temperature changes (Ólafsdóttir et al., 2014). Although the concomitant 408 

loss of genetic variation in the sixteenth century does suggest a severe bottleneck, estimates of the 409 

genetic structure of Atlantic cod may be complicated by shifts in population structure distribution 410 

and changes in feeding migrations that occur as the cod seek favorable temperatures and feeding 411 

grounds because the Icelandic cod stock comprises both migratory and coastal elements (Hovgård 412 

and Buch, 1990; Rose, 1993; Vilhjálmsson, 1997; Pampoulie et al., 2006). To test these ideas, the 413 

CodStory project has continued by producing higher resolution genetic data, stable isotopes assays, 414 

and shape analysis and growth reconstruction based on otolith increments. The otolith analysis 415 

indicates a shift in the abundance of migratory and coastal Atlantic cod populations in the historical 416 

catch and suggests that growth conditions for the two Atlantic cod ecotypes changed in the early 417 

modern period (Ólafsdóttir et al. 2017). Together, these results signal a disruption in the North 418 

Atlantic marine ecosystem coinciding with a temperature minimum in the North Atlantic. Using 419 

archaeological samples, the CodStory project is generating paleodemographic data on one of the 420 

most important maritime resources of the North Atlantic while also investigating the effects of 421 

changing climate on these fish populations at a high temporal resolution.  422 

It is also possible to use DONOP archaeological data coupled with aDNA analysis to 423 

understand the distribution of marine mammal populations before the commercial and industrial 424 

exploitation of the Arctic oceans with potentially major implications for historical biogeography, 425 

modern conservation biology, and marine management. A pilot project, completed in 2014, 426 

included 35 presumed marine mammal specimens from archaeological sites in Iceland, Greenland, 427 

and the Faroes; six samples gave positive results for aDNA. Four specimens were identified to the 428 

species level, including one blue whale (Balaenoptera musculus, AK-CESP-001), two fin whales 429 

(Balaenoptera physalis, UJF-CESP-003 and HRH-CESP-002) and one harbour porpoise 430 
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(Phocoena phocoena, SGN.103-CESP-507). Two additional specimens (UJF-CESP-001 and UJF-431 

CESP-008) were identified as being species of right whales, but were not isolated to unique species 432 

beyond Eubalena spp. In order to further test how universal the primers were, DNA extracted from 433 

a 13,000 year old bowhead whale bone was included, and two samples from the Swedish Museum 434 

of Natural History, one bone sample previously identified as being a humpback whale and a sample 435 

from a sperm whale tooth. The primers managed to amplify DNA confirming the species 436 

(Anderung et al., 2014). The successful results of this pilot project mean that marine mammal bone 437 

from DONOP sites, which can be difficult for zooarchaeologists to identify morphologically, can 438 

now be identified, providing a window into species distributions in past seascapes. Future work 439 

will also use methods such as protein analysis, ZooMS, which is proving to be cheaper and often 440 

more useful under a variety of different taphonomic circumstances than aDNA analysis (Buckley, 441 

2018). 442 

Due in part to the success of this pilot project, a three year NSF-funded project (Assessing 443 

the Distribution and Variability of Marine Mammals through Archaeology, Ancient DNA, and 444 

History in the North Atlantic – NSF award #1503714 – PI Dr. Vicki Szabo) commenced in 2016. 445 

This has explanded analysis to approximately 300 archaeological samples of whale, seal, and 446 

walrus bones across the Norse North Atlantic. Species-level identification of DONOP 447 

archaeological material will allow deeper historical access into the premodern Arctic, Subarctic, 448 

and North Atlantic societies’ impacts on marine mammals, adding to recent groundbreaking 449 

studies of pre-modern North Atlantic walrus exploitation and biogeographies (McLeod et al., 450 

2014; Frei et al., 2015). Norse economies, hunting or scavenging strategies, commercial uses of 451 

marine mammals, and subsistence will be reassessed. aDNA analysis will allow insights into 452 

genetic diversity and drift, possibly paleodemographic data, identification of now-lost or 453 
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endangered species in certain regions, and provide historical depth to the management of species 454 

under threat today.  455 

These projects are pushing baseline data of key natural species back into the last 456 

millennium. In both cases they are focusing on species that have seen predation by humans, at 457 

varying levels of intensity since the Neolithic period. Each one is focusing on the medieval to early 458 

modern transition and attempting to build demographic data that could radically alter current ideas 459 

of what a ‘normal’ or sustainable population is and of the historical spatial ranges of these species. 460 

 461 

2.3 Biological Records and DONOP 462 

Analysis of aDNA has revolutionized our understanding of the history of our species as 463 

well as that of our commensals and domesticates (Magee et al., 2014; Orlando, 2015; Scheu et al., 464 

2015; Zeder, 2015). aDNA analysis from DONOP sites can also directly contribute to 465 

understanding the results of modern day breeding programs; revealing vulnerabilities and 466 

suggesting improvements (Fahrenkrug et al., 2010). Finally, aDNA, with the advent of gene 467 

editing technology, has the potential to become a source for past genetic variation that could be 468 

reintroduced into modern domestic animal populations, allowing us to restore some of the 469 

variability lost to modern industrial breeding programs. 470 

A collaboration between the University of Maryland Zooarchaeology Laboratory, 471 

Recombinetics LLC, and the aDNA Laboratory of the Catholic University of the Sacred Heart in 472 

Piacenza, Italy is aligning the interests of the historical sciences with those of present-day animal 473 

sciences. This project is beginning with an initial investigation focusing on aDNA analysis of cattle 474 

bones from archaeological sites in Iceland. This will produce DNA sequence-based data that sheds 475 
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light on the interactions between humans, domestic animals, and a variety of exogenous forces 476 

such as climate change, epidemics, trade, and ideology. In addition, the sequence data provides an 477 

orthogonal element to the genetic record of livestock that shed insight into decoding the genomes 478 

of contemporary domestic animals. The discovery of unique genetic variation from the past could, 479 

for example, represent lost genetic variants effecting a wide spectrum of phenotypes. 480 

Bioinformatic analyses will attempt to isolate unique genetic variants underlying specific traits in 481 

pre-modern domestic animals that could be introduced back into current domestic animal 482 

populations using genome editing technology. This project will attempt to mine the genetic 483 

heritage of domestic animals that can be found within the faunal component of archaeological sites 484 

to create resources that increase the resilience or reproductive capacity of current populations of 485 

domestic animals. Given the stresses and hazards that anthropogenic climate change will generate, 486 

this project is also attempting to utilize historical data as a tangible resource for mitigation and 487 

adaptation to climate change threats and the improvement of animal well-being. The sequence data 488 

and results from subsequent analyses that includes information from the archaeological long-term 489 

observational networks will form the basis for direct and tangible resources for mitigating against 490 

climate change threats to food animal production while also producing key data for understanding 491 

the dynamics between social and ecological systems.  492 

This is, of course, a ‘brave new world’ for the potential uses of historical genetic material. 493 

The most dramatic and potentially visible impacts that aDNA could have in the near future are 494 

best demonstrated in the projects that are investigating the possibility of reviving extinct species 495 

(Charo and Greely, 2015; Diehm, 2015; Edwards, 2015; Shapiro, 2015; Weaver, 2015). Such 496 

projects could not be possible without access to genetic material from either museum or 497 

archaeological specimens. A vigorous debate is developing around the ethical and practical 498 
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ramifications of such approaches (Kristensen et al., 2015; Martinelli et al., 2014; Oksanen, 2008; 499 

Oksanen and Siipi, 2014; Siipi, 2016). Yet what can be said without debate at this point is that 500 

developing biotechnologies focusing on editing genomes will have a profound impact on the way 501 

historical genetic material is perceived and utilized.  502 

 503 

3. Discussion 504 

 The article presents just a few of the projects that illustrate how data from archaeological 505 

sites can be mobilized for application to contemporary problems. This idea is at the core of the 506 

concept of DONOP. Indeed, an important difference in perspective between traditional 507 

archaeological research focused on the interpretation of specific sites and the DONOP concept is 508 

the selective use of records from archaeological contexts to tackle specific ‘grand challenge’ 509 

research agendas of demonstrable importance beyond narrow disciplinary confines (Kintigh et al., 510 

2014; Armstrong et al., 2017; Jackson et al., in review). They represent research projects that could 511 

form key contributors from the historical sciences towards navigating the future challenges of 512 

global change. Cooperative scholarly organizations such as IHOPE are driving efforts to increase 513 

engagement with GCR, while governmental and non-governmental organizations have recognized 514 

the potential of archaeological data, and threats to cultural heritage arising from anthropogenic 515 

climate change.  516 

The archive of DONOP sites and the behavioral, baseline, and biological data they contain 517 

is unique. Yet this archive is threatened with destruction by the very global changes it records; this 518 

is a modern equivalent to the burning Library of Alexandria. The rate of damage to archaeological 519 

remains is continuing to accelerate as ground temperatures, moisture regimes, and erosion patterns 520 

change (Rockman, 2015; Hollesen et al., 2016; Hambrecht and Rockman, 2017; Hollesen et al., 521 
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2017). Without the mobilization of substantial international resources to recognize, manage, and 522 

when needed, rescue these endangered archaeological archives, irreplaceable records will be lost. 523 

DONOP sites are important not just because of the inherent value of our shared human historical 524 

inheritance but also as a direct cultural archive of social-ecological interaction over the longue 525 

durée.  526 

Recognition of the importance and utility of DONOP has grown beyond direct 527 

practitioners. The US National Park Service has taken the lead within the US government, setting 528 

out federal policy and strategic guidance on the importance of addressing impacts of climate 529 

change on cultural heritage (including archaeology) and using cultural heritage to inform both 530 

research and the management of climate science, adaptation, mitigation, and communication 531 

policies (National Park Service, 2014; Rockman, 2015; Rockman et al., 2017). In this approach, it 532 

is recognized that cultural heritage is both affected by climate change and is a source of data on 533 

how to address climate change (Harvey and Perry, 2015).  534 

There are many other international, national, and local efforts addressing the interaction of 535 

climate change with cultural heritage but there is a danger that a piecemeal approach will not be 536 

the most effective. A global response to threatened archaeological sites focused on their utility as 537 

DONOP is likely to produce the most effective global outcomes. International funding 538 

organizations such as the US National Science Foundation, the Belmont Forum, the EU Science 539 

Commission, and Future Earth have the potential to create funding streams that are focused on 540 

utilizing the past to better understand the present and navigate the future (Costanza et al., 2007, 541 

2012). Many archaeological sites, especially in coastal, montane, and polar regions, are now at 542 

critical risk of loss to climate change. Saving all threatened sites will not be possible. Many will 543 

be irrevocably lost over the next century due to the impacts of climate change. Guided by a series 544 
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of focused research questions, it is essential that archaeologists identify, excavate, or at least 545 

sample ‘at risk’ sites and, where possible, protect key archives under threat (Van de Noort, 2013). 546 

The issue is no longer one of just preserving archaeological sites so that they survive for future 547 

generations, though that is important on its own terms. It is now an issue of protecting and/or 548 

rescuing key data sources that will help us better face the future. On a local and regional scale, 549 

past societies have experienced global changes that have dramatically altered the structure of their 550 

spatially-limited worlds; the scale of future change is such that it is likely to have unknown impacts 551 

on contemporary societies and their cultural, social, environmental, and economic capital. 552 

Archaeological sites and heritage in general should be redefined to include their utility towards 553 

addressing and recording anthropogenic global change. Funding organizations and governments 554 

are recognizing the importance of archaeological data, but more needs to be done to encourage 555 

engagement between archaeologists, GCR, and practitioners.  556 
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