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On the Geometry of Bayesian Inference

Miguel de Carvalho∗ , Garritt L. Page† , and Bradley J. Barney†

Abstract. We provide a geometric interpretation to Bayesian inference that al-
lows us to introduce a natural measure of the level of agreement between priors,
likelihoods, and posteriors. The starting point for the construction of our geom-
etry is the observation that the marginal likelihood can be regarded as an inner
product between the prior and the likelihood. A key concept in our geometry is
that of compatibility, a measure which is based on the same construction princi-
ples as Pearson correlation, but which can be used to assess how much the prior
agrees with the likelihood, to gauge the sensitivity of the posterior to the prior,
and to quantify the coherency of the opinions of two experts. Estimators for all
the quantities involved in our geometric setup are discussed, which can be directly
computed from the posterior simulation output. Some examples are used to illus-
trate our methods, including data related to on-the-job drug usage, midge wing
length, and prostate cancer.

Keywords: Bayesian inference, Geometry, Hellinger affinity, Hilbert space,
Marginal likelihood.

1 Introduction
Assessing the influence that prior distributions and/or likelihoods have on posterior in-
ference has been a topic of research for some time. One commonly used ad-hoc method
suggests fitting a Bayes model using a few competing priors, then visually (or numeri-
cally) assessing changes in the posterior as a whole or using some pre-specified posterior
summary. More rigorous approaches have also been developed. Lavine (1991) developed
a framework to assess sensitivity of posterior inference to sampling distribution (like-
lihood) and the priors. Berger (1991) introduced the concept of Bayesian robustness
which includes perturbation models (see also Berger and Berliner 1986). More recently,
Evans and Jang (2011) have compared information available in two competing priors.
Related to this work, Gelman et al. (2008) advocates the use of so-called weakly infor-
mative priors that purposely incorporate less information than available as a means of
regularizing. Work has also been dedicated to the so-called prior–data conflict (Evans
and Moshonov, 2006; Walter and Augustin, 2009; Al Labadi and Evans, 2016). Such
conflict can be of interest in a wealth of situations, such as for evaluating how much
prior and likelihood information are at odds at the node level in a hierarchical model
(see Scheel, Green and Rougier, 2011, and references therein). Regarding sensitivity of
the posterior distribution to prior specifications, Lopes and Tobias (2011) provide a
fairly accessible overview.
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2 On the Geometry Of Bayesian Inference

We argue that a geometric representation of the prior, likelihood, and posterior dis-
tribution encourages understanding of their interplay. Considering Bayes methodologies
from a geometric perspective is not new, but none of the existing geometric perspectives
has been designed with the goal of providing a summary on the agreement or impact
that each component of Bayes theorem has on inference and predictions. Aitchison
(1971) used a geometric perspective to build intuition behind each component of Bayes
theorem, Shortle and Mendel (1996) used a geometric approach to draw conditional
distributions in arbitrary coordinate systems, and Agarawal and Daumé (2010) argued
that conjugate priors of posterior distributions belong to the same geometry giving an
appealing interpretation of hyperparameters. Zhu, Ibrahim and Tang (2011) defined a
manifold on which a Bayesian perturbation analysis can be carried out by perturbing
data, prior and likelihood simultaneously, and Kurtek and Bharath (2015) provide an
elegant geometric construction which allows for Bayesian sensitivity analysis based on
the so-called ε-compatibility class and on comparison of posterior inferences using the
Fisher–Rao metric.

In this paper, we develop a geometric setup along with a set of metrics that can be
used to provide an informative preliminary ‘snap-shot’ regarding comparisons between
prior and likelihood (to assess the level of agreement between prior and data), prior
and posterior (to determine the influence that prior has on inference), and prior versus
prior (to compare ‘informativeness’—i.e., a density’s peakedness—and/or congruence
of two competing priors). To this end, we treat each component of Bayes theorem as
an element of a geometry formally constructed using concepts from Hilbert spaces and
tools from abstract geometry. Because of this, it is possible to calculate norms, inner
products, and angles between vectors. Not only do each of these numeric summaries
have intuitively appealing individual interpretations, but they may also be combined to
construct a unitless measure of compatibility, which can be used to assess how much
the prior agrees with the likelihood, to gauge the sensitivity of the posterior to the
prior, and to quantify the coherency of the opinions of two experts. Estimating our
measures of level of agreement is straightforward and can actually be carried out within
an MCMC algorithm. An important advantage of our setting is that it offers a direct
link to Bayes theorem, and a unified treatment that can be used to assess the level
of agreement between priors, likelihoods, and posteriors—or functionals of these. To
streamline the illustration of ideas, concepts, and methods we reference the following
example (Christensen et al., 2011, pp. 26–27) throughout the article.

On-the-job drug usage toy example
Suppose interest lies in estimating the proportion θ ∈ [0, 1] of US transportation in-
dustry workers that use drugs on the job. Suppose n = 10 workers were selected and
tested with the 2nd and 7th testing positive. Let y = (Y1, . . . , Yn) with Yi = 1 denoting
that the ith worker tested positive and Yi = 0 otherwise. Let Yi | θ

iid∼ Bern(θ), for
i = 1, . . . , n, and θ ∼ Beta(a, b), for a, b > 0. Then, θ | y ∼ Beta(a?, b?) with a? = n1 +a
and b? = n− n1 + b, where n1 =

∑n
i=1 Yi.

Some natural questions our treatment of Bayes theorem will answer are: How com-
patible is the likelihood with this prior choice? How similar are the posterior and prior
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distributions? How does the choice of Beta(a, b) compare to other possible prior distribu-
tions? While the drug usage example provides a recurring backdrop that we consistently
call upon, additional examples are used throughout the paper to illustrate our methods.

In Section 2 we introduce the geometric framework in which we work and provide
definitions and interpretations along with examples. Section 3 considers extensions of
the proposed setup, Section 4 contains computational details, and Section 5 provides a
regression example illustrating utility of our metric. Section 6 conveys some concluding
remarks. Proofs are given in the supplementary materials.

2 Bayes geometry

2.1 A geometric view of Bayes theorem

Suppose the inference of interest is over a parameter θ which takes values on Θ ⊆ Rp.
We consider the space of square integrable functions L2(Θ), and use the geometry of
the Hilbert space H = (L2(Θ), 〈·, ·〉), with inner-product

〈g, h〉 =

∫
Θ

g(θ)h(θ) dθ, g, h ∈ L2(Θ). (2.1)

The fact that H is a Hilbert space is often known in mathematical parlance as the
Riesz–Fischer theorem; for a proof see Cheney (2001, p. 411). Borrowing geometric
terminology from linear spaces, we refer to the elements of L2(Θ) as vectors, and assess
their ‘magnitudes’ through the use of the norm induced by the inner product in (2.1),
i.e., ‖ · ‖ = (〈·, ·〉)1/2.

The starting point for constructing our geometry is the observation that Bayes the-
orem can be written using the inner-product in (2.1) as follows

p(θ | y) =
π(θ)f(y | θ)∫

Θ
π(θ)f(y | θ) dθ

=
π(θ)`(θ)

〈π, `〉
, (2.2)

where `(θ) = f(y | θ) denotes the likelihood, π(θ) is a prior density, p(θ | y) is the
posterior density and 〈π, `〉 =

∫
Θ
f(y | θ)π(θ) dθ is the marginal likelihood or integrated

likelihood. The inner product in (2.1) naturally leads to considering π and ` that are
in L2(Θ), which is compatible with a wealth of parametric models and proper priors.
By considering p, π, and ` as vectors with different magnitudes and directions, Bayes
theorem simply indicates how one might recast the prior vector so as to obtain the
posterior vector. The likelihood vector is used to enlarge/reduce the magnitude and
suitably tilt the direction of the prior vector in a sense that will be made precise below.

The marginal likelihood 〈π, `〉 is simply the inner product between the likelihood
and the prior, and hence can be understood as a measure of agreement between the
prior and the likelihood. To make this more concrete, define the angle measure between
the prior and the likelihood as

π∠ ` = arccos
〈π, `〉
‖π‖‖`‖

. (2.3)
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Since π and ` are nonnegative, the angle between the prior and the likelihood can only
be acute or right, i.e., π∠ ` ∈ [0, 90◦]. The closer π∠ ` is to 0◦, the greater the agreement
between the prior and the likelihood. Conversely, the closer π∠ ` is to 90◦, the greater the
disagreement between prior and likelihood. In the pathological case where π∠ ` = 90◦

(which requires the prior and the likelihood to have all of their mass on disjoint sets), we
say that the prior is orthogonal to the likelihood. Bayes theorem is incompatible with
a prior being orthogonal to the likelihood as π∠ ` = 90◦ indicates that 〈π, `〉 = 0, thus
leading to a division by zero in (2.2). Similar to the correlation coefficient for random
variables in L2(Ω,BΩ, P )—with BΩ denoting the Borel sigma-algebra over the sample
space Ω—, our target object of interest is given by a standardized inner product

κπ,` =
〈π, `〉
‖π‖‖`‖

. (2.4)

The quantity κπ,` quantifies how much an expert’s opinion agrees with the data, thus
providing a natural measure of the level of agreement between prior and data.

Before exploring (2.4) more fully by providing interpretations and properties we
concretely define how the term ‘geometry’ will be used throughout the paper. The
following definition of abstract geometry can be found in Millman and Parker (1991,
p. 17).

Definition 1 (Abstract geometry). An abstract geometry A consists of a pair {P,L},
where the elements of set P are designed as points, and the elements of the collection L

are designed as lines, such that:

1. For every two points A,B ∈ P, there is a line l ∈ L.

2. Every line has at least two points.

Our abstract geometry of interest is A = {P,L}, where P = L2(Θ) and the set of
all lines is

L = {g + kh : g, h ∈ L2(Θ), k ∈ R}. (2.5)
Hence, in our setting points can be, for example, prior densities, posterior densities, or
likelihoods, as long as they are in L2(Θ). Lines are elements of L, as defined in (2.5),
so that for example if g and h are densities, line segments in our geometry consist of all
possible mixture distributions which can be obtained from g and h, i.e.,

{λg + (1− λ)h : λ ∈ [0, 1]}. (2.6)

A related interpretation of two-component mixtures as straight lines can be found in
Marriott (2002, p. 82).

Vectors in A = {P,L} are defined through the difference of elements in P = L2(Θ).
For example, let g ∈ L2(Θ) and let 0 ∈ L2(Θ). Then g = g − 0 ∈ L2(Θ), and hence g
can be regarded both as a point and as a vector. If g, h ∈ L2(Θ) are vectors then we say
that g and h are collinear if there exists k ∈ R, such that g(θ) = kh(θ). Put differently,
we say g and h are collinear if g(θ) ∝ h(θ), for all θ ∈ Θ.

For any two points in the geometry under consideration, we define their compatibility
as a standardized inner product (with (2.4) being a particular case).
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Definition 2 (Compatibility). The compatibility between points in the geometry under
consideration is defined as

κg,h =
〈g, h〉
‖g‖‖h‖

, g, h ∈ L2(Θ). (2.7)

The concept of compatibility in Definition 2 is based on the same construction
principles as the Pearson correlation coefficient, which would be based however on the
inner product

〈X,Y 〉 =

∫
Ω

XY dP, X, Y ∈ L2(Ω,BΩ, P ), (2.8)

instead of the inner product in (2.1). However, compatibility is defined for priors, poste-
riors, and likelihoods in L2(Θ) equipped with the inner product (2.1), whereas Pearson
correlation works with random variables in L2(Ω,BΩ, P ) equipped with the inner prod-
uct (2.8). Our concept of compatibility can be used to evaluate how much the prior
agrees with the likelihood, to measure the sensitivity of the posterior to the prior, and
to quantify the level of agreement of elicited priors. As an illustration consider the
following example.

Example 1. Consider the following densities π0(θ) = I(0,1)(θ), π1(θ) = 1/2I(0,2)(θ),
π2(θ) = I(1,2)(θ), and π3(θ) = 1/2I(1,3)(θ). Note that ‖π0‖ = ‖π2‖ = 1, ‖π1‖ = ‖π3‖ =√

2/2, and; further, κπ0,π1
= κπ2,π3

=
√

2/2, thus implying that π0∠π1 = π2∠π3 = 45◦.
Also, κπ0,π2

= 0 and hence π0 ⊥ π2.

As can be observed in Example 1, (πa∠πb)/90◦ is a natural measure of distinctiveness
of two densities. In addition, Example 1 shows us how different distributions can be
associated to the same norm and angle. Hence, as expected, any Cartesian representation
(x, y) 7→ (‖ · ‖ cos(·∠·), ‖ · ‖ sin(·∠·)), will only allow us to represent some features
of the corresponding distributions, but will not allow us to identify the distributions
themselves.

To build intuition regarding κπ,`, we provide Figure 1, where ` is set to N(0, 1)
while π = N(m,σ2) varies according to m and σ2. Figure 1 (i) corresponds to fixing
σ2 = 1 and varying m while in the right plot m = 0 is fixed and σ2 varies. Notice that
in plot (i) κπ,` = 0.1 corresponds to distributions whose means are approximately 3
standard deviations apart while a κπ,` = 0.9 corresponds to distributions whose means
are approximately 0.65 standard deviations apart. Connecting specific values of κ to
specific standard deviation distances between means seems like a natural way to quickly
get a rough idea of relative differences between two distributions. In Figure 1 (ii) it
appears that if both distributions are centered at the same value, then one distribution
must be very disperse relative to the other to produce κ values that are small (e.g.,
≤ 0.1). This makes sense as there always exists some mass intersection between the
two distributions considered. Thus, κπ,`—to which we refer as compatibility—can be
regarded as a measure of the level of agreement between prior and data. Some further
comments regarding our geometry are in order:
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Figure 1: Values of κπ,` when both π and ` are both Gaussian distributions. (i) Gaussian distribu-
tions whose means become more separated. (ii) Gaussian distributions that become progressively more
diffuse.

• Two different densities π1 and π2 cannot be collinear: If π1 = kπ2, then k = 1,
otherwise

∫
π2(θ) dθ 6= 1.

• A density can be collinear to a likelihood: If the prior is Uniform then p(θ | y) ∝
`(θ), and hence the posterior is collinear to the likelihood, i.e., in such a case the
posterior simply consists of a renormalization of the likelihood.

• Two likelihoods can be collinear: Let ` and `∗ be the likelihoods based on observing
y and y∗, respectively. The strong likelihood principle states that if `(θ) = f(θ |
y) ∝ f(θ | y∗) = `∗(θ), then the same inference should be drawn from both
samples (Berger and Wolpert, 1988). According to our geometry, this would mean
that likelihoods with the same direction yield the same inference.

As a final comment on reparametrizations of the model, interpretations of compatibility
should keep a fixed parametrization in mind. That is, we do not recommend compar-
ing prior–likelihood compatibility for models with different parametrizations. Further
comments on reparametrizations will be given below in Sections 2.3, 2.4, and 3.2.

2.2 Norms and their interpretation

As κπ,` is comprised of function norms, we dedicate some exposition to how one might
interpret these quantities. We start by noting that in some cases the norm of a density
is linked to the variance, as can be seen in the following example.

Example 2. Let U ∼ Unif(a, b) and let π(u) = (b − a)−1I(a,b)(u) denote its cor-
responding density. Then, it holds that ‖π‖ = 1/(12σ2

U )1/4, where the variance of
U is σ2

U = 1/12(b− a)2. Next, consider a Normal model X ∼ N(µ, σ2
X) with known
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variance σ2
X and let φ denote its corresponding density. It can be shown that ‖φ‖ =

{
∫
R φ

2(x;µ, σ2
X) dµ}1/2 = 1/(4πσ2

X)1/4 which is a function of σ2
X .

The following proposition explores how the norm of a general prior density, π, relates
with that of a Uniform density, π0.

Proposition 1. Let Θ ⊂ Rp with λ(Θ) < ∞ where λ denotes the Lebesgue measure.
Consider π : Θ → [0,∞) a probability density with π ∈ L2(Θ) and let π0 denote a
Uniform density on Θ, then

‖π‖2 = ‖π − π0‖2 + ‖π0‖2. (2.9)

Since ‖π0‖2 is constant, ‖π‖2 increases as π’s mass becomes more concentrated (or less
Uniform). Thus, as can be seen from (2.9), ‖π‖ is a measure of how much π differs from
a Uniform distribution over Θ. This interpretation cannot be applied to Θ’s that do not
have finite Lebesgue measure as there is no corresponding proper Uniform distribution.
Nonetheless, the notion that the norm of a density is a measure of its peakedness may
be applied whether or not Θ has finite Lebesgue measure. To see this, evaluate π(θ) on
a grid θ1 < · · · < θD and consider the vector p = (π1, . . . , πD), with πd = π(θd) for
d = 1, . . . , D. The larger the norm of the vector p, the higher the indication that certain
components would be far from the origin—that is, π(θ) would be peaking for certain θ
in the grid. Now, think of a density as a vector with infinitely many components (its
value at each point of the support) and replace summation by integration to get the L2

norm. Therefore, ‖ · ‖ can be used to compare the ‘informativeness’ of two competing
priors with ‖π1‖ < ‖π2‖ indicating that π1 is less informative.

Further reinforcing the idea that the norm is related to the peakedness of a distri-
bution, there is an interesting connection between ‖π‖ and the (differential) entropy
(denoted by Hπ) which is described in the following proposition.

Proposition 2. Suppose π ∈ L2(Θ) is a continuous density on a compact Θ ⊂ Rp, and
that π(θ) is differentiable on int(Θ). Let Hπ = −

∫
Θ
π(θ) log π(θ) dθ. Then, it holds that

‖π‖2 = 1−Hπ + o{π(θ∗)− 1}, (2.10)

for some θ∗ ∈ int(Θ).

The expansion in (2.10) hints that the norm of a density and the entropy should be
negatively related, and hence as the norm of a density increases, its mass becomes more
concentrated. In terms of priors, this suggests that priors with a large norm should be
more ‘peaked’ relative to priors with a smaller norm. Therefore, the magnitude of a prior
appears to be linked to its peakedness (as is demonstrated in (2.9) and in Example 2).
While this might also be viewed as ‘informativeness,’ the Beta(a, b) density has a higher
norm if (a, b) ∈ (1/2, 1)2 than if a = b = 1, possibly placing this interpretation at odds
with the notion that a and b represent ‘prior successes’ and ‘prior failures’ in the Beta–
Binomial setting. As will be further discussed in Section 2.5, a reviewer recognized that
this seeming paradox is a consequence of the parameterization employed and is avoided
when using the log-odds as the parameter.
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Figure 2: Prior and posterior norms for on-the-job drug usage toy example. Contour plots depicting
the ‖ · ‖ associated with a Beta(a, b) prior (i) and the corresponding Beta(a?, b?) posterior (ii), with
a? = a + 2 and b? = b + 8. Solid lines in (ii) indicate boundaries delimiting the region of values of a
and b for which ‖π‖ > ‖p‖. The solid dot (•) corresponds to (a, b) = (3.44, 22.99) (values employed by
Christensen et al. 2011, pp. 26–27).

As can be seen from (2.10), the connection between entropy and ‖π‖ is an ap-
proximation at best. Just as a first-order Taylor expansion provides a poor polynomial
approximation for points that are far from the point under which the expansion is made,
the expansion in (2.10) will provide a poor entropy approximation when π is not sim-
ilar to a standard Uniform-like distribution π0. However, since ‖π0‖2 = 1 − Hπ0 , the
approximation is exact for a standard Uniform-like distribution. We end this discussion
by noting that integrals related to ‖π‖2 also appear in physical models on L2-spaces
and they are usually interpreted as the total energy of a physical system (Hunter and
Nachtergaele, 2005, p. 142), and there is considerable frequentist literature on the esti-
mation of the integrated square of a density (see Giné and Nickl, 2008, and references
therein). Now, to illustrate the information that ‖ · ‖ and κ provide, we consider the
example described in Section 1.

Example 3 (On-the-job drug usage toy example, cont. 1). From the example in the
Introduction we have θ | y ∼ Beta(a?, b?) with a? = n1 +a = 2+a and b? = n−n1 +b =
8 + b. The norm of the prior, posterior, and likelihood are respectively given by

‖π(a, b)‖ =
{B(2a− 1, 2b− 1)}1/2

B(a, b)
, (2.11)

and ‖p(a, b)‖ = ‖π(a?, b?)‖, with a, b > 1/2, and

‖`‖ =

(
n

n1

)
{B (2n1 + 1, 2 (n− n1) + 1)}1/2,

where B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du.
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Figure 2 (i) plots ‖π(a, b)‖ and Figure 2 (ii) plots ‖p(a, b)‖ as functions of a and b. We
highlight the prior values (a0, b0) = (3.44, 22.99) which were employed by Christensen
et al. (2011). Because prior densities with large norms will be more peaked relative to
priors with small norms, ‖π(a0, b0)‖ = 2.17 is more peaked than ‖π(1, 1)‖ = 1 (Uniform
prior) indicating that ‖π(a0, b0)‖ is more ‘informative’ than ‖π(1, 1)‖. The norm of
the posterior for these same pairs is ‖p(a0, b0)‖ = 2.24 and ‖p(1, 1)‖ = 1.55, meaning
that the posteriors will have mass more concentrated than the corresponding priors.
The lines found in Figure 2 (ii) represent boundary lines such that all (a, b) pairs that
fall outside of the boundary produce ‖π(a, b)‖ > ‖p(a, b)‖ which indicates that the
prior is more peaked than the posterior (typically an undesirable result). If we used
an extremely peaked prior, say (a1, b1) = (40, 300), then we would get ‖π(a1, b1)‖ =
4.03 and ‖p(40, 300)‖ = 4.04 indicating that the peakedness of the prior and posterior
densities is essentially the same.

Considering κπ,`, it follows that

κπ,`(a, b) =
B(a?, b?)

{B(2a− 1, 2b− 1)B(2n1 + 1, 2(n− n1) + 1)}1/2
, (2.12)

with a? = n1 +a and b? = n−n1 + b. Figure 3 (i) plots values of κ as a function of prior
parameters a and b with κπ,`(a0, b0) ≈ 0.69 being highlighted indicating a great deal of
agreement with the likelihood. In this example a lack of prior–data compatibility would
occur (e.g., κπ,` ≤ 0.1) for priors that are very peaked at θ > 0.95 or for priors that
place substantial mass at θ < 0.05.

The values of the hyperparameters (a, b) which, according to κπ,`, are more compat-
ible with the data (i.e., those that maximise κ) are given by (a∗, b∗) = (3, 9) and are
highlighted with a star (∗) in Figure 3 (i). In Section 2.4 we provide some connections
between this prior and maximum likelihood estimators.

2.3 Angles between other vectors

As mentioned, we are not restricted to use κ only to compare π and `. Angles between
densities, and between likelihoods and densities or even between two likelihoods are
available. We explore these options further using the example provided in the Introduc-
tion.

Example 4 (On-the-job drug usage toy example, cont. 2). Extending Example 3 and
(2.12) we calculate

κπ,p(a, b) =
B(a+ a? − 1, b+ b? − 1)

{B(2a− 1, 2b− 1)B(2a? − 1, 2b? − 1)}1/2
,

with a? = n1 + a and b? = n− n1 + b; for π1 ∼ Beta(a1, b1) and π2 ∼ Beta(a2, b2),

κπ1,π2
(a1, b1, a2, b2) =

B(a1 + a2 − 1, b1 + b2 − 1)

{B(2a1 − 1, 2b1 − 1)B(2a2 − 1, 2b2 − 1)}1/2
.
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(i) (ii) (iii)

Figure 3: Compatibility (κ) for on-the-job drug usage toy illustration as found in (2.12) and Example 4.
(i) Prior–likelihood compatibility, κπ,`(a, b); the black star (∗) corresponds to (a∗, b∗) which maximise
κπ,`(a, b). (ii) Prior–posterior compatibility, κπ,p(a, b). (iii) Prior–prior compatibility, κπ1,π2 (1, 1, a, b),
where π1 ∼ Beta(1, 1) and π2 ∼ Beta(a, b). In (i) and (ii) the solid dot (•) corresponds to (a, b) =
(3.44, 22.99) (values employed by Christensen et al. 2011, pp. 26–27).

To visualize how the hyperparameters influence κπ,p and κπ1,π2 we provide Figures 3
(ii) and (iii). Figure 3 (ii) again highlights the prior used in Christensen et al. (2011)
with κπ,p(a0, b0) ≈ 0.95; see solid dot (•). This value of κπ,p implies that both prior
and posterior are concentrated on essentially the same subset of [0, 1], indicating a large
amount of agreement between them. Disagreement between prior and posterior takes
place with priors concentrated on high probabilities of θ being greater than 0.8. In
Figure 3 (iii), κπ1,π2

is largest when π2 is close to Unif(0, 1) (the distribution of π1) and
gradually drops off as π2 becomes more peaked and/or less symmetric.

In the next example, we use another data illustration to demonstrate the application
of κ to a two-parameter model.

Example 5 (Midge wing length data). Let Y1, . . . , Yn | µ, σ2 iid∼ N(µ, σ2), and µ | σ2 ∼
N(µ0, σ

2/η0) and σ2 ∼ IG(ν0/2, σ
2
0ν0/2); we refer to this conjugate prior distribution as

NIG(µ0, η0, ν0, σ
2
0). In comparing π1 = NIG(µ1, η1, ν1, σ

2
1) and π2 = NIG(µ2, η2, ν2, σ

2
2),

κπ1,π2
may be expressed as,

κπ1,π2 =
(πAπB)1/2

πC

∣∣∣
µ=0,σ2=1

, (2.13)

with

πA = NIG(µ1, 2η1, 2ν1 + 3, ν1σ
2
1/(ν1 + 3/2)), πB = NIG(µ2, 2η2, 2ν2 + 3, ν2σ

2
2/(ν2 + 3/2)),

πC = NIG((η1µ1 + η2µ2)/(η1 + η2), η1 + η2, ν1 + ν2 + 3,

{ν1σ
2
1 + ν2σ

2
2 + η1η2(µ1 − µ2)2/(η1 + η2)}/(ν1 + ν2 + 3)).

Note that (2.13) (whose derivation can be found in Section 5.1 of the Supplementary
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(i) (ii)

Figure 4: Prior–posterior compatibility, κπ,p(µ0, η0, ν0, σ2
0), for midge wing lengths data from Exam-

ple 5. In (i) η0 and ν0 are fixed at one, whereas in (ii) η0 is fixed at nine and ν0 is fixed at six. The solid
dot (•) corresponds to (µ0, σ2

0) = (1.9, 0.01) which is here used as a baseline given that hyperparameters
employed by Hoff (2009, pp. 72–76) are µ0 = 1.9, η0 = 1, ν0 = 1, and σ2

0 = 0.01.

Materials) may also be used to compute κπ1,p, since p = NIG(µ?, η?, ν?, σ2?), with
µ? = (nȲ + η0µ0)/(n+ η0), η? = η0 + n, ν? = ν0 + n,

σ2? =

{
ν0σ

2
0 +

n∑
i=1

(Yi − Ȳ )2 + η0n(η?)
−1

(µ0 − Ȳ )2

}
/ν?.

Computation of κπ1,` also adheres to Equation (2.13) if n > 3 and π2 = NIG(Ȳ , n, n−
3,
∑n
i=1 (Yi − Ȳ )2/(n − 3)) because then ` is collinear to π2. Hoff (2009, pp. 72–76)

applied this model to a dataset of nine midge wing lengths, where he set µ0 = 1.9,
η0 = 1, ν0 = 1, and σ2

0 = 0.01, while Ȳ = 1.804 and
∑n
i=1 (Yi − Ȳ )2 ≈ 0.135. This

yields κπ,p ≈ 0.28, and thus the agreement between the prior and posterior is not
particularly strong. Figure 4 (i) displays κπ,p, as a function of µ0 and σ2

0 while fixing
ν0 = 1 and η0 = 1. To evaluate how κπ,p is affected by ν0 and η0, the analogous plot
is displayed as Figure 4 (ii) when these values are fixed at ν0 = 6 and η0 = 9; these
alternative values for ν0 and η0 are those which allow the compatibility between the
prior and likelihood to be maximised. It is apparent from Figure 4 that a larger σ2

0

increases κπ,p substantially, and a simultaneous increase of ν0 and η0 would further
propel this increase.

Some comments on reparametrizations are in order. We focus on the case of compat-
ibility between two priors with a single parameter, but the rationale below also applies
to compatibility between a prior and posterior, and in multiparameter settings. Let
θ1 ∼ π1 and θ2 ∼ π2; further, let g(θ) = λ be a monotone increasing function, with
range Λ, and let

πg1(λ) =
π1(g−1(λ))

g′(g−1(λ))
, πg2(λ) =

π2(g−1(λ))

g′(g−1(λ))
,
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be prior densities of the transformed parameters, g(θ1) and g(θ2). It thus follows that∫
Λ
πg1(λ)πg2(λ) dλ

[
∫

Λ
{πg1(λ)}2dλ

∫
Λ
{πg2(λ)}2dλ]1/2

=

∫
Θ
π1(θ)π2(θ)/g′(θ) dθ

[
∫

Θ
{π1(θ)}2/g′(θ) dθ

∫
Θ
{π2(θ)}2/g′(θ) dθ]1/2

.

The version of compatibility discussed in this section is thus invariant to linear trans-
formations of the parameter. A variant to be discussed in Section 3.2 is more generally
invariant to monotone increasing transformations.

2.4 Max-compatible priors and maximum likelihood estimators

In Example 3, we briefly alluded to a connection between priors maximising prior–
likelihood compatibility κπ,` (to be termed as max-compatible priors) and maximum
likelihood (ML) estimators, on which we now elaborate. Below, we use the notation
π(θ | α) to denote a prior on θ ∈ Θ, with α ∈ A are hyperparameters, and where
dim(A) = q and dim(Θ) = p. (Think of the Beta–Binomial model, where θ ∈ Θ = (0, 1),
and α = (a, b) ∈ A = (0,∞)2.)

Definition 3 (Max-compatible prior). Let y ∼ f( · | θ), and let P = {π(θ | α) : α ∈ A}
be a family of priors for θ. If there exists α∗y ∈ A, such that κπ,`(α∗y) = 1, the prior
π(θ | α∗y) ∈ P is said to be max-compatible, and α∗y is said to be a max-compatible
hyperparameter.

The max-compatible hyperparameter, α∗y, is by definition a random vector, and thus
a max-compatible prior density is a random function. Geometrically, a prior is max-
compatible if and only if it is collinear to the likelihood in the sense that κπ,`(α∗y) = 1
if and only if π(θ | α∗y) ∝ f(y | θ), for all θ ∈ Θ.

The following example suggests there could be a connection between the ML esti-
mator of θ and the max-compatibility parameter α∗y.

Example 6 (Beta–Binomial). Let n1 | θ ∼ Bin(n, θ), and suppose θ ∼ Beta(a, b). Here,
P = {β(θ | a, b) : (a, b) ∈ (1/2,∞)2}, with β(θ | a, b) = θa−1(1−θ)b−1/B(a, b). It can be
shown that the max-compatible prior is π(θ | a∗, b∗) = β(θ | a∗, b∗), where a∗ = 1 + n1,
and b∗ = 1 + n− n1, so that

θ̂ = arg max
θ∈(0,1)

f(n1 | θ) =
n1

n
=

a∗ − 1

a∗ + b∗ − 2
=: m(a∗, b∗), (2.14)

with f(n1 | θ) =
(
n1

n

)
θn1(1− θ)n−n1 .

A natural question is whether there always exists a function m : A → Θ, as in (2.14),
linking the max-compatible parameter with the ML estimator? The following theorem
addresses this.

Proposition 3. Let y ∼ f( · | θ), and let θ̂ be the ML estimator of θ. In addition,
let P = {π(θ | α) : α ∈ A} be a family of priors for θ. If there exists a unimodal
max-compatible prior, then

θ̂ = arg max
θ∈Θ

f(y | θ) = mπ(α∗y) := arg max
θ∈Θ

π(θ | α∗y).
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Proposition 3 states that the mode of the max-compatible prior coincides with the ML
estimator, and in Example 6, m(a∗, b∗) = (a∗− 1)/(a∗+ b∗− 2) is indeed the mode of a
Beta prior. A comment on parametrizations is in order. A corollary to Proposition 3 is
that, due to invariance of ML estimators, if mπ(α∗y) is the mode of the max-compatible
prior for θ and g(θ) = λ is a function, then g(mπ(α∗y)) is the mode of the max-compatible
prior of the transformed parameter πg(λ | α∗y). Formally,

g(θ̂) = λ̂ = arg max
λ∈Λ

sup
θ∈Θλ

f(y | θ) = g(mπ(α∗y)) = arg max
λ∈Λ

πg(λ | α∗y),

with Θλ = {θ : g(θ) = λ} and where Λ is the range of g.

The max-compatible prior is a ‘prior’ to the extent that it belongs to a family of
priors, but it is basically a posterior distribution (it depends on the data). Also, there
are some links between the max-compatible prior and Hartigan’s maximum likelihood
prior (Hartigan, 1998), which will be clarified in Section 2.5.

2.5 Compatibility in the exponential family

We now consider compatibility in the exponential family with density

fθ(y) = h(y) exp{ηT

θ T (y)−A(ηθ)},

for given functions T and h, and with A(ηθ) = log[
∫
h(y) exp{ηT

θ T (y)}dy] <∞ denoting
the so-called cumulant function. Given a random sample from an exponential family,
Y1, . . . , Yn | θ

iid∼ fθ, it follows that

`(θ) =

[ n∏
i=1

h(Yi)

]
exp

{
ηT

θ

n∑
i=1

T (Yi)− nA(ηθ)

}
.

The conjugate prior is known to be

π(θ | τ, n0) = K(τ, n0) exp{τTηθ − n0A(ηθ)}, (2.15)

where τ and n0 are parameters, and

K(τ, n0) =

[ ∫
Θ

exp{τTηθ − n0A(ηθ)}dθ

]−1

. (2.16)

The posterior density is π(θ | τ +
∑n
i=1 T (Yi), n0 + n), with π(θ | τ, n0) defined as in

(2.15); cf Diaconis and Ylvisaker (1979). In this context, compatibility can be expressed
using normalizing constants from various members of the conjugate prior family as
follows

κπ,`(τ, n0) =
{K(2τ, 2n0)K(2

∑n
i=1 T (Yi), 2n)}1/2

K(τ +
∑n
i=1 T (Yi), n0 + n)

,

κπ,p(τ, n0) =
{K(2τ, 2n0)K(2{τ +

∑n
i=1 T (Yi)}, 2{n0 + n})}1/2

K(2τ +
∑n
i=1 T (Yi), 2n0 + n)

,

κp,`(τ, n0) =
{K(2{τ +

∑n
i=1 T (Yi)}, 2{n0 + n})K(2

∑n
i=1 T (Yi), 2n)}1/2

K(τ + 2
∑n
i=1 T (Yi), n0 + 2n)

,

(2.17)
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for (τ, n0) for which the normalizing constants in (2.17) are defined. The max-compatible
prior in the exponential family is given by the following data-dependent prior

π

(
θ |

n∑
i=1

T (Yi), n

)
, (2.18)

with π(θ | τ, n) as in (2.15). Special cases of the results in (2.17) and (2.18) were manifest
for instance in (2.12), Example 4, and Example 6.

As pointed out by a reviewer, working with the canonical parametrization brings nu-
merous advantages, especially when measuring compatibility. Since the parametrization
of a model is arbitrary (and hence the interpretation of the parameter may be different
for each model) it is desirable to work in terms of a parametrization that preserves the
same meaning regardless of the model under consideration. For exponential families, a
natural choice is the canonical parameter ηθ = θ. For one thing, the conjugate prior
on the canonical parameter always exists under very general conditions (Diaconis and
Ylvisaker, 1979). In contrast, the conjugate family for an alternative parametrization as
defined in (2.15) can be empty; see Gutiérrez-Peña and Smith (1995, Example 1.2). In
what follows, we revisit the Beta–Binomial setting and showcase yet another advantage
of working with the canonical parametrization.

Example 7. Let η = log{θ/(1−θ)} be the natural parameter of Bin(n, θ) and consider
the prior for θ as Beta(a, b). The conjugate prior for the natural parameter is

π(η | a, b) =
1

B(a, b)
exp{aη − (a+ b) log(1 + eη)}.

It is readily apparent that

‖π‖ =
{B(2a, 2b)}1/2

B(a, b)
, a, b > 0.

More informative priors (i.e. larger values of a and/or b) will always be more ‘peaked’
than less informative ones, and there is no need to constrain the range of values of the
hyperparameters to the set (1/2,∞), as it was the case in (2.11). Finally, note that the
max-compatible prior under the canonical parametrization is π(η | n1, n−n1), whereas
the max-compatible prior under the parametrization used earlier in Example 6 was
β(θ | 1 + n1, 1 + n− n1).

There are some links between the max-compatible prior introduced in Section 2.4
and Hartigan’s maximum likelihood prior (Hartigan, 1998). In the context of the ex-
ponential family, Hartigan’s maximum likelihood prior is a uniform distribution on the
canonical parameter η. Equation (2.18) then implies that the max-compatible prior on
the canonical parameter π(η |

∑n
i=1 T (Yi), n), can be regarded as a posterior derived

from Hartigan’s maximum likelihood prior.



M. de Carvalho, G. L. Page and B. J. Barney 15

3 Extensions

3.1 Local prior–likelihood compatibility

In some cases, when assessing the level of agreement between prior and likelihood,
integrating over Θ may not be feasible, but one can still assess the level of agreement over
priors supported on a subset of the parameter space. Below Θ represents the parameter
space and Π denotes the support of the prior. More specifically, let π be a prior supported
on Π = {θ : π(θ) > 0} ⊆ Θ. We define local prior–likelihood compatibility as

κ∗π,` =
〈π, `〉∗

‖π‖∗‖`‖∗
=
〈π, `〉
‖π‖‖`‖∗

, (3.1)

where 〈π, `〉∗ =
∫

Π
π(θ)`(θ) dθ, ‖`‖∗ = {

∫
Π
`2(θ) dθ}1/2, and ‖π‖∗ = {

∫
Π
π2(θ) dθ}1/2.

Note that
〈π, `〉∗ =

∫
Π

π(θ)`(θ) dθ =

∫
Θ

π(θ)`(θ) dθ = 〈π, `〉,

and thus if Π = Θ, then κ∗π,` = κπ,`. In practice, we recommend using standard
likelihood–prior compatibility (2.4) instead of its local version (3.1), with the exception
of situations for which the likelihood is square integrable over Π but not over Θ. To illus-
trate that (3.1) could be well defined even if (2.4) is not, suppose Y | µ, σ2 ∼ N(µ, σ2)
with µ ∼ N(m, s2) and σ ∼ Unif(a, b), for 0 < a < b. In this pathological single-
observation case (2.4) would not be defined, while it follows that,

κ∗π,` =

∫ b
a

∫∞
−∞ φ(µ | m, s2)/(b− a)`(µ, σ) dµdσ

[log(b/a)/ {4πs(b− a)}]1/2
.

Since (2.4) only assesses the level of agreement locally—that is, over Π ⊆ Θ—the values
of (2.4) and (3.1) are not directly comparable. A local κ∗`,p can be analogously defined
to (3.1).

3.2 Affine-compatibility

We now comment on a version of our geometric setup where one no longer focuses
directly on angles between priors, likelihoods, and posteriors, but on functions of these.
Specifically, we consider the following measures of agreement,κ√π,

√
` =
〈
√
π,
√
`〉

‖
√
`‖

, κ√π,√p = 〈
√
π,
√
p〉,

κ√π1,
√
π2

= 〈√π1,
√
π2〉, κ√p1,

√
p2 = 〈√p1,

√
p2〉.

(3.2)

Some affine-compatibilities in (3.2) are Hellinger affinities (van der Vaart, 1998, p. 211),
and thus have links with Kurtek and Bharath (2015) and Roos et al. (2015). Action
does not always takes place at the Hilbert sphere, given the need of considering κ√π,√`.
Local versions of prior–likelihood and likelihood–posterior affine-compatibility, κ√π,√`
and κ√`,√p, can be readily defined using the same principles as in Section 3.1.
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It is a routine exercise to prove that max-compatible hyperparameters also maximise
κ√π,

√
`, and thus all comments on Section 2.4 also apply to prior–likelihood affine-

compatibility. In terms of affine-compatibility in the exponential family, following the
same notation as in Section 2.5, it can be shown that

κ√π,
√
`(τ, n0) =

{K(τ, n0)K(
∑n
i=1 T (Yi), n)}1/2

K(1/2{τ +
∑n
i=1 T (Yi)}, {n0 + n}/2)

,

κ√π,√p(τ, n0) =
{K(τ, n0)K(τ +

∑n
i=1 T (Yi), n0 + n)}1/2

K(τ + 1/2
∑n
i=1 T (Yi), n0 + n/2)

,

κ√p,
√
`(τ, n0) =

{K(τ +
∑n
i=1 T (Yi), n0 + n)K(

∑n
i=1 T (Yi), n)}1/2

K(1/2τ +
∑n
i=1 T (Yi), n0/2 + n)

,

(3.3)

with K(τ, n0) as defined in (2.16).

Affine-compatibility between priors and posteriors is invariant to monotone increas-
ing parameter transformations, as a consequence of properties of the Hellinger distance
(Roos and Held, 2011, p. 267). Affine-compatibility counterparts of all data examples
are available from the supplementary materials; the conclusions are tantamount to the
ones using compatibility.

4 Posterior and prior mean-based estimators of
compatibility

In many situations closed form estimators of κ and ‖ · ‖ are not available. This leads to
considering algorithmic techniques to obtain estimates. As most Bayes methods resort
to MCMC methods it would be appealing to express κ·,· and ‖·‖ as functions of posterior
expectations and employ MCMC iterates to estimate them. For example, κπ,p can be
expressed as

κπ,p = Ep π(θ)

[
Ep

{
π(θ)

`(θ)

}
Ep{`(θ)π(θ)}

]−1/2

, (4.1)

where Ep( · ) =
∫

Π
· p(θ | y) dθ is the expected value with respect to the posterior density.

A natural Monte Carlo estimator would then be

κ̂π,p =
1

B

B∑
b=1

π(θb)

[{
1

B

B∑
b=1

π(θb)

`(θb)

}{
1

B

B∑
b=1

`(θb)π(θb)

}]−1/2

, (4.2)

where θb denotes the bth MCMC iterate of p(θ | y). Consistency of such an estimator
follows trivially by the ergodic theorem and the continuous mapping theorem, but there
is an important issue regarding its stability. Unfortunately, (4.1) includes an expecta-
tion that contains `(θ) in the denominator and therefore (4.2) inherits the undesirable
properties of the so-called harmonic mean estimator (Newton and Raftery, 1994). It
has been shown that even for simple models this estimator may have infinite variance
(Raftery et al. 2007), and has been harshly criticized for, among other things, con-
verging extremely slowly. Indeed, as argued by Wolpert and Schmidler (2012, p. 655):
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“the reduction of Monte Carlo sampling error by a factor of two requires increasing the
Monte Carlo sample size by a factor of 21/ε, or in excess of 2.5 · 1030 when ε = 0.01,
rendering [the harmonic mean estimator] entirely untenable.”
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Figure 5: Running point estimates of prior–posterior compatibility, κπ,p, for the on-the-job drug usage
toy example. Green lines correspond to the true κπ,p values computed as in Example 4, blue represents
κ̃π,p and red denotes κ̂π,p. Notice that κ̃π,p converges to the true κπ,p values quickly while κ̂π,p will
need much more than 10 000 Monte Carlo draws to converge.

An alternate strategy is to avoid writing κπ,p as a function of harmonic mean es-
timators and instead express it as a function of posterior and prior expectations. For
example, consider

κπ,p = Ep π(θ)

[
Eπ{π(θ)}
Eπ{`(θ)}

Ep{`(θ)π(θ)}
]−1/2

, (4.3)

where Eπ( · ) =
∫

Π
·π(θ) dθ. Now the Monte Carlo estimator is

κ̃π,p =
1

B

B∑
b=1

π(θb)

[{∑B
b=1 π(θb)∑B
b=1 `(θb)

}{
1

B

B∑
b=1

`(θb)π(θb)

}]−1/2

, (4.4)

where θb denotes the bth draw of θ from π(θ), which can also be sampled within the
MCMC algorithm. Although representations (4.3) and (4.4) could in principle suffer
from numerical instability for diffuse priors, they behave much better in practice than
(4.1) and (4.2). To see this, Figure 5 contains running estimates of κπ,p using (4.2) and
(4.4) for Example 3 with three prior parameter specifications, namely: (a = 1, b = 1),
(a = 2, b = 1), and (a = 10, b = 1); the true κπ,p for each prior specification is also
provided. It is fairly clear that κ̂π,p displays slow convergence and large variance, while
κ̃π,p converges quickly.

The next proposition contains prior and posterior mean-based representations of
geometric quantities that can be readily used for constructing Monte Carlo estimators.
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Proposition 4. Let π be a prior supported on Π = {θ : π(θ) > 0} ⊆ Θ, with ‖`‖∗ and
κ∗π,` be defined as in (3.1), and let Ep( · ) =

∫
Π
· p(θ | y) dθ and Eπ( · ) =

∫
Π
· π(θ) dθ.

Then,

‖p‖ =

{
Ep{`(θ)π(θ)}

Eπ `(θ)

}1/2

, ‖π‖ = {Eπ π(θ)}1/2, ‖`‖∗ =

{
Eπ `(θ)Ep

{
`(θ)

π(θ)

}}1/2

,

κ∗π,` = Eπ `(θ)

[
Eπ π(θ)Eπ `(θ)Ep

{
`(θ)

π(θ)

}]−1/2

, κπ,p = Ep π(θ)

[
Eπ π(θ)

Eπ `(θ)
Ep {`(θ)π(θ)}

]−1/2

,

κπ1,π2
= Eπ1

π2(θ)

[
Eπ1

π1(θ)Eπ2
π2(θ)

]−1/2

, κ∗`,p = Ep `(θ)

[
Ep

{
`(θ)

π(θ)

}
Ep {`(θ)π(θ)}

]−1/2

.

Similar derivations can be used to obtain posterior and prior mean-based estimators
for affine-compatibility; see supplementary materials. In the next section we provide an
example that requires the use of Proposition 4 to estimate κ and ‖ · ‖.

5 Example: Regression shrinkage priors

5.1 Compatibility of Gaussian and Laplace priors

The linear regression model is ubiquitous in applied statistics. In vector form, the model
is commonly written as

y = Xβ + ε, ε ∼ N(0, σ2I), (5.1)

where y = (Y1, . . . , Yn)T, X is a n × p design matrix, β is a p-vector of regression
coefficients, and σ2 is an unknown idiosyncratic variance parameter; the experiments
below employ σ ∼ Unif(0, 2). We consider Gaussian and Laplace prior distributions for
β. As documented in Park and Casella (2008) and Kyung et al. (2010) ridge regression
and βj

iid∼ N(0, λ2) produce the same regularization on β while the lasso produces the
same regularization on β as assuming βj

iid∼ Laplace(0, b) (where var(βj) = 2b2). Below,
we use π1 to denote a Gaussian prior and π2 a Laplace. Further, we set b =

√
0.5λ2

which ensures that varπ1
(βj) = varπ2

(βj) = λ2 for all j.

5.2 Prostate cancer data example

We now consider the prostate cancer data example found in Hastie, Tibshirani and Fried-
man (2008, Section 3.4) to explore the ‘informativeness’ of and various compatibility
measures for π1 and π2. In this example the response variable is the level of prostate-
specific antigens measured on 97 males. Eight other clinical measurements (such as age
and log prostate weight) were also measured and are used as covariates.

We first evaluate the ‘informativeness’ of the two priors by computing ‖π1‖ and ‖π2‖
and then their compatibility using κπ1,π2

. All calculations employed Proposition 4 and
results for a sequence of λ2 values are provided in Figure 6. Focusing on the left plot
of Figure 6 it appears that for small values of the λ2, ‖π1‖ < ‖π2‖, indicating that the
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Figure 6: A comparison of priors associated with Ridge (MVN, π1) and Lasso (Laplace, π2) regular-
ization in regression models in terms of ‖π‖ and κπ1,π2 . The left plot depicts ‖ · ‖ as a function of λ2
for both π1 and π2. The right compares κπ1,π2 values as a function of λ2 when π1 and π2 are centered
at zero to that when the center of π1 moves away from zero.

Laplace prior is more peaked than the Gaussian. Thus, even though the Laplace has
thicker tails, it is more ‘informative’ relative to the Gaussian. This corroborates the lasso
penalization’s ability to shrink coefficients to zero (something ridge regulation lacks).
As λ2 increases the two norms converge as both spread their mass more uniformly. The
right plot of Figure 6 depicts κπ1,π2

as a function of λ2. When π1 is centered at zero,
then κπ1,π2

is constant over values of λ2 which means that mass intersection when both
priors are centered at zero is not influenced by tail thickness. Compare this to κ values
when π1 is not centered at zero [i.e., π1 ∼ MVN(0.5j, λ2I) or π1 ∼ MVN(2j, λ2I)]. For
the former, κ increases as intersection of prior and posterior mass increases. For the
latter, λ2 must be greater than two for there to be any substantial mass intersection as
κπ1,π2 remains essentially at zero.

We now fit model (5.1) to the cancer data and use Proposition 4 to calculate various
measures of compatibility. Without loss of generality we centered the y so that β does
not include an intercept and standardized each of the eight covariates to have mean
zero and standard deviation one. The results are available from Figure 7.

Focusing on the left plot of Figure 7 the small values of κπ1,` and κπ2,` indicate the
existence of prior–data incompatibility. For small values of λ2, κπ1,` > κπ2,` indicating
more compatibility between prior and data for the Gaussian prior. Prior–posterior com-
patibility (κπ,p) is very similar for both priors with that for π2 being slightly smaller
when λ2 is close to 10−4. The slightly higher κπ,p value for the Gaussian prior implies
that it has slightly more influence on the posterior than the Laplace. Similarly, the
Laplace prior seems to produce larger κ`,p values than that of the Gaussian prior and
κ`,p2 approaches one quicker than κ`,p1 indicating a larger amount of posterior-data
compatibility. Overall, it appears that the Gaussian prior has more influence on the
resulting posterior distribution relative to the Laplace when updating knowledge via
Bayes theorem. Similar conclusions as above would be reached by considering affine-
compatibility; see supplementary materials.
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Figure 7: Compatibility (κ) for linear regression model in (5.1), with shrinkage priors, applied to the
prostrate cancer data from Hastie, Tibshirani and Friedman (2008, Section 3.4). The κ estimates were
computed using Proposition 4.

6 Discussion
Bayesian inference is regarded from the viewpoint of the geometry of Hilbert spaces. The
framework offers a direct connection to Bayes theorem, and a unified treatment that can
be used to quantify the level of agreement between priors, likelihoods, and posteriors—
or functions of these. The possibility of developing new probabilistic models, obeying
the geometrical principles discussed here, offering alternative ways to recast the prior
vector using the likelihood vector remains to be explored. In terms of high-dimensional
extensions, one could anticipate that as the dimensionality increases, there is increased
potential for disagreement between two distributions. Consequently, κ would generally
diminish as additional parameters are added, ceteris paribus, but a suitable offsetting
transformation of κ could result in a measure of ‘per parameter’ agreement.

Some final comments on related constructions are in order. Compatibility as set in
Definition 2 includes as a particular case the measures of niche overlap in Slobodchikoff
and Schulz (1980). Peakedness as discussed in here should not be confused with the
concept of Birnbaum (1948). The geometry in Definition 1 has links with the so-called
affine space and thus the geometrical framework discussed above is different but has
many similarities with that of Marriott (2002) and also with the mixture geometry of
Amari (2016). A key difference is that the latter approaches define an inner product
with respect to a density which is the basis of the construction of the Fisher information
while here we define it simply as the product of two functions in L2(Θ), and connect the
construction with Bayes theorem and with Pearson’s correlation coefficient. While here
we deliberately focus on positive g, h ∈ L2(Θ), the case of a positive m ≡ g(θ)+kh(θ) ∈
L2(Θ)—but with g always positive and with h negative on a part of Θ—is of interest
in itself, as well as the set values of k ensuring positivity of m for all θ. Some further
interesting setups would be naturally allowed by slightly extending our geometry, say
to include ‘mixtures’ with negative weights. Indeed, the parameter λ in (2.6) might in
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some cases be allowed to take some negative values while the resultant function is still
positive; see Anaya-Izquierdo and Marriott (2007).

While not explored here, the use of compatibility as a means of assessing the suit-
ability of a given sampling model, is a natural inquiry for future research.

Supplementary Material
The online supplementary materials include the counterparts of the data examples in
the paper for the case of affine-compatibility as introduced in Section 3.2, technical
derivations, and proofs of propositions.
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