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ABSTRACT Ribosome profiling is a powerful technique used to study translation at the 16 

genome-wide level, generating unique information concerning ribosome positions along 17 

RNAs. Optimal localization of ribosomes requires the proper identification of the ribosome P-18 

site in each ribosome protected fragment, a crucial step to determine the trinucleotide 19 

periodicity of translating ribosomes, and draw correct conclusions concerning where 20 

ribosomes are located. To determine the P-site within ribosome footprints at nucleotide 21 

resolution, the precise estimation of its offset with respect to the protected fragment is 22 

necessary. Here we present riboWaltz, an R package for calculation of optimal P-site offsets, 23 

diagnostic analysis and visual inspection of ribosome profiling data. Compared to existing 24 

tools, riboWaltz shows improved accuracies for P-site estimation and neat ribosome 25 

positioning in multiple case studies. riboWaltz was implemented in R and is available as an 26 

R package at https://github.com/LabTranslationalArchitectomics/RiboWaltz.  27 

 28 

Support mailing list: gabriella.viero@cnr.it, t.tebaldi@unitn.it or fabio.lauria@unitn.it  29 

 30 
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Introduction  32 

Ribosome profiling (RiboSeq) is an experimental technique used to investigate translation at 33 

single nucleotide resolution and genome-wide scale (Ingolia et al., 2009; Ingolia et al., 2012), 34 

through the identification of short RNA fragments protected by ribosomes from nuclease 35 

digestion (Steitz et al., 1969; Wolin et al., 1988). The last few years have witnessed a rapid 36 

adoption of this technique and a consequent explosion in the volume of RiboSeq data 37 

(Michel and Baranov 2013; Brar and Weissman, 2015). In parallel, a number of dedicated 38 

computational algorithms were developed for extracting transcript-level information, including 39 

unannotated open reading frames (ORFs) (Fields et al., 2015, Raj et al., 2016, Calviello et 40 

al., 2016, Malone et al., 2017), novel translation initiation sites and differentially translated 41 

genes (Xiao et al., 2016; Zhong et al., 2017), as well as positional information describing 42 

fluxes of ribosomes along the RNA at sub-codon resolution (Martens et al., 2015, Legendre 43 

et al., 2016, Wang et al., 2016) and conformational changes in ribosomes during the 44 

elongation step of translation (Lareau et al., 2014). 45 

Much of this information relies on the ability to determine the exact localization of the P-site, 46 

i.e. the site holding the t-RNA associated to the growing polypeptide chain during translation, 47 

within ribosome protected fragments (RPF, also called reads hereinafter, following the 48 

notation adopted by Ingolia et al., 2009). This position can be specified by the distance of the 49 

P-site from both 5’ and 3’ ends of the reads, the so-called P-site Offset, PO (Figure 1A). 50 

Accurate determination of the PO is a crucial step to verify the trinucleotide periodicity of 51 

ribosomes along coding regions (Ingolia et al., 2009, Guo et al., 2010), derive reliable 52 

translation initiation and elongation rates (Gritsenko et al., 2015; Michel et al., 2014,), 53 

accurately estimate codon usage bias and translation pauses (Sabi & Tuller, 2014, Dana & 54 

Tuller, 2015, Wang et al., 2016, Pop et al., 2014, Weinberg et al., 2016, ), and reveal novel 55 

translated regions in known protein coding transcripts or ncRNAs (Hsu et al., 2016; 56 

Kochetov et al., 2016; Raj et al., 2016). 57 

Typically, the PO is defined as a constant number of nucleotides from either the 3' or 5' end 58 

of reads, independently from their length (Figure 1A) (Gao et al., 2015). This approach may 59 

lead to an inaccurate detection of the P-site’s position owing to potential offset variations 60 

associated with the length of the reads due to different ribosome conformations (Lareau et 61 

al., 2014), non-translating ribosomes (Archer et al., 2016), nuclease digestion biases (Wang 62 

et al., 2016) and sequencing biases (Ingolia et al., 2012). This problem is frequently resolved 63 

by selecting subsets of reads with defined length (Bazzini et al., 2014; Han et al., 2014). As 64 

such, this procedure removes from the analysis reads that are potentially derived from 65 

fragments associated to alternative conformations of the ribosome (Chen et al., 2012; 66 

Budkevich et al., 2014) and characterized by shorter or longer lengths (Lareau et al., 2014). 67 
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Recently, computational tools have been developed to assist with RiboSeq analysis and P-68 

site localization; examples are Plastid (Dunn and Weissman, 2016) and RiboProfiling (Popa 69 

et al., 2016). Both tools compute the PO after stratifying the reads in bins, according to their 70 

length. However, each bin is treated independently, possibly leading to excessive variability 71 

of the offsets across bins.  72 

Here, we describe the development of riboWaltz, an R package aimed at computing the PO 73 

for all reads from single or multiple RiboSeq samples. Taking advantage of a two-step 74 

algorithm, where offset information is passed through populations of reads with different 75 

length to maximize the offset coherence, riboWaltz computes with extraordinary precision 76 

the PO and shows higher accuracy and specificity of P-site positions than the other 77 

methods. riboWaltz provides the user with a variety of graphical representations, laying the 78 

foundations for further accurate RiboSeq analyses and better interpretation of positional 79 

information. 80 

 81 

Design and Implementation  82 

Input acquisition and processing 83 

riboWaltz is an R package that requires two mandatory input data files: 1) alignment files, in 84 

BAM format or as GAlignments objects in R, ideally from transcriptome alignments of 85 

RiboSeq reads, and; 2) transcript annotation files, in GTF/GFF3 format or provided as TxDb 86 

objects in R. Alternatively, annotation can also be provided as a tab separated text file 87 

containing minimal transcript annotation: the length of the transcripts and of their annotated 88 

coding sequences and UTRs (Figure 1B). Optionally, a third file containing transcript 89 

sequence information in FASTA format can be provided as input to perform P-site specific 90 

codon sequence analysis. The user is also free to specify a genome build and the 91 

corresponding BSGenome object in R will be used for sequence retrieval (Figure 1B). 92 

riboWaltz acquires BAM files and converts them into BED files utilizing the bamtobed 93 

function of the BEDTools suite (Quinlan and Hall, 2010).  94 

 95 

Selection of read lengths 96 

Different lengths of RPFs may derive from alternative ribosome conformations (Lareau et al., 97 

2014; Chen et al., 2012; Budkevich et al., 2014). Therefore, the researcher should be free to 98 

modify the tolerance for the selection of the read length according to the aim of the 99 

experiment. For this reason, riboWaltz has multiple options for treating read lengths: i) all 100 

read lengths are included in the analysis (all-inclusive mode) ii) only read lengths specified 101 

by the user are included (manual mode); iii) only read lengths satisfying a periodicity 102 

threshold are included in the analysis (periodicity threshold mode). The user can change the 103 
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desired threshold (the default is 50%). This mode enables the removal of all the reads 104 

without periodicity, similarly to other approaches (Malone et. al., 2017, Zhang et al., 2017). 105 

 106 

Identification of the P-site position 107 

The identification of the P-site, defined by the position of its first nucleotide within the reads, 108 

is based on reads aligning across annotated translation initiation sites (TIS or start codon), 109 

as proposed by Ingolia et al., 2009. It is known that the P-site of the reads aligning on the 110 

TIS corresponds exactly to the start codon. Thus the P-site offset can be defined as the 111 

distance between the extremities of the reads and the start codon itself. After the 112 

identification of the P-site for the reads aligning on the TIS, the POs corresponding to each 113 

length are assigned to each read of the dataset. 114 

riboWaltz specifically infers the PO in two-steps. First, riboWaltz groups the reads mapping 115 

on the TIS according to their length. Each group of reads with a specific length (L) 116 

corresponds to a bin. To avoid biases in PO calculation, reads whose extremities are too 117 

close to the start codon (9 nucleotides by default) are discarded from the computation of the 118 

PO. This parameter, called “flanking length” (FL), can be set by the user. Next, for each 119 

length bin, riboWaltz generates the occupancy profiles of read extremities, i.e. the number of 120 

5’ and 3’ read ends in the region around the start codon (Figure 1C). For each bin, 121 

temporary 5’ and 3’ POs (tPOL) are defined as the distances between the first nucleotide of 122 

the TIS and the nucleotide corresponding to the global maximum found in the profiles of the 123 

5’ and the 3’ end at the left and at the right of the start codon, respectively (Figure 1C). 124 

Therefore, considering the occupancy profile as a function f of the nucleotide position x with 125 

respect to the TIS, the temporary 5’ and 3’ POs for each length bin are such that: 126 

 127 

𝑓(− 5′𝑡𝑃𝑂𝐿) ≥  𝑓(𝑥) ∀𝑥 ∈ [−𝐿 + 𝐹𝐿,  − 𝐹𝐿] 128 

𝑓(3′𝑡𝑃𝑂𝐿) ≥  𝑓(𝑥) ∀𝑥 ∈ [𝐹𝐿 − 1, 𝐿 − 𝐹𝐿 − 1] 129 

 130 

The two sets of length-specific temporary POs are defined as: 131 

 132 

 5′𝑡𝑃𝑂 = {5′𝑡𝑃𝑂𝐿𝑚𝑖𝑛
, … , 5′𝑡𝑃𝑂𝐿𝑚𝑎𝑥

}  133 

3′𝑡𝑃𝑂 = {3′𝑡𝑃𝑂𝐿𝑚𝑖𝑛
, … , 3′𝑡𝑃𝑂𝐿𝑚𝑎𝑥

}  134 

 135 

where 𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 are the minimum and the maximum length of the reads, respectively. 136 

Next, to each read (R) mapping on the TIS the temporary POs corresponding to its length is 137 

assigned, obtaining two sets of read-specific tPOs: 138 

 139 

5′𝑡𝑃𝑂𝑅  = {5′𝑡𝑃𝑂𝑅1
, … , 5′𝑡𝑃𝑂𝑅𝑁

}  140 

3′𝑡𝑃𝑂𝑅  = {3′𝑡𝑃𝑂𝑅1
, … , 3′𝑡𝑃𝑂𝑅𝑁

}  141 
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 142 

where N is the number of reads mapping on the TIS. 143 

Despite good estimation of P-site positions, artifacts may arise from either the small number 144 

of reads with a specific length or the presence of reads from ribosomes nearby the TIS, but 145 

not translating the first codon. In other words, the offset estimated independently from the 146 

global maximum of each read length is not necessarily always the best choice. In fact, while 147 

the most abundant population of reads are less subjected to the above mentioned biases 148 

and show consistent tPOs (see Supplementary Tables 1-12), this approach can produce 149 

high variability in tPOL values of reads differing in only one nucleotide in length, especially 150 

across length bins with low number of reads. 151 

To minimize this problem, riboWaltz exploits the most frequent tPO (optimal PO: oPO) 152 

associated to the predominant bins as a reference value for correcting the temporary POs of 153 

smaller bins. Briefly, the correction step defines for each length bin a new PO based on the 154 

local maximum, whose distance from the TIS is the closest to the oPO. The complete 155 

procedure is illustrated below. 156 

The optimal PO at either 5’ or 3’ extremities (optimal extremity) are chosen as reference 157 

points to adjust the other tPOs. The optimal PO is selected between the two modes of read 158 

specific tPO sets ( 𝑀𝑜𝑑𝑒(5′𝑡𝑃𝑂𝑅) and 𝑀𝑜𝑑𝑒(3′𝑡𝑃𝑂𝑅) ) as the one with the highest 159 

frequency. 160 

 161 

𝑜𝑃𝑂 ∶= {
𝑀𝑜𝑑𝑒(5′𝑡𝑃𝑂𝑅) 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝑜𝑑𝑒(5′𝑡𝑃𝑂𝑅)) ≥ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝑜𝑑𝑒(3′𝑡𝑃𝑂𝑅)) 

𝑀𝑜𝑑𝑒(3′𝑡𝑃𝑂𝑅) 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝑜𝑑𝑒(5′𝑡𝑃𝑂𝑅)) < 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝑜𝑑𝑒(3′𝑡𝑃𝑂𝑅)) 
 162 

 163 

Note that this step also selects the optimal extremity to calculate the corrected PO.  164 

The correction step is specific for each bin length and works as follows: if the offset 165 

associated to a bin is equal to the optimal PO, no changes are made. Otherwise, i) the local 166 

maxima of the occupancy profiles are extracted; ii) the distances between the first nucleotide 167 

of the TIS and each local maxima is computed; iii) the corrected PO is defined as the 168 

distance in point ii) that is closest to the optimal PO. Summarizing, given the set of local 169 

maxima positions (LMP) of the occupancy profile for the optimal extremity, the corrected PO 170 

for reads of length L (𝑐𝑃𝑂𝐿) satisfies the following condition: 171 

 172 

𝑐𝑃𝑂𝐿 −  𝑜𝑃𝑂 = min
𝑥∈𝐿𝑀𝑃

(𝑥 − 𝑜𝑃𝑂) 173 

 174 

Output 175 

riboWaltz returns three data structures that can be used for multiple downstream analysis 176 

workflows (Figure 1B). The first is a list of sample-specific data frames containing for each 177 

read i) the position of the P-site (identified by the first nucleotide of the codon) with respect to 178 

the beginning of the transcript; ii) the distance between the P-site and both the start and the 179 
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stop codon of the coding sequence; iii) the region of the transcript (5' UTR, CDS, 3' UTR) 180 

where the P-site is located and iv) the sequence of the triplet covered by the P-site, if a 181 

sequence file is provided as input. The second data structure is a data frame with the 182 

percentage of reads aligning across the start codon (if any) and along the whole 183 

transcriptome, stratified by sample and read length. Moreover, this file includes the P-site 184 

offsets from both the 5’ and 3’ extremities before and after the optimization (5' tPOL, 3' tPOL, 185 

5' cPOL, 3' cPOL values). The third data structure is a data frame containing, for each 186 

transcript, the number of estimated in-frame P-sites on the CDS. This data frame can be 187 

used to estimate transcript-specific translation levels and to perform differential analysis 188 

comparing multiple samples in different conditions. 189 

In addition, riboWaltz provides several graphical outputs based on the widely used “ggplot2” 190 

package. riboWaltz plots are described in more detail in the Results section. All graphical 191 

outputs are returned as lists containing objects of class “ggplot”, further customizable by the 192 

user, and data frames containing the source data for the plots. 193 

 194 

Results  195 

riboWaltz overview 196 

To illustrate the functionalities of riboWaltz, we analyzed seven ribosome profiling datasets 197 

in yeast, mouse and human samples (see Figures 2-3 for mouse and Supplementary 198 

Figures). 199 

riboWaltz integrates several graphical functions that provide multiple types of output results. 200 

First, the distribution of the length of the reads (Figure 2A): this is a useful preliminary 201 

inspection tool to understand the contribution of each bin to the final P-site determination, 202 

and eventually decide to remove certain bin from further analyses. Second, the percentage 203 

of P-sites located in the 5’ UTR, CDS and 3’ UTR regions of mRNAs compared to a uniform 204 

distribution weighted on region lengths, which simulates random P-site positioning along 205 

mRNAs (Figure 2B). This analysis is a good way to verify the expected enrichment of 206 

ribosome signal in the CDS. Third, to understand to which extent the obtained P-sites result 207 

in codon periodicity in the CDS, riboWaltz produces for every read group a plot with the 208 

percentage of P-sites in the three possible translation reading frames (periodicity analysis) 209 

for 5’ UTR, CDS and 3’ UTR (Figure 2C). Fourth, riboWaltz returns for every read group the 210 

meta-gene read density heatmap for both the 5’ and 3’ extremities of the reads (Figure 2D). 211 

This plot provides an overview of the occupancy profiles used for P-site determination and 212 

allows the visual inspection of PO values reliability. Fifth, to understand what codons display 213 

higher or lower ribosome density, riboWaltz provides the user with the analysis of the 214 

empirical codon usage, i.e. the frequency of in-frame P-sites along the coding sequence 215 
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codon by codon, normalized for the frequency in sequences of each codon (Figure 2E). 216 

Indeed, the comparison of these values in different biological conditions can be of great help 217 

to unravel possible defects in ribosome elongation at specific codons or aa-tRNAs use. 218 

Finally, single transcripts profiles and meta-gene profiles based on P-site position can be 219 

generated (Figure 3B, top row) with multiple options: i) combining multiple replicates 220 

applying convenient scale factors provided by the user, ii) considering each replicate 221 

separately, or iii) selecting a subsets of reads with defined length. 222 

 223 

Comparison with other tools 224 

We tested riboWaltz on multiple ribosome profiling datasets in different model organisms: 225 

yeast (S. cerevisiae, Beaupere et al., 2017; Lareau et al., 2014), mouse (Shi et al., 2017; 226 

GSE102318) and human samples (Hek-293, Gao et al., 2015; MCF-7, GSE111866) and 227 

compared riboWaltz, RiboProfiling (v1.2.2, Popa et al., 2016) and Plastid (v0.4.5, Dunn and 228 

Weissman, 2016). Both Plastid and RiboProfiling compute the P-site offset considering the 229 

highest peak in the profile of reads mapping around the translation initiation site (TIS). 230 

Differently from RiboProfiling, Plastid considers only the signal from the 5’ end of the read 231 

and imposes a default threshold for the minimum number of reads required for the 232 

computation, otherwise using a "default" constant offset value. Table 1 and Supplementary 233 

Tables 1-6 contain the P-site offset comparison between the three tools, while Table 2 and 234 

Supplementary Tables 7-12 provide additional details on the offsets computed by 235 

riboWaltz. The three tools were run using default settings. The comparisons for single 236 

datasets are displayed in Figure 3 and in Supplementary Figures 1-6.  237 

To evaluate the three methods, we considered two performance scores. First, we estimated 238 

the percentage of P-sites with correct frame within the CDS region (Periodicity score). The 239 

higher this measure, the better the performance. For RiboWaltz and RiboProfiling, this 240 

measure was comparable in almost all datasets, while Plastid performed worse (see Figure 241 

3A and Supplementary Figure 1-6A for individual examples, Figure 4A and Table 3 for a 242 

resume. The median values are: riboWaltz: 57.07; RiboProfiling: 51.45; Plastid: 39.04). 243 

Next, we took into consideration the meta-profiles. In all datasets riboWaltz displayed a neat 244 

periodicity uniquely in the CDS (Figure 3B and Supplementary Figure 1-6B), with almost 245 

no signal along the UTRs, neither in the proximity of the start nor of the stop codons. By 246 

contrast, both Plastid and RiboProfiling generated a shift toward the 5’ UTR in the beginning 247 

of the periodic region (Figure 3B and Supplementary Figure 1-6B). The presence of 248 

periodic peaks in the 5’UTR is undoubtedly a source of biological inaccuracy, conflicting with 249 

basic concepts in translation. In fact, outside the coding sequence, ribosomes are generally 250 

in non-translating mode. Translation can indeed occur outside the CDS, with upstream 251 
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ORFs being the most documented examples. Nonetheless, occasional translation outside 252 

the CDS is unlikely to affect the codon periodicity in 5’ UTR regions, especially when 253 

metagene plots are anchored on the annotated AUG start codons. The presence of 254 

prominent codon periodicity in the 5’UTR in this latter case most likely results from a 255 

technical mistake, such as the inaccurate computation of the P-site offset. To quantify this 256 

effect, we determined a “TIS accuracy score”, comparing the amount of periodic signal in a 257 

local window before and after the translation initiation site. Considering the occupancy profile 258 

as a function f of the nucleotide position x with respect to the TIS, the TIS accuracy score is 259 

defined as follows: 260 

 261 

𝑇𝐼𝑆 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 ∶=  
∑ 𝑓(𝑥){𝑥∈[0,14] ∶ 3|𝑥}

∑ 𝑓(𝑥) {𝑥∈[−15,14] ∶ 3|𝑥}
 262 

 263 

In the ideal scenario, this score should be equal to 1, meaning that the periodicity can be 264 

detected only within the CDS region. Lower scores are associated with a progressive 265 

increase of periodicity in the 5’UTR, indicative of ribosome mislocalization. Importantly, 266 

riboWaltz shows significantly higher TIS accuracy scores with respect to both RiboProfiling 267 

and Plastid (median values: 0.84, 0.62, 0.71 respectively. See Figure 4B and Table 4 for a 268 

resume). 269 

 270 

The correct localization of ribosomes is a crucial step for obtaining estimations of the codon 271 

usage and for any downstream analyses. Empirical codon usage determination is a popular 272 

analysis for ribosome profiling data, and it is equally important for the biological interpretation 273 

of results and for the development of reliable mathematical models of translation (Hanson 274 

and Coller, 2017; Pop et al., 2014; Lauria et al., 2015; Raveh et al., 2016, Sabi & Tuller, 275 

2014, Dana & Tuller, 2015). To highlight the differences arising in codon usage after the 276 

identification of the P-site using different approaches, we compared codon usage values 277 

across all dataset analysed using riboWaltz, RiboProfiling and Plastid (Figure 3C and 278 

Supplementary Figures 1-6C). The results show correlation values ranging from 0.075 to 279 

0.999. This analysis is a descriptive evaluation of the difference between riboWaltz and the 280 

other tools in computing the codon usage, depending on the different approach used for the 281 

P-site determination. 282 

In summary we show that the choice of the strategy for P-site positioning has a strong 283 

impact on downstream analyses and that riboWaltz is a more reliable tool for the 284 

identification of P-site offsets and the positional analysis of ribosome profiling data. 285 

 286 

Availability and future directions  287 
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riboWaltz identifies with high precision the position of ribosome P-sites from ribosome 288 

profiling data. By improving on other currently-available approaches, riboWaltz can assist 289 

with the detailed interrogation of ribosome profiling data, providing precise information that 290 

may lay the groundwork for further positional analyses and new biological discoveries. 291 

riboWaltz is written in the R programming language, and can run on Linux, Mac, or Windows 292 

PCs. riboWaltz depends on multiple R packages such as GenomicFeatures for handling 293 

GTF/GFF3 files, Biostrings, BSgenome and GenomicAlignments for dealing with sequence 294 

data and ggplot2 for data visualization. Furthermore, to easily handle datasets with several 295 

millions of reads preserving a high efficiency in terms of RAM usage and running-time, 296 

riboWaltz employs an enhanced version of data frames provided by the data.table package. 297 

Installation instructions for the dependencies are provided in the manual. 298 

riboWaltz is an Open-Source software package that can be extended in future releases to 299 

include other analysis methods as they are developed. Source code for riboWaltz is 300 

distributed under the MIT license and is available at the following GitHub repository: 301 

https://github.com/LabTranslationalArchitectomics/riboWaltz. The package includes the R 302 

implementation of riboWaltz, data used in this article, extensive documentation and a stable 303 

release. 304 
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 317 

Figure 1. (A) Schematic representation of the P-site offset. Two offsets can be defined, one for each extremity of 318 

the read. (B) Flowchart representing the basic steps of riboWaltz, the input requirements and the outputs. (C) An 319 

example of ribosome occupancy profile obtained from the alignment of the 5’ and the 3’ end of reads around the 320 

start codon (reads length, 28 nucleotides) is superimposed to the schematic representations of a transcript, a 321 

ribosome positioned on the translation initiation site (TIS) and a set of reads used for generating the profiles.  322 
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 323 

Figure 2. (A) Distribution of the read lengths. (B) Left, percentage of P-sites in the 5’ UTR, CDS and 3’ UTR of 324 

mRNAs from ribosome profiling data. Right, percentage of region lengths in mRNAs sequences. (C) Percentage 325 

of P-sites in the three frames along the 5’ UTR, CDS and 3’ UTR, stratified for read length. (D) Example of meta-326 

gene heatmap reporting the signal associated to the 5’ end (upper panel) and 3’ end (lower panel) of the reads 327 

aligning around the start and the stop codon for different read lengths. (E) Codon usage analysis based on in-328 

frame P-sites. The codon usage index is calculated as the frequency of in-frame P-sites along the coding 329 

sequence associated to each codon, normalized for codon frequency in sequences. The amino-acids 330 

corresponding to the codons are displayed above each bar. All panels were obtained from ribosome profiling of 331 

whole mouse brain (GSE102318).   332 
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 333 

Figure 3. (A) Percentage of P-sites in the three frames along the 5’ UTR, CDS and 3’ UTR from 334 

ribosome profiling performed in mouse brain (GSE102318). The statistical significances from two-tailed 335 

Wilcoxon–Mann–Whitney test comparing RiboProfiling and Plastid with respect to riboWaltz are 336 

reported (P-value: ** < 0.01, *** < 0.001). (B) Meta-profiles showing the periodicity of ribosomes along 337 

the transcripts at the genome-wide scale. The three metaprofiles are based on the P-site identification 338 

obtained by using riboWaltz, RiboProfiling and Plastid. The shaded areas to the left of the start codon 339 

highlight the shift of the periodicity toward the 5’ UTR that is absent in the case of data analysed using 340 

riboWaltz. (C) Comparison between the codon usage index based on in-frame P-sites from riboWaltz 341 

and RiboProfiling (left panel) and between the codon usage index based on in-frame P-sites from 342 

riboWaltz and Plastid (right panel). The length of the reads ranges from 19 up to 38 nucleotides (see 343 

Table 1) with the optimal PO used in the correction step of riboWaltz being 16 nucleotides from the 3’ 344 

end. 345 
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 346 

Figure 4. (A) Comparison of the percentage of P-sites in frame 0 (Periodicity score) along 347 

the coding sequence and (B) comparison of the average TIS accuracy score based on P-348 

sites identification by riboWaltz, RiboProfiling and Plastid. Both panels display the results 349 

obtained from 7 datasets (2 yeast, 3 mouse and 2 human), each dataset represented by a 350 

dot. Statistical significances from paired one-tailed Wilcoxon–Mann–Whitney test are shown 351 

(* P<0.05, ** P<0.01). 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 
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Read 
length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 19 2 16 2 16 13 5 

20 4 15 4 15 13 6 

21 4 16 4 16 13 7 

22 5 16 5 16 13 8 

23 6 16 6 16 13 9 

24 7 16 7 16 13 10 

25 8 16 1 25 13 11 

26 10 15 10 15 13 12 

27 10 16 10 16 13 13 

28 11 16 1 28 5 22 

29 12 16 12 16 13 15 

30 12 17 10 19 35 6 

31 13 17 20 50 13 17 

32 15 16 15 16 13 18 

33 16 16 17 15 13 19 

34 17 16 17 16 13 20 

35 18 16 18 16 13 21 

36 16 19 19 16 13 22 

37 20 16 22 58 13 23 

38 21 16 15 22 13 24 

 363 

Table 1: Comparison of the P-site offsets identified for each read length by riboWaltz, 364 

RiboProfiling and Plastid in mouse (GSE102318). The PO computed from both read 365 

extremities are reported. The optimal PO used in the correction step of riboWaltz 366 

corresponds to 16 nucleotides from the 3’ end. 367 

  368 
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Read 
length 

Number of 
reads (%) 

Temporary P-site offset Corrected P-site offset 

from 5’ from 3’ from 5’ from 3’ 

19 0.888 2 16 2 16 

20 0.986 4 15 4 15 

21 1.203 4 16 4 16 

22 1.113 5 16 5 16 

23 1.335 6 16 6 16 

24 2.191 7 16 7 16 

25 2.494 8 16 8 16 

26 3.743 10 15 10 15 

27 11.891 10 16 10 16 

28 34.943 11 16 11 16 

29 29.125 12 16 12 16 

30 7.771 12 17 12 17 

31 1.194 11 19 13 17 

32 0.365 15 16 15 16 

33 0.235 16 16 16 16 

34 0.164 17 16 17 16 

35 0.115 18 16 18 16 

36 0.087 10 25 16 19 

37 0.057 20 16 20 16 

38 0.034 21 16 21 16 

 369 

Table 2: Comparison between temporary and corrected P-site offsets identified by riboWaltz 370 

in mouse (GSE102318). The PO computed from both read extremities are reported. The 371 

optimal PO used in the correction step correspond to 16 nucleotides from the 3’ end. 372 

 373 
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Organism Reference 

Mean % of P-site in frame 0 Statistical significance 

riboWaltz 
Ribo 

Profiling 
Plastid 

riboWaltz 
 vs 

RiboProfiling 

riboWaltz  
vs 

Plastid 

Yeast 
Lareau et al., 

2014 
42.11 43.26 39.40 

5.90·10-4 

*** 
8.99·10-21 

*** 

Yeast 
Beaupere et 

al., 2017 
69.95 69.80 67.29 

0.0046 

** 
5.40·10-124 

*** 

Mouse 
This 

publication 
(GSE102318) 

70.63 70.21 42.58 
1.12·10-7 

*** 
< 1·10-324 

*** 

Mouse 
(IP RPL10) 

Shi et al., 
2017 

39.91 34.37 37.94 
< 1·10-324 

*** 
2.15·10-125 

*** 

Mouse 
(IP RPL22) 

Shi et al., 
2017 

41.15 33.97 37.54 
< 1·10-324 

*** 
4.39·10-277 

*** 

Human 
Gao et al., 

2015 
60.67 59.53 59.31 

2.37·10-15 

*** 
1.27·10-15 

*** 

Human 
This 

publication 
(GSE111866) 

57.90 52.13 14.52 
5.89·10-191 

*** 
< 1·10-324 

*** 

 386 

Table 3: Summary and comparison of the percentage of P-sites in frame 0 along the coding 387 

sequence based on P-sites identification by riboWaltz, RiboProfiling and Plastid. The values 388 

obtained from 7 datasets (2 yeast, 3 mouse and 2 human) are shown, together with the 389 

statistical significances from two-tailed Wilcoxon–Mann–Whitney test (P-value: * < 0.05, ** < 390 

0.01, *** < 0.001). 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 
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 402 
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 404 
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Organism Reference 

Average TIS accuracy score Statistical significance 

riboWaltz 
Ribo 

Profiling 
Plastid 

riboWaltz 
vs 

RiboProfiling 

riboWaltz 
vs 

Plastid 

Yeast 
Lareau et al., 

2014 
0.90 0.75 0.91 

6.0 ·10-45 

*** 
0.6817 

Yeast 
Beaupere et 

al., 2017 
0.96 0.56 0.68 

< 1·10-324 

*** 
< 1·10-324 

*** 

Mouse 
This 

publication 
(GSE102318) 

0.89 0.65 0.68 
< 1·10-324 

*** 
< 1·10-324 

*** 

Mouse 
(IP RPL10) 

Shi et al., 
2017 

0.68 0.56 0.67 
1.5 ·10-98 

*** 
0.9015 

Mouse 
(IP RPL22) 

Shi et al., 
2017 

0.78 0.52 0.79 
< 1·10-324 

*** 
0.0013 

** 

Human 
Gao et al., 

2015 
0.84 0.68 0.62 

3.4 ·10-221 

*** 
< 1·10-324 

*** 

Human 
This 

publication 
(GSE111866)  

0.80 0.65 0.64 
3.2 ·10-78 

*** 
1.1 ·10-50 

*** 

 406 

Table 4: Summary and comparison of the average TIS accuracy score based on P-sites 407 

identification by riboWaltz, RiboProfiling and Plastid. The values obtained from 7 datasets (2 408 

yeast, 3 mouse and 2 human) are shown, together with the statistical significances from two-409 

tailed Wilcoxon–Mann–Whitney test (P-value: * < 0.05, ** < 0.01, *** < 0.001). 410 
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