

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease

Citation for published version:

Brown, R, Lam, AD, Gonzalez-sulser, A, Ying, A, Jones, M, Chou, RC, Tzioras, M, Jordan, CY, Jedrasiak-cape, I, Hemonnot, A, Abou Jaoude, M, Cole, AJ, Cash, SS, Saito, T, Saido, T, Ribchester, RR, Hashemi, K & Oren, I 2018, 'Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease', eNeuro. https://doi.org/10.1523/ENEURO.0426-17.2018

Digital Object Identifier (DOI):

10.1523/ENEURO.0426-17.2018

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: eNeuro

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

eNeuro

Research Article: Confirmation | Disorders of the Nervous System

Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease

Rosalind Brown¹, Alice D. Lam^{2,3}, Alfredo Gonzalez-Sulser¹, Andrew Ying¹, Mary Jones¹, Robert C.-C. Chou¹, Makis Tzioras¹, Crispin Y. Jordan¹, Izabela Jedrasiak-Cape¹, Anne-Laure Hemonnot⁴, Maurice Abou Jaoude³, Andrew J. Cole^{2,3}, Sydney S. Cash^{2,3}, Takashi Saito⁵, Takaomi Saido⁵, Richard R. Ribchester¹, Kevan Hashemi⁶ and Iris Oren¹

¹Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
 ²Epilepsy Division, Massachusetts General Hospital, Boston, MA USA
 ³Harvard Medical School, Boston, MA USA
 ⁴Université De Montpellier, Montpellier, France
 ⁵Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Japan
 ⁶OpenSource Instruments Inc, Watertown, MA USA

DOI: 10.1523/ENEURO.0426-17.2018

Received: 5 December 2017

Revised: 8 March 2018

Accepted: 6 April 2018

Published: 27 April 2018

Author Contributions: RB, RRR and IO designed research; RB, ADL, AG-S, MJ, RC-CC, IJ-C, A-LH, TS and TS performed research; ADL, AY, RC-CC, MT, CYJ, A-LH and IO analysed the data; MAJ, AJC, SSC and KH contributed unpublished analytical tools; RB, ADL, KH and IO wrote the paper.

Funding: http://doi.org/10.13039/501100000320Alzheimer's Society: PG-2012-208. RS Macdonald Charitable Trust; Muir Maxwell Epilepsy Centre; Euan MacDonald Centre; Patrick Wild Centre; http://doi.org/10.13039/100005339American Academy of Neurology (AAN); http:// doi.org/10.13039/501100000295Epilepsy Research UK (ERUK); http://doi.org/10.13039/501100000265Medical Research Council (MRC): MR/M024075/1.

Conflict of Interest: Authors declare no conflict of interest.

R.B., A.D.L., and A.G.-S. are contributed equally to this work.

Correspondence should be addressed to: Iris Oren, Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, EH8 9JZ, UK. E-mail: iris.oren@ed.ac.uk

Cite as: eNeuro 2018; 10.1523/ENEURO.0426-17.2018

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 Brown et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1	1.	Manuscript Title: Circadian and brain state modulation of network
2		hyperexcitability in Alzheimer's disease
3	2.	Abbreviated title: Hyperexcitability modulation in AD
4	3.	Authors and affiliations:
5		Rosalind Brown ^{1*} , Alice D. Lam ^{2,3*} , Alfredo Gonzalez-Sulser ^{1*} , Andrew
6		Ying ¹ , Mary Jones ¹ , Robert CC. Chou ¹ , Makis Tzioras ¹ , Crispin Y. Jordan ¹ ,
7		Izabela Jedrasiak-Cape ¹ , Anne-Laure Hemonnot ⁴ , Maurice Abou Jaoude ³ ,
8		Andrew J. Cole ^{2,3} , Sydney S. Cash ^{2,3} , Takashi Saito ⁵ , Takaomi Saido ⁵ ,
9		Richard R. Ribchester ¹ , Kevan Hashemi ⁶ , Iris Oren ¹
10		
11		* These authors contributed equally to this work
12		
13		1. Centre for Discovery Brain Sciences, University of Edinburgh,
14		Edinburgh, UK
15		2. Epilepsy Division, Massachusetts General Hospital, Boston MA, USA
16		3. Harvard Medical School, Boston MA, USA
17		4. Université de Montpellier, Montpellier, France.
18		5. Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute,
19		Japan
20		6. OpenSource Instruments Inc., Watertown, MA, USA
21		
22	4.	Author Contributions:
23		RB, RRR and IO designed research
24		RB, ADL, AG-S, MJ, RC-CC, IJ-C, A-LH, TS and TS performed research
25		ADL, AY, RC-CC, MT, CYJ, A-LH and IO analysed the data

26	MAJ, AJC, SSC and KH contributed unpublished analytical tools
27	RB, ADL, KH and IO wrote the paper
28	
29	5. Correspondence should be addressed to:
30	Iris Oren
31	Centre for Discovery Brain Sciences
32	University of Edinburgh
33	1 George Square
34	EH8 9JZ
35	UK
36	iris.oren@ed.ac.uk
37	6. Number of Figures: 7
38	7. Number of Tables: 2
39	8. Number of Multimedia: 0
40	9. Number of words for Abstract: 250
41	10.Number of words for Significance Statement: 111
42	11. Number of words for Introduction: 656
43	12. Number of words for Discussion: 2069
44	13.Acknowledgements: We thank the Gladstone Institute for providing J20
45	mice. We thank Dominic Walsh for supplying APP $^{\rm NL/F}$ mice.
46	14. Conflict of interest: The authors declare no conflict of interest.
47	15. Funding sources: This work was supported by the grants awarded to IO
48	from the following funders: the Alzheimer's Society (PG-2012-208), the
49	RS Macdonald Charitable Trust, The Muir Maxwell Epilepsy Centre, The
50	Euan MacDonald Centre and The Patrick Wild Centre. ADL was supported

- 51 by the American Academy of Neurology Institute. AGS was supported by
- 52 Epilepsy Research UK. RC-CC was supported by an MRC grant
- 53 (MR/M024075/1) awarded to RRR.
- 54

55 **16**.

56

57 Abstract

58 Network hyperexcitability is a feature of Alzheimer's disease (AD) as well as 59 numerous transgenic mouse models of AD. While hyperexcitability in AD 60 patients and AD animal models share certain features, the mechanistic overlap 61 remains to be established. We aimed to identify features of network 62 hyperexcitability in AD models that can be related to epileptiform activity 63 signatures in AD patients. We studied network hyperexcitability in mice 64 expressing amyloid precursor protein (APP) with mutations that cause familial 65 AD, and compared a transgenic model that overexpresses human APP (J20), to a knock-in model expressing APP at physiological levels (APP^{NL/F}). We recorded 66 67 continuous long-term electrocorticogram activity from mice, and studied 68 modulation by circadian cycle, behavioural, and brain state. We report that while J20s exhibit frequent inter-ictal spikes (IIS), APPNL/F mice do not. In J20 mice, IIS 69 70 were most prevalent during daylight hours and the circadian modulation was 71 associated with sleep. Further analysis of brain state revealed that IIS in J20s are 72 associated with features of rapid-eye movement (REM) sleep. We found no 73 evidence of cholinergic changes that may contribute to IIS-circadian coupling in 74 [20s. In contrast to [20s, intracranial recordings capturing IIS in AD patients 75 demonstrated frequent IIS in non-REM sleep. The salient differences in sleep-76 stage coupling of IIS in APP overexpressing mice and AD patients suggests that 77 different mechanisms may underlie network hyperexcitability in mice and 78 humans. We posit that sleep-stage coupling of IIS should be an important 79 consideration in identifying mouse AD models that most closely recapitulate

- 80 network hyperexcitability in human AD.
- 81

82 Significance statement

83 It is increasingly recognized that Alzheimer's disease (AD) is associated with 84 hyperexcitability in brain networks. Brain network hyperexcitability is also 85 reported in several rodent models of AD. We studied the signatures of this 86 hyperexcitability in two rodent models of AD as well as AD patients. Network 87 hyperexcitability was prevalent in a transgenic model of AD, but was absent in a 88 rodent model that is considered to be more physiological. Moreover, while 89 network hyperexcitability was coupled to rapid-eye movement (REM) sleep in 90 transgenic mice, hyperexcitability occurred in non-REM sleep in AD patients. We 91 suggest that brain state coupling of hyperexcitability can be used as a method for 92 screening animal models of AD.

94 Introduction

95 An increased incidence of seizures in Alzheimer's disease (AD) is indicative of an 96 underlying network hyperexcitability (Hesdorffer et al., 1996; Amatniek et al., 97 2006; Lozsadi and Larner, 2006; Vossel et al., 2013; Cretin et al., 2016). Inter-98 ictal spikes (IIS) are also seen in a high proportion of AD patients without a 99 history of clinical seizures (Vossel et al., 2016). Non-ictal network hyperactivity 100 has also been detected by means of fMRI in individuals at risk of developing 101 dementia, for example in people carrying the APOE4 allele (Bookheimer et al., 102 2000; Filippini et al., 2009), with other genetic predictors of AD (Quiroz et al., 103 2010) and also in patients with mild cognitive impairment – a diagnosis which is 104 considered to be a prodromal stage of AD (Dickerson et al., 2005). Network 105 hyperexcitability and seizure activity appear at early stages of the disease and 106 have been suggested to be predictors of accelerated cognitive decline (Amatniek 107 et al., 2006; Vossel et al., 2013; Cretin et al., 2016; Vossel et al., 2016).

108

Network hyperexcitability has also been reported in numerous mouse models of
AD pathology (Palop et al., 2007; Minkeviciene et al., 2009; Busche et al., 2012;
Šišková et al., 2014; Kazim et al., 2017), with the aberrant activity being a feature
that occurs in advance of plaque deposition (Busche et al., 2012; Bezzina et al.,
2015). These phenomenological similarities have led to the suggestion that these
animal models can provide a tool by which to study network hyperexcitability in
human AD (Palop and Mucke, 2016).

117 Aberrant network activity could in itself contribute to neurodegeneration and 118 cognitive dysfunction in AD pathology (Cirrito et al., 2005; Bero et al., 2011; 119 Busche and Konnerth, 2015; Wu et al., 2016). Reducing network 120 hyperexcitability has been shown to ameliorate cognitive dysfunction in both 121 patients and animal models (Bakker et al., 2012; Sanchez et al., 2012; Haberman 122 et al., 2017), and to attenuate A β pathology (Yuan and Grutzendler, 2016). Hence, 123 targeting network hyperexcitability has been suggested as a novel therapeutic 124 avenue for AD. However, studying this therapeutic avenue by means of animal 125 models (Sanchez et al., 2012) requires a deeper understanding of the shared 126 features of network hyperexcitability between AD patients and animal models.

127

128 Expression of epileptiform activity frequently exhibits a circadian pattern and 129 shows preferential activation with specific brain states in a range of epilepsies 130 (Quigg, 2000; Ng and Pavlova, 2013; Sedigh-Sarvestani et al., 2015). Circadian 131 dysfunction and sleep disruption are common features of AD, and are also 132 considered as early features of disease pathogenesis (Musiek et al., 2015; Mander et al., 2016; Musiek et al., 2018). Two recent papers have reported 133 134 modulation of epileptiform activity by circadian cycle and brain state in 135 transgenic AD models. Epileptiform activity was more prevalent in daylight 136 conditions, and was suggested to occur primarily during REM sleep (Born et al., 137 2014; Kam et al., 2016). If epileptiform activity is modulated by circadian-cycles 138 and/or brain state in AD patients, it is possible that this might contribute to the 139 reported circadian alterations and sleep dysfunction. In line with this, it has 140 recently been shown that inter-ictal activity in AD patients is highly prevalent 141 during sleep (Vossel et al., 2016; Horváth et al., 2017; Lam et al., 2017). The

142 modulation of ictal related activity by brain state points to a distinguishing 143 feature that could be used to (a) uncover distinct mechanisms underlying 144 hyperexcitability, and (b) ascertain the translational utility of specific animal 145 models in studying network hyperexcitability. To this end, the present study 146 aimed to investigate circadian and brain state modulation of network 147 hyperexcitability in two rodent models of AD of differing aetiology: one in which 148 hAPP is overexpressed and one in which APP is expressed at endogenous levels. 149 In order to shed light on the translational utility of rodent AD models for 150 studying network hyperexcitability in human AD, we further examined sleep-151 stage modulation of epileptiform activity in two patients with AD, using 152 recordings from intracranial electrodes placed directly adjacent to the 153 hippocampus.

154

155 Methods

156 Animals and animal maintenance

157 All animal procedures were performed in accordance with the [Author

158 University] animal welfare committee regulations and were performed under a

159 UK Home Office project license.

160

161 Heterozygous mice expressing hAPP with the KM670/671NL (Swedish) and

162 V717F (Indiana) mutations on a PDGFβ promoter (J20; Mucke et al., 2000) were

163 bred by crossing J20 +/- males with C57Bl6J females. Experiments used J20+/-

164 (n=21) and J20 -/- (n=8) wild-type (WT) littermate controls. The mean age of J20

animals was 5 months (range: 3.3 – 6.5 months).

167	Homozygous knock-in mice expressing APP KM670/671NL (Swedish) and APP
168	I716F (Iberian) mutations (APP $^{NL/F}$; Saito et al., 2014) were back-crossed onto
169	C57Bl6J strain for at least 3 generations and were >99.8% cogenic with C57Bl6J.
170	Experiments used APP ^{NL/F} +/+ (n=20) and age-matched non-littermate C57Bl6J
171	WT controls (n=15). Animals were either 8 months or 12 months of age.
172	
173	Both male and female mice were used. Mice were kept on a 7h-19h light-dark
174	cycle in standard, open cages. Mice were group-housed prior to surgery and
175	were housed individually post-surgery and during telemetry data acquisition.
176	
177	Surgery and data acquisition
178	A subdural intracranial electrocorticogram (ECoG) recording electrode was
179	positioned in the cortex overlying the hippocampus (co-ordinates x: -2.25 y: -
180	2.46). A reference electrode was implanted either in the skull of the contralateral
181	hemisphere, or above the cerebellum. Electrodes were either bare wire, or skull
182	screws. An EEG transmitter (A3028B, Open Source Instruments) was implanted
183	on the back of the animal subcutaneously. Animals were left to recover for at
184	least 24 hours after surgery before the commencement of telemetry data
185	acquisition. Telemetric ECoG data was acquired for approximately 3 days from
186	each animal. Recording was either carried out continuously between days 1 to
187	day 3 after surgery, or day 1, followed by day 5 to day 6.
188	
189	ECoG data was acquired using an Opensource Instruments data acquisition
190	system at 512sps as previously described (Chang et al., 2011).

192 Video data was acquired using a Basler aca1300-60gm gigE camera sampling at

193 10fps, or a Logitech C270 HD webcam sampling at 5fps. Video was acquired

194 during the daylight hours.

195

196 ECoG Data processing

197 The raw ECoG data was analysed using custom written Tcl and C processors.

198 ECoG data was analysed in 8s intervals. For each interval we extracted measures

of data loss, spike count, delta power (0.1-3.9 Hz) and theta power (4-12 Hz). We

200 defined intervals in which data loss exceeded 20% of samples as "lossy" intervals.

201 Intervals in which delta power exceeded 0.16mV² were classified as artifacts.

202 Lossy and artifact intervals were excluded.

203

204 Inter-ictal spikes (IIS) in rodent ECoG were detected as follows. Each 8-s interval 205 of EEG was treated as a two-dimensional path. One dimension is voltage, which 206 was normalized by dividing by the mean absolute step size of the voltage in the 207 8-s interval. The mean absolute step size is the sum of the absolute changes in 208 voltage from one sample to the next, divided by the number of samples. For an 8-209 s interval, the number of samples would be 4096 and a typical mean absolute 210 step size for mouse EEG is around 12 μ V. The other dimension is time, which was 211 normalized by dividing by the sample period. The spike-finder proceeds along 212 this EEG path in steps. With each step, it moves to the nearest sample on the path 213 ahead. Whenever the spike-finder steps past one or more samples, it classifies 214 these samples as an aberration in the path. Solitary aberrations larger than 20 215 mean absolute step sizes are classified as IIS. A series of IIS in which single

216 spikes were separated by <78ms (40 samples) were treated as a burst event and 217 counted as one IIS event within the 8s interval.

218

219 For each J20 animal, the false positive rate of IIS detection was determined by

220 randomly hopping through 100 8s intervals identified by the processor as

221 containing IIS, and scoring them as true or false positives. The animal was

222 excluded from analysis if the false positive rate exceeded 10%. One animal was

223 excluded from analysis on this basis. In the remaining animals, the false positive

rate ranged from 0 – 6% (mean false positive rate: 1.9%).

225

226 We observed that lossy and artifactual intervals resulted from movement and

227 external sources of interference. We could not exclude the possibility that these

228 events are non-randomly distributed across the 24hr cycle. Non-random

exclusion of intervals would impact the evaluation of coupling of IIS. We thus set

230 a criterion: if >5% of all 8s intervals were excluded due loss or artifact, the

animal was excluded from calculations of coupling of IIS to circadian cycles,

sleep-wake, and θ/δ . Two J20 animals were excluded from data reported in Fig 2-

4 on this basis (25% and 16% of 8s intervals excluded in these animals).

234

235 <u>Video analysis</u>

236 Video data was manually scored to classify periods as 'sleep' or 'wake'. Based on

237 previous reports, sustained inactivity \geq 40s was classified as 'sleep', while

238 stationary periods <40s and periods of movement were classified as 'wake' (Pack

et al., 2007). Postural shifts during sleep epochs did not break sleep epochs.

240

241 Immunohistochemistry and imaging

Animals were killed by transcardial perfusion with N-methyl-D-glucamine (NMDG)-based saline solution (in mM: 92 NMDG, 2.5 KCl, 1.25 NaH₂PO₄, 20 HEPES, 30 NaHCO₃, 25 glucose, 10 MgCl₂, 0.5 CaCl₂, sucrose to adjust osmolarity to 315-330mOsm). Brains were post-fixed with 4% paraformaldehyde for 24h then washed and stored in PBS. Samples were put in 50% or 30% sucrose, PBS solution and 50% OCT solution for 24h before cutting, then placed in the same solution and cut using a freezing microtome.

249

250 50µm sections were stored in PBS at 4°C. Slices were presoaked with 5% rabbit 251 normal serum (RNS, Vector S-5000), 0.2% Triton X-100, PBS solution for 30min 252 at room temperature (RT), followed by incubation with 3% RNS, 0.2% Triton X-253 100, anti-Choline Acetyltransferase (ChAT; 1:500, Millipore #AB144P, RRID: 254 AB_2079751), PBS solution for 48h at 4°C. The sections were washed 3 times 255 with PBS 0.2% Triton X-100 for 5min each and then incubated in 3% RNS, anti-256 Goat biotinylated (1:200), Dapi (1:5000, Sigma D9542-1MG), PBS solution for 1h 257 at RT. After 3 PBS 0.2% Triton X-100 washings of 5min each, the sections were 258 incubated with ABC reagent (Vectastain PK-6105 kit) prepared half an hour 259 before using and stored in foil at 4°C containing 0.1% of A, 0.1% of B, 0.01% 260 Triton X-100, PBS for 1h at RT. After 6 PBS washings of 10min each, the sections 261 were put in 3 3'-diaminobenzidine (Sigma D5905-50TAB), 0.02% CoCl₂ (1% 262 wt/vol), 0,04% (NH₄)₂Ni(SO₄)₂ (1% wt/vol) dH₂0 solution for 30min at 4°C over 263 agitation. Then stained by adding 1.2% of fresh 1% H₂0₂ per slice for 10 to 20s 264 until the slice darkened. The slices were then transferred and washed in PBS, 6 265 times for 10min each, mounted on a slide and dried for 30min at 50°C then

268

290

269 Imaging was performed on a Zeiss AX10 microscope using StereoInvestigator 270 with a 5x/0.16 (420630-9900) apochromat air objective. Software 271 Quantification was performed using StereoInvestigator Software "Optical 272 Fractioner Workflow" probe with the following settings. Thickness of 50µm was 273 manually defined and regions were selected using a 1.25×10.03 (420310-9900) 274 apochromat air objective for low magnification and then counted with a 275 10x/0.45 (420640-9900) apochromat air objective for high magnification. The 276 border between medial septum (MS) and diagonal band of Broca (DB) was 277 defined as a line between the two major island of Caleja. The regions were 278 separated using different lines. The counting frame used was a square of 75µm 279 size and the grid was a square of 150µm size. The counter was blind to genotype. 280

281 Oral administration of Donepezil

282 Donepezil hydrochloride (Sigma Aldrich, D6821) was orally administered in a 283 jelly. Mice were trained to voluntarily consume jelly following the protocol 284 described by Zhang (2011). Mice were given placebo jelly or a jelly containing a 285 Donepezil dose of 1.8mg/kg. For experiments studying the effects of Donepezil 286 on acetylcholinesterase (AChE) activity, jelly was given at 8am daily. For 287 experiments studying the effects of Donepezil on IIS, jelly was given daily at 288 either 8am, or 8pm to assess interactions of AChE modulation and circadian 289 cycle. Since there was no effect of AChE on IIS, results were pooled.

291 Acetylcholinestrase (AChE) assay

292	Quantitative measurements of AChE enzymic activity were made using a
293	modified Ellman method (Ellman et al., 1961; Rosenfeld et al., 2001). Stock
294	solutions were acetylthiocholine iodide, used as the enzymic substrate (ATH; 1.7
295	mg/ml in PBS, Sigma-Aldrich), 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB, 0.8
296	mg/ml in PBS, Sigma-Aldrich). Briefly, brains were rapidly dissected from either
297	WT or J20 mice. Neocortex was isolated, weighed and then homogenised using a
298	Pellet Pestle (Sigma, Z 359971) in 9 volumes of 0.1M sodium phosphate buffer
299	(pH 7.4) (Patel et al., 2014). 5 μl of brain homogenate was aliquoted into each
300	well of a 96 –well plate, volume made up to 200 μl with PBS. DTNB (50 μl from
301	stock) was added, followed by 50 μl of ATH substrate from stock. Measurement
302	of absorption at 450 nm began immediately (<2 hours from dissection) and was
303	measured every 5 mins for up to 30 mins using a MRX microplate reader (Dynex
304	Technologies, Chantilly, USA). Thiocholine production in the test wells was
305	expressed in units of nmoles/minute, calibrated with reference to the
306	absorbance change over a range of concentrations giving a linear response using
307	glutathione as the DTNB reactant (Eyer et al., 2003). Neostigmine (10 $\mu\text{M},$
308	Sigma-Aldrich) was used to completely inhibit AChE activity and establish there
309	was no baseline drift during the measurements.
310	
311	Human scalp EEG and foramen ovale (FO) electrode recordings
312	Human scalp EEG and FO electrode recordings were performed at the
313	Massachusetts General Hospital, as described in detail previously (Lam et al.,
314	2017). Scalp EEG electrodes were placed using the International 10-20 system,

315 with additional T1 and T2 electrodes.

- 317 Sleep staging in patient data was performed by a board-certified clinical 318 neurophysiologist (ADL) based on visual analysis of the full scalp EEG data. 319 While dedicated electrooculogram and electromyogram channels were not 320 recorded for these studies, the frontopolar scalp EEG electrodes allowed eNeuro Accepted Manuscript 321 assessment of eye movements, while the frontopolar, frontal, and temporal 322 electrodes allowed assessment of myogenic activity. Scalp EEG data was 323 reviewed in 30 second epochs in the longitudinal anterior-posterior bipolar 324 montage, using the Python module wonambi (https://github.com/wonambi-325 python/wonambi). Each 30 second epoch was classified as awake, NREM1, 326 NREM2, NREM3, or REM, based on the American Academy for Sleep Medicine's 327 manual for sleep scoring. 328 329 Spike quantification in patient data was performed by a board-certified clinical 330 neurophysiologist (ADL), using a custom-made GUI in Matlab (Mathworks, 331 Natick, MA). The GUI displayed 15 second epochs of left and right sided FO data, 332 in both bipolar and common reference montages (common reference = C2), 333 along with the EKG trace to allow exclusion of EKG artifact. The reviewer could 334 adjust amplitudes for each trace as needed. For the MCI patient analyzed, 335 contact #3 from the left FO electrode did not record properly and was excluded 336 from analysis. The reviewer marked all spikes in each epoch. Epochs were 337 presented in consecutive order, but the reviewer was otherwise blinded to the 338 sleep stage for each epoch during the review. Instantaneous spike rates were 339 calculated by determining the total number of left FO and right FO spikes
 - 340 detected within all 30 second epochs of the recording (which corresponded to

the sleep staging epochs above), and converting these rates to spikes per hour.
Average spike rates within each sleep stage were calculated by summing the
total number of spikes that occurred during each sleep stage and dividing by the
total number of hours the patient spent in each respective sleep stage in the
recording.

346

347 Spectral analysis of the FO electrodes was performed in Matlab, using the freely 348 available Chronux toolbox (Mitra and Bokil, 2007). Analysis was performed on 349 the LF01, LF02, RF01, and RF02 channels, as these were the deepest contacts 350 and thus least prone to noise or artifact. Channels were each normalized to zero-351 mean, unit-variance. Multi-taper spectrograms were calculated for each 352 normalized channel, using the Chronux script *mtspecgramc* with the following 353 parameters: frequency range: 1-20Hz, window: 30 seconds; step size: 30 354 seconds; time-bandwidth product: 3, tapers: 5. This provided a spectral 355 resolution of 0.2Hz. An average spectrogram across all FO channels was then 356 generated, and the average spectral powers within the δ band (0-4Hz) and θ 357 band (4-12Hz) were then calculated. 358 359 **Statistics** 360 Statistical data analysis was performed using R (version 3.2.0) including the 361 'dplyr' (Wickham et al., n.d.) and ggplot2 (Wickham, 2009) packages. 362 363 Assumptions for parametric tests were tested using Q-Q plots and residual plots. 364 Data transformations or non-parametric tests were used for two-group

365 comparisons in which test assumptions were violated.

For evaluating the effects of the fixed effects of age and genotype on the
proportion of intervals containing more than one spike in APP^{NL/F} animals, the
data first underwent a square-root transformation and then fit using a linear
model:

$$\sqrt{IntervalProportion} \sim Age + Genotype + \xi$$

371

366

372 where ξ is the error term.

373

The time of IIS was treated as circular variable. Each interval in which 1 or more IIS were detected was considered an event. The time of each event was evaluated as a phase of a circadian cycle. Circular data was analysed using circular statistics by means of the 'circular' package (Agostinelli and Lund, 2013). Circular outliers were identified using 'CircOutlier' package (Rambli et al., 2016).

379

380 For tests entailing random variables, linear models were fit using 'lme4' (Bates et

al., 2015). Significance was tested using a log-likelihood test comparing the full

382 model to a null model without the factor of interest.

383

384 For evaluation of the relationship between spike count and θ/δ , we described

385 each θ/δ value as a member of one of three levels: i) $\theta/\delta \le 1$; ii) $1 < \theta/\delta \le 2$, and iii)

386 $\theta/\delta > 2$. We then modelled spike count (Poisson-distributed) as a function of

387 levels of θ/δ , using the R package 'MCMCglmm' (Hadfield, 2010). It should be

388 noted that due to poor properties of a single model fitted across all animals

(fitting animal as a random effect and θ/δ factor as a fixed effect), separate

390 models were fitted to individual animals without including a random effect. Thus

391 the data do not allow for inference about the population.

392

Event-triggered averages of IIS were evaluated by considering each interval in
which an IIS was detected as an event. If no intervals within +- 80s around the
event were excluded, then the 160s window was included in the calculation of
the event-triggered averages, else the event was excluded from the averaging. An
event-triggered average was also evaluated around 2000 randomly sampled
points.

399

400 For comparing θ/δ in intervals with IIS to θ/δ in intervals preceding IIS, we

401 considered only interval pairs where the preceding interval did not contain IIS402 and fit the model

$$\left(\frac{\theta}{\delta}\right)^{1/4} \sim Index + Subject + \xi$$

where Index was a factor labelling whether the interval contained IIS or the
preceding interval and modelled as a fixed effect, and Subject was a random
effect with a random intercept.

406

407 For comparison of ChAT+ cells between genotypes, the model used was: $EstimatedCount \sim Genotype + Region + Subject + \xi$

408

409 where genotype and region were fixed effects and subject was a random effect

410 with a random intercept.

411

412	To study the effect of genotype and treatment of the Thiocholine production rate,
413	the data of Thiocholine production was log-transformed. The model used was
	$\log(ThiocholineRate) \sim GenotypeTreatment + RepeatID + \xi$
414	
415	where GenotypeTreatment was a fixed effect and RepeatID was a random effect
416	with a random intercept. Post-hoc tests for the linear model were performed
417	using package 'multcomp' with the Holm correction method (Hothorn et al.,
418	2008). It should be noted that while the treatment levels of control and
419	donepezil were independent, the neostigmine treatment was applied to a sample
420	of wild-type control tissue and thus was not independent. This repeated factor
421	was not accounted for in the model.
422	
423	Significance was tested using α =0.05. Two-sided hypothesis testing was used.
424	
425	Superscripts following statistical reporting in the results section refer to the
426	statistical table (Table 1).
427	
428	Code and data accessibility
429	The processor script used for quantification of IIS, θ and δ power in rodent ECoG
430	data is available from
431	http://www.opensourceinstruments.com/Electronics/A3018/HTML/SCPP4V1.t
432	cl
433	Code used for quantifying IIS in human data is available from

434 https://github.com/mauriceaj/GUI-EEG_Spike_Annotation

- 435 The datasets used for figures 1 6 (rodent data) are available from
- 436 http://dx.doi.org/10.7488/ds/2319
- 437

438 Results

- 439 <u>Network hyperexcitability in mouse models of AD pathology</u>
- 440 To establish circadian patterns of network hyperexcitability in J20 mice, we
- 441 recorded ECoG activity from freely-moving J20 and littermate wild-type (WT)
- 442 mice using wireless telemetry over a period of three days. As network
- 443 excitability has been suggested to be an early event in AD pathogenesis (Vossel
- 444 et al., 2013; Sarkis et al., 2015), we focused our study on ages which precede
- 445 overt plaque pathology in J20s (Mucke et al., 2000).
- 446
- 447 As previously reported (Palop et al., 2007), non-seizure, inter-ictal spikes (IIS;
- 448 Fig 1A) were detected in J20 ECoG (note that while ictal activity was not assessed,
- 449 we refer to these as inter-ictal events due to the similarity with IIS that have
- 450 been reported in the literature). We applied automated event detection (see
- 451 methods), on 8s intervals of continuous ECoG. The percentage of intervals in
- 452 which 1 or more spikes were detected was negligible in WTs (mean percentage:
- 453 0.8%, sd=0.7%, n=8). In contrast, the percentage of intervals with 1 or more
- 454 spikes was greater in J20s (mean percentage: 11.6%, sd=5.1%, n=18; t=10.6,
- df=23.98, p<0.0001, t-test on square root transformed data with Welch
- 456 correction, Figure 1B,C)^a.
- 457
- 458 Seizures and IIS have been reported in numerous strains of transgenic mice that
- 459 express hAPP and that exhibit Aβ pathology (Del Vecchio et al., 2004; Palop et al.,

481

482

483

460	2007; Minkeviciene et al., 2009; Rasch and Born, 2013). However, it has been
461	suggested that such network hyperexcitability is the result of overexpression of
462	hAPP (Born et al., 2014). To determine whether network hyperexcitability is
463	associated with $A\beta$ pathology in the absence of hAPP overexpression, we
464	performed telemetric ECoG recordings as above, in mice expressing the
465	humanized AB sequence of APP (APP^{NL/F}; Saito et al., 2014) and age-matched
466	controls. We recorded from mice at ages preceding overt plaque pathology (8
467	months) and at ages where plaques begin to appear (12 months)(Saito et al.,
468	2014; Masuda et al., 2016). We found no significant effect of genotype in the
469	proportion of intervals containing spikes between WT and APP^{\rm NL/F} (Fig 1D; F(2,
470	32)=3.1, R^2 =0.11, p=0.06) ^b with a negligible proportion of intervals with one or
471	more spikes detected (mean percentage of intervals with one or more spikes,
472	pooled across genotype and age = 1.2%, 95%CI (0.8%, 1.6%)). A post-hoc power
473	calculation based on the effect size from the J20 group (Cohen's d=2.5) and the
474	sample sizes of the APP^{NL/F} and WT groups yielded a power of >0.99 at α =0.05
475	for an effect of genotype. Hence, we conclude that $APP^{\text{NL}/\text{F}}$ mice show no
476	evidence of network hyperexcitability compared to control animals.
477	
478	Circadian coupling of IIS
479	It has been suggested that seizure-related activity shows circadian fluctuations
480	in epilepsies (Quigg, 2000). Hence we next asked whether the likelihood of IIS in

2A). We used circular statistics to extract measures of the phase coupling of IIS

J20s varies across the day/night cycle. Quantifying the number of IIS per hour

revealed that IIS are more frequent during daylight hours (inactive phase; Fig

to the circadian cycle within individual J20 animals (Fig 2A, see methods). To

evaluate the degree of phase coupling of IIS in each animal, we evaluated the mean angular vector length (ρ) from the time of IIS. ρ can vary between 0 (no phase coupling) to 1 (perfect phase coupling). To evaluate the time to which IIS were coupled, we extracted the mean coupling phase off IIS, expressed as a time on a 24-hour cycle (φ_{IIS}).

490

491 The distribution of IIS phases differed significantly from a random distribution in 492 all animals (Rayleigh Test of Uniformity: $p<10^{-11}$). The extent of phase coupling 493 was variable across the sample of J20s (Fig 2B; mean $\rho_{IIS}=0.24$, sd=0.13, n=16). 494

495 Evaluating the coupling phase revealed that IIS occurred predominantly in the 496 light condition (Fig 2A). Across the sample of J20s, the mean φ_{IIS} ($\overline{\varphi_{IIS}}$)

497 confirmed this (Fig 2B; $\overline{\varphi_{IIS}}$ = 15h05, ρ =0.38, n=16, p < 0.0001, Rayleigh's test).

498 Inspection of the φ_{IIS} distribution revealed potential outliers. Testing for outliers 499 on a circular distribution (Rambli et al., 2016) identified four outliers. These four 500 animals were amongst the 5 that showed a cluster of weakest phase coupling as

501 measured by ρ_{IIS} (range: 0.06 – 0.11). We used the upper bound of the range of

502 ρ_{IIS} of the four outlier animals to classify phase-coupling as weak or strong.

503 Henceforth, we refer to the five animals with $\rho_{IIS} \le 0.11$ as showing weak phase-

504 coupling, and the other 11 animals as showing strong phase-coupling (ρ_{IIS} >0.17).

505

506 <u>Sleep/wake modulation of IIS</u>

507 Since IIS predominantly occurred in the normal inactive phase of the circadian

508 cycle, we next asked whether this circadian modulation of IIS could be accounted

509 for by the sleep/wake state of the animals. In a subset of J20s, we acquired 510 simultaneous video recordings while recording ECoG data (n=4). We manually 511 scored the video and classified periods as 'sleep' or 'wake' (see Methods). Two of 512 these four J20 animals showed strong circadian phase-coupling of IIS, and two 513 showed weak phase-coupling. For the two animals that showed strong phase-514 coupling of IIS, IIS occurred more frequently in sleep than during waking (Fig 3A, 515 B). In contrast, the modulation of IIS probability did not show a consistent 516 pattern in animals showing weak phase-coupling (Fig 3B). This suggests that the 517 strong phase-coupling of IIS may be accounted for by differences in behavioural 518 state across the circadian cycle. 519 520 Brain state modulation of IIS in J20 mice 521 Sleep-related ictal and inter-ictal activity is differentially modulated by REM and 522 NREM sleep in different forms of epilepsy (Bazil and Walczak, 1997; Herman et 523 al., 2001; Sedigh-Sarvestani et al., 2014; Ewell et al., 2015). REM and NREM can

524 be distinguished by the relative power in the δ (defined here as 0.1 – 3.9 Hz) and

525 θ (4- 12 Hz) frequency bands, with high θ/δ associated with REM (Ewell et al.,

526 2015) as well as waking exploration (Buzsáki, 2002). Thus, we next asked

527 whether IIS are more likely to occur in particular brain states. To this end, we

528 performed spectral analysis of the ECoG data from a subset of the mice (n=5

529 J20s) in which a reference electrode was implanted at cerebellar coordinates (a

530 non-cortical reference for detection of cortical rhythms). ECoG recordings from

531 J20 mice, exhibited periods showing a peak in θ -band power when animals were

532 either awake (i.e. moving) or asleep, while periods of elevated δ -band power

533 were seen during sleep (Fig 4A). We evaluated the θ/δ ratio for each 8s interval

and related it to the number of IIS in the interval. Transient increases in θ/δ were observed during sleep and were associated with increased occurrences of IIS (Fig 4B).

538	To quantify whether IIS were more likely in particular brain states, we next
539	investigated the relationship between θ/δ and IIS count/8s interval. As we were
540	interested in discriminating between REM and NREM sleep, we limited the
541	analysis to daylight hours when animals are more likely to be asleep. We used a
542	value of $\theta/\delta{<}1$ and >2 to classify periods as NREM-like and REM-like respectively
543	(Ewell et al., 2015). This revealed significantly higher spike counts during REM-
544	like vs NREM-like periods in all 5 animals (Fig 4B, p<0.0005 for all 5 animals,
545	Markov Chain Monte Carlo generalised linear model) ^c . Interestingly, IIS were
546	associated with increased θ/δ in animals showing both weak and strong phase-
547	coupling (Fig 4C). Since sleep and wake are not predictive of IIS in animals with
548	weak phase-coupling, this suggests that there is a mismatch between θ/δ and
549	behavioural state in animals with weak phase-coupling. Moreover, high
550	θ/δ states are predictive of IIS, regardless of behavioural state.
551	
552	To examine the temporal dynamics of θ/δ around IIS, we evaluated the IIS-
553	triggered average of θ/δ (Sedigh-Sarvestani et al., 2014) for 160s window around
554	each interval in which at least one IIS was identified. In all animals, θ/δ was
555	increased around the time of IIS relative to θ/δ averaged around randomly
556	sampled points (Fig 4D). In three strongly phase-coupled animals, θ/δ returned
557	to baseline levels within the 160s window around the event. However, in the

558	weakly phase coupled animals, θ/δ remained elevated above baseline levels in
559	this window. The peak in the θ/δ IIS-triggered average did not occur at t=0 in any
560	of the animals. Since intervals neighbouring the IIS-containing interval show
561	increased θ/δ , this suggests that the IIS contribution to spectral power did not
562	underlie the association between increases in θ/δ and IIS probability. To further
563	examine whether IIS could directly contribute to the increased $\theta/\delta,$ we compared
564	θ/δ in intervals with IIS to θ/δ in the preceding intervals only in cases where the
565	preceding interval contained no IIS. We found no significant difference in
566	θ/δ between intervals with IIS and the preceding interval (Linear mixed model,
567	$\chi^2(1) = 0.35$, p=0.56, data not shown) ^d .
568	
569	To determine whether the spectral ECoG patterns in J20 mice are a reflection of
570	normal sleep or a result of pathology, we performed similar analysis of video-
571	scored ECoG data from 3 wild-type mice. As in the J20, intervals of strong
572	$\boldsymbol{\theta}$ power were evident during wake and sleep, while periods of prominent
573	$\delta-$ band activity were seen in sleep. Transient increases in θ/δ during sleep akin
574	to those seen in J20s were also observed in all WT animals, suggesting that such
575	increases are a feature of normal sleep, and not pathological (Fig 5). To compare
576	the distribution of θ/δ during sleep between genotypes, we calculated the range
577	and 90th percentile of θ/δ while animals were asleep (using data for which we
578	had video-scoring). Group sizes were too small for statistical comparison but
579	suggested that θ/δ values spanned a narrower range in J20 mice than in WT mice
580	(J20 mean range=(0.02, 10.0), 90 th percentile=2.4, SD(1.1), n=4; WT mean

581 range=(0.04, 19.3), 90th percentile =5.4, SD(1.4), n=3; data not shown).

- 583 <u>No evidence of cholinergic changes in J20 mice</u>
- 584 Cholinergic levels exhibit a circadian modulation (Hut and Van der Zee, 2011), 585 and high cholinergic tone is implicated in generating θ oscillatory states (Buzsáki, 586 2002). In addition, cholinergic dysfunction has been suggested to be a key 587 feature of AD pathogenesis (Craig et al., 2011). Recently, it has been suggested 588 that cholinergic alterations may contribute to network excitability in the Tg2576 589 model of AD (Kam et al., 2016). Hence, we hypothesized that cholinergic changes 590 might underlie the brain-state dependent modulation of IIS in the J20 mice. We 591 used immunohistochemistry to quantify the number of ChAT+ cells in the MS 592 and DB, and asked whether the number of ChAT+ cells differs between [20 (n=7)]593 and WT (n=5) mice. Fitting a linear mixed model to the data, we found no effect 594 of genotype on the estimated number of ChAT+ cells in the MS or DB (Fig 6A; Linear mixed model, $\chi^2(1)=0.0002$, p=0.99)^e. 595 596 597 AChE activity is reduced in AD (García-Ayllón et al., 2011). We assayed

598 cholinergic function by measuring AChE activity. AChE activity was quantified by 599 estimating the rate of thiocholine production in neocortical brain homogenates 600 (see methods). There was no significant difference in the rate of thiocholine 601 production in brain homogenates prepared from WT and J20 mice (V=15, p=0.06, 602 n=5 WT/J20, Wilcoxon signed rank test, matched by day of assay, Fig 6B)^f. We 603 also wanted to directly test the effect of modulation of ACh levels on IIS. 604 However, using oral administration of Donepezil at a dose previously suggested 605 to achieve clinically relevant drug plasma levels (Dong et al., 2009) was 606 ineffective at altering AChE activity in brain homogenates. In contrast, a positive

607	control treatment of direct application of neostigmine to brain homogenate led
608	to a significant reduction in AChE activity (Fig 6B; Linear mixed model:
609	$\chi^{2}(4)$ =75.3, p<0.0001. Post-hoc using Tukey paired comparisons: p<0.0001 for
610	neostigmine vs. each of the treatment and genotypes. p>0.05 for all other group
611	comparisons) ^g . Two days of oral Donepezil administration at this dose did not
612	affect the IIS rate in J20 mice (t(11)=0.8, p=0.43, paired t-test, data not shown) ^h .
613	
614	Sleep stage modulation of IIS in human AD
615	The first intracranial recordings in humans with AD were recently reported and
616	demonstrated marked activation of mesial temporal lobe (mTL) IIS during sleep
617	compared to the awake state (Lam et al., 2017). We further analyzed the
618	combined scalp EEG and intracranial electrode recordings from these two
619	patients to better understand the relationship between sleep stage and mTL IIS
620	rate in AD patients. One patient with advanced AD did not achieve REM sleep but
621	showed mTL IIS preferentially during NREM sleep as opposed to waking states
622	(Table 2, Patient 1). The second patient was a 67-year-old woman with amnestic
623	mild cognitive impairment (aMCI), an early stage of AD that is thought to
624	correspond to the early stage of AD modelled in our young J20 mice. The data
625	from this patient was used to compare the frequency of IIS in wake, NREM and
626	REM states.
627	
628	We analyzed 14.25 consecutive hours of combined scalp EEG and FO recordings
629	from the aMCI patient, which spanned from \sim 7PM on the first day of FO

630 recording (FOD1) to 9:15AM the following morning (FOD2). Further recordings

631 were not analyzed, as the patient was initiated on treatment with the

anticonvulsant levetiracetam on the afternoon on FOD2. Of note, the patient
underwent implantation with FO electrodes on FOD1 from ~ 12:40PM – 1:50 PM
and received sevoflurane, propofol and midazolam during the procedure. She
was awake and answering questions appropriately by 2:15PM on FOD1.

636

637 We performed sleep staging of the recording using the full scalp EEG data, and 638 measured mTL spike rates using the bilateral FO electrode data (Figure 7A,B). 639 As described previously, we found that mTL spiking in the aMCI patient was 640 largely activated during sleep. In contrast to what we found in the young J20 641 mice, mTL spiking in the aMCI patient occurred with highest frequency during 642 NREM sleep stages, particularly during NREM3, and were lowest during REM 643 sleep (Figure 7 and Table 2). mTL IIS rates during REM sleep were also 644 markedly lower than during wakefulness (Table 2). We also calculated spectral 645 power in the θ and δ bands, as well as the θ/δ ratio, in the FO electrodes across 646 sleep states (Figure 7C-E). Increases in both θ and δ power were seen with 647 deepening stages of NREM sleep, while a reduction was seen with REM sleep. In 648 contrast to what we observed in the J20 mice, the θ/δ ratio was reduced during 649 periods of highest spike frequency (Figure 7E).

650

651

652 **Discussion**

Network hyperexcitability is a feature of AD. Here we compared patterns ofnetwork hyperexcitability in two rodent models of AD, as well as in two AD

655 patients, in order to reveal shared phenomenological features with the disease,

656 We show that while J20, (hAPP overexpressing) mice exhibit frequent IIS as

657 previously reported, APP^{NL/F} mice (that express APP at physiological levels) do 658 not show evidence of network hyperexcitability. Moreover, IIS in J20s occur 659 primarily during daylight hours, and this circadian fluctuation is accounted for 660 by an increased probability of IIS during sleep. Interestingly, we found that IIS in 661 J20 mice are modulated by brain state, with increased likelihood of IIS in brain 662 states with high θ/δ activity, a marker of REM sleep. In contrast, patients with AD 663 showed prevalent IIS during NREM sleep. Moreover, in the one AD patient who 664 exhibited REM sleep, IIS frequency was lowest in REM compared to other sleep 665 states.

666

667 <u>Circadian dysfunction and network hyperexcitability in AD</u>

668 Brain network hyperexcitability in the form of IIS and seizures has now been 669 reported in numerous models of AD pathology (reviewed in Scharfman, 2012; 670 Born, 2015). Our data, along with those reported by others (Born et al., 2014; Kam et al., 2016) reveal that network hyperexcitability in animals models of AD 671 672 can be modulated by the circadian cycle. Circadian disturbances in AD include 673 sleep fragmentation, increased daytime somnolence, and sundowning, the 674 phenomenon in which neuropsychiatric symptoms are heightened late in the day 675 (Peter-Derex et al., 2015). Animal models of AD have also been reported to show 676 disturbances in the circadian cycle, some of which overlap with patterns of 677 circadian alterations seen in patients (Huitrón-Reséndiz et al., 2002; Vloeberghs 678 et al., 2004; Wisor et al., 2005; Jyoti et al., 2010; Sterniczuk et al., 2010; Duncan et 679 al., 2012; Roh et al., 2012). Our findings of circadian modulation of network 680 hyperexcitability in AD raise the question of whether IIS might causally 681 contribute to the alterations in circadian-coupled behaviour observed in AD.

- 682 Future work investigating the effects of anti-epileptic drugs on circadian
- alterations in AD would go towards answering this.
- 684
- 685 Brain state modulation of network excitability
- 686 Here we report that IIS in J20 animals are modulated by θ/δ , with higher IIS rates 687 seen in states of high θ/δ during sleep. The spectral patterns of ECoG that we 688 report here are in line with previous reports in WT mice, that have shown 689 increases in cortical EEG θ power in REM sleep relative to wake and NREM 690 (Brankačk et al., 2010). We also report transient increases in θ/δ in sleep in both 691 WT and J20 mice. Since these increases in θ/δ occur in both WT and J20s, they 692 are likely to be indicative of REM sleep periods (Ewell et al., 2015). Given that 693 J20 animals with strong circadian phase-coupling show highest IIS rates during 694 sleep this suggests that IIS in these animals are associated with REM sleep. 695 An alternative explanation for the association between IIS and high θ/δ during 696 sleep may be that IIS occur during ectopic θ in sleep, in the absence of a 697 concomitant drop in muscle tonus. A phenomenon of ictal activity during ectopic 698 θ has been reported in a mouse model of Huntington's disease (Pignatelli et al., 699 2012). Without simultaneous EMG recordings, the present data cannot 700 conclusively distinguish between REM states and ectopic θ . In the human data, 701 analysis of θ/δ ratios showed that these were lowest during periods of highest IIS 702 frequency. This argues against the idea of IIS coupled to ectopic θ in humans,
- though a more definitive assessment will require data from more AD subjects as

704 well as healthy elderly controls.

Our finding of an association between IIS and high θ/δ is in line with recent reports that young Tg2576 model of AD as well as mice overexpressing WThAPP also demonstrate IIS predominantly during states of high θ which the authors suggest is indicative of REM sleep (Kam et al., 2016).

709 The findings that IIS in multiple mouse models of AD are most likely to occur in 710 REM-like states begs the question of what makes REM a pro-ictal state in these 711 models. Both REM sleep and the awake state share common features of high 712 θ/δ activity and high cholinergic tone (Vazquez and Baghdoyan, 2001; Lee et al., 713 2005), yet IIS occur much less frequently in the awake state in these models. 714 There are several potential explanations for this. Firing rates of hippocampal 715 neurons increase during REM (Grosmark et al., 2012), which might contribute to 716 the propensity to seize. In addition, systems that normally show distinct activity 717 in REM sleep vs. waking and NREM sleep might contribute to the pro-ictal REM 718 state in these models (Sedigh-Sarvestani et al., 2014; Ewell et al., 2015; Kam et al., 719 2016). Unlike cholinergic neurons, which increase their activity in both REM and 720 waking, monoaminergic neurons in brainstem nuclei (including the locus 721 coeruleus and the tuberomammillary nucleus) as well as the dorsal raphe 722 nucleus of the hypothalamus, show differential activity between these brain 723 states. These neurons are highly active in waking, exhibit low firing rates in 724 NREM sleep, and are quiescent during REM sleep (Lee and Dan, 2012). It may be 725 that brain state modulation of one or more of these systems is disrupted in these 726 mouse AD models, and other forms of epilepsy which show REM-coupling 727 (Sedigh-Sarvestani et al., 2014; Ewell et al., 2015).

728 The present study quantified cholinergic neurons in MS and DB. Cholinergic

729	neurons in laterodorsal tegmental and pedunculopontine tegmental nuclei of the
730	pontomesencephalic tegmentum have been suggested to control REM onset (Van
731	Dort et al., 2015). In the rat, these neurons have been shown to be active during
732	both wake and REM, however, firing rates are higher in REM, and correlate with
733	θ/δ (Boucetta et al., 2014). Thus, changes to these neurons are also potential
734	candidates for mediating the pro-ictal nature of REM sleep in J20 mice.
735	Kam et al.,(2016) reported that MS-DB cholinergic neuron number was
736	unchanged in young Tg2576 mice. However, they found evidence to support the
737	notion that overactivity of cholinergic neurons might contribute to IIS by
738	showing that antagonism of muscarinic receptors reduced IIS in these animals.
739	Hence they concluded that IIS during REM might be the result of cholinergic
740	hyperfunction. We did not find evidence for cholinergic changes in J20 mice as
741	quantified by the number of cholinergic neurons in MS-DB, or AChE activity. If
742	cholinergic activity is indeed unaltered in J20 mice, future experiments using
743	muscarinic antagonism in J20 mice could be used to investigate whether
744	atropine can act to reduce IIS by reducing overall neuronal excitability, rather
745	than by reversing cholinergic hyperfunction.
746	Our assay of cholinergic function was based on measurements of AChE enzymic
747	activity in brain homogenate. There was no significant difference between AChE
748	levels in WT and J20, or with donepezil treatment. While it is possible that post-

robust effect of neostigmine supports the conclusion that the tissue contained

mortem degradation of AChE could have masked differences in AChE levels, the

751 functional AChEs.

752In a subset of our animals, IIS were weakly-coupled to the circadian cycle and the753sleep-wake pattern, but were still modulated by θ/δ . This suggests that the754relationship between θ/δ and behavioural state might be disturbed in these755animals. It is possible that these animals also exhibited greater disturbances in756other elements of the circadian-cycle, such as a circadian decoupling of sleep757quantity/quality.

758 During both REM and NREM, hippocampal neurons have been shown to replay 759 firing patterns that were experienced prior to sleep (Skaggs and McNaughton, 760 1996; Louie and Wilson, 2001), and such precisely timed sequences are likely to 761 be involved in the memory facilitation role of sleep. IIS are thought to arise from 762 depolarization and synchronous firing of neurons. This firing is followed by an 763 inhibition and reduction of firing (Holmes and Lenck-Santini, 2006). Thus, IIS 764 during sleep are likely to interfere with the coordinated replay of firing 765 sequences, and consequently, would be expected to contribute to memory 766 impairments. In support of this, it has recently been shown that reducing IIS by 767 treatment with anti-epileptic drugs, rescues memory deficits in J20s (Sanchez et 768 al., 2012).

769 <u>Relationship between IIS and AD pathology in mouse models</u>

Here we report that while IIS are prevalent in hAPP overexpressing mice,
APP^{NL/F} mice that exhibit Aβ pathology without APP overexpression, do not

- exhibit IIS at two ages preceding widespread plaque deposition (8 and 12
- 773 months). This finding is in line with other reports that it is overexpression of
- hAPP that is causal in generating network hyperexcitability in these animal

775models (Born et al., 2014; Xu et al., 2015; Kam et al., 2016). An alternative776explanation of the presence of IIS in J20 but not APP^{NL/F} mice may be differences777in the levels of Aβ between the two models. However, levels of soluble Aβ in 6778month old J20 and 12 month old APP^{NL/F} are comparable, and levels of total Aβ779are higher in APP^{NL/F} (Shankar et al., 2009; Saito et al., 2014). Thus it is unlikely780that higher levels of Aβ in the J20s are a cause of IIS in this model.

781 Interestingly, APP^{NL/F} mice begin to exhibit cognitive deficits at 8 months of age 782 (Masuda et al., 2016), which suggests that cognitive deficits at these ages are not 783 the result of IIS, as has been suggested for J20s (Sanchez et al., 2012). Moreover, 784 differences in the types of memory affected in J20 and APP^{NL/F} at ages preceding 785 overt plaque deposition have been reported. Specifically, 4 - 6 month old J20s 786 show impairments in hippocampal dependent spatial memory (Sanchez et al., 2012). In contrast, in 8-month old APP^{NL/F} mice, spatial memory as assayed by a 787 788 place preference task is intact. However, place-avoidance memory, which is also 789 dependent on amygdala-circuits (Wilensky et al., 2000), is impaired (Masuda et 790 al., 2016). It may be that hippocampus dependent processes are susceptible to 791 interference by IIS while the disturbances in the non-hippocampal circuits result 792 from processes independent of IIS.

793 Differential sleep-stage coupling between mouse models of AD and human AD

Lam et al., (2017) recently used intracranial electrode recordings to detect mTL IIS in two AD patients without a history of epilepsy. Here, we report that in these patients, IIS were predominantly associated with NREM sleep (ie. low θ/δ). In the patient with aMCI, IIS occurred most frequently in N3 sleep and were least

798	frequent in REM, with a greater than 4.5-fold difference in spike rates between
799	N3 and REM. In the AD patient, frequent IIS were seen during NREM sleep,
800	though REM sleep was absent from this patient's brief recording, in line with
801	previous reports of REM deficits in AD (Vitiello et al., 1984). Our findings from
802	intracranial electrodes in AD patients are consistent with prior scalp EEG studies
803	by Vossel et al., (2016), who reported that epileptiform discharges are highly
804	prevalent in sleep stages >2 (although the authors did not differentiate between
805	REM and NREM sleep). Although the means of characterising sleep differed
806	between rodents and patients, combined, these results point to important
807	differences in sleep stage coupling of epileptiform activity between rodent AD
808	models and humans with AD and suggest that the specific mechanisms that
809	underlie hyperexcitability in AD may differ between certain mouse models and
810	humans.

811 Analysis of ictal and inter-ictal activity in epilepsy patients has led the view that 812 NREM sleep is a generally pro-ictal state, whereas REM sleep is an anti-ictal state 813 (Sammaritano et al., 1991; Herman et al., 2001; Minecan et al., 2002; Ng and 814 Pavlova, 2013). Many animal models of epilepsy have also shown that seizures 815 are more frequent in NREM and rarely occur in REM (Shouse et al., 2000). 816 Interestingly, rodent models of the same type of epilepsy can still exhibit 817 differences in the sleep-stage coupling of epileptiform activity. For example, in 818 both the kindling as well as the pilocarpine models of temporal lobe epilepsy in 819 rats, IIS are most common during NREM sleep (Colom et al., 2006; Gelinas et al., 820 2016). In contrast, rats with either the tetanus toxin or the low-dose kainate 821 models of temporal lobe epilepsy have seizures that occur most commonly during REM sleep (Sedigh-Sarvestani et al., 2014; Ewell et al., 2015). Based on this, we hypothesize that different mouse models of AD may have specific mechanisms underlying their network hyperexcitability, which could be differentially expressed through sleep-stage coupling of IIS. We propose that sleep-stage coupling of IIS should be an important factor for identifying mouse AD models that more closely resemble the EEG signature of network hyperexcitability in human AD.

- 829
- 830
- 831
- 832
- 833
- 834

835

836

838 Figures

839	Figure 1: Inter-ictal spikes (IIS) are prevalent in J20 mice, but not in APP knock-
840	in mice. (A) ECoG trace recorded from a J20 mouse showing IIS. Inset is 250ms
841	expansion around IIS event marked by *. (B) Empirical cumulative distribution
842	frequency plots for individual animals quantifying the number of detected IIS in
843	8s intervals across 3 days of recording in WT and J20s. Colours represent
844	distributions for individual animals. (C) Plot showing the proportion of intervals
845	with one or more detected IIS in WT and J20. (D) Plot showing the proportion of
846	intervals with one or more detected IIS in WT and $APP^{\text{NL}/\text{F}}$ at 8 months and 12
847	months. Bars represent medians. Whiskers extend to 1.5 IQR. *** p<0.001.
848	
849	Figure 2: Circadian modulation of IIS. (A) Circular histogram of IIS counts over
850	three days of recording in an individual J20 mouse plotted on 24hr cycle. Light
851	condition indicated by shading. For the animal shown, φ_{IIS} = 14h38 and $ ho$ =0.43.
852	(B) Summary data for φ_{IIS} vs ρ for all animals, shown on circular plot. Solid
853	symbols are strongly-coupled animals. Weakly coupled animals are shown with
854	orange fill.
855	
856	Figure 3: The probability of IIS is modulated by behavioural state in strongly
857	phase-coupled animals. (A) IIS count/8s interval versus time over 2 hours of
858	ECoG recording in a J20 mouse, with sleep and wake indicated by shading. (Bi)
859	Mean spike rate in sleep and wake condition for strongly and weakly phase

860 coupled animals. Error bars: 95% CI. (ii) Circular histograms for a strongly (left)

and weakly (right) phase coupled animals using conventions as in Fig 2A.

882

883

884

885

886

863	Figure 4: IIS occur during high θ/δ states. (A) 8s ECoG signals (left) and
864	corresponding power spectra (right) during different behavioural states
865	recorded from a J20 mouse. A single IIS is seen in the sleep high θ state (ii). (B)
866	Time series of δ power, θ power, θ/δ and spike count per 8s intervals across 2
867	hours of ECoG recorded from the same J20 mouse as shown in A. Black/grey
868	symbols indicate sleep/wake as classified by simultaneous video data. Red
869	symbols and vertical dotted lines indicate the 8s intervals for which the ECoG
870	signal is shown in panel A (C) Spike number per 8s interval as a function of θ/δ in
871	5 animals (represented by different colours and connected by lines). The
872	increase spike count in intervals with high θ/δ was seen in animals with both
873	strong (filled symbols) and weak (open symbols) circadian phase-coupling. ***
874	p<0.001 (D) IIS-triggered averages of θ/δ for 5 individual animals (black) and
875	windowed averages triggered around 2000 randomly sampled points (grey)
876	show an increased θ/δ around IIS. Strong/weak coupling shown in filled/open
877	symbols. Error bars in B and C represent 95% CI.
878	
879	Figure 5. Transient increases in θ/δ are non-pathological features of sleep. (A) 8s
880	ECoG signals (left) and corresponding power spectra (right) during different
881	behavioural states recorded from a WT mouse. (B) Time series of δ power, θ

38

power and θ/δ per 8s interval across 2 hours of ECoG recorded from same WT

mouse as shown in A. Black/grey symbols indicate sleep/wake as classified by

simultaneous video data. Red symbols and vertical dotted lines indicate the 8s

intervals for which the ECoG signal is shown in panel A.

887	Figure 6: No evidence of cholinergic alterations in J20s. (A) Immunostained
888	brain section showing ChAT+ cells in medial septum (MS) and diagonal band of
889	Broca (DB). Lower panel shows zoomed in region of upper panel (left) and
890	corresponding regions of a negative control stained section (right). Upper right:
891	quantification of stereological estimates of ChAT+ cell count in MS and DB in WT
892	and J20. (B) AChE activity was assayed by the rate of thiocholine production in
893	brain homogenate from WT and J20 in control conditions and following oral
894	administration of donepezil (DPZ). The AChE activity was compared to a positive
895	control of direct application of neostigmine (10 μ M) to the brain homogenate.
896	Experimental repeat groups are indicated by different colours and connected
897	lines. *** p<0.001.

898

899 Figure 7: Sleep stage coupling of mesial temporal lobe (mTL) spiking in a human 900 with aMCI, a suspected early stage of AD. (A) Hypnogram showing the patient's 901 sleep architecture, spanning from ~ 7PM on FOD1 to 9:15AM on FOD2. (B) Bar 902 plot showing instantaneous mTL lobe spike rates over the course of the 903 recording. Bars are colored by sleep stage, with light green for Wake, light blue 904 for NREM (includes NREM1, NREM2, and NREM3), and dark blue for REM. The 905 patient had three brief subclinical seizures (SZ) from the left FO electrodes 906 during this recording, the timing of which is depicted by red vertical bars. (C-E): 907 Plots showing (C) δ power (0-4Hz), (D) θ power (4-12Hz), and (E) θ/δ ratio of 908 bilateral mTL activity, based on FO electrodes recordings. Dots represent the 909 spectral power for each non-overlapping 30 second window of the recording. 910 Power is measured in arbitrary units.

- 912 Table 1: Statistical table
- 914 Table 2: Average mTL spike rates were evaluated from foramen ovale electrodes
- 915 and related to sleep stage as assayed by scalp EEG in two patients with AD.

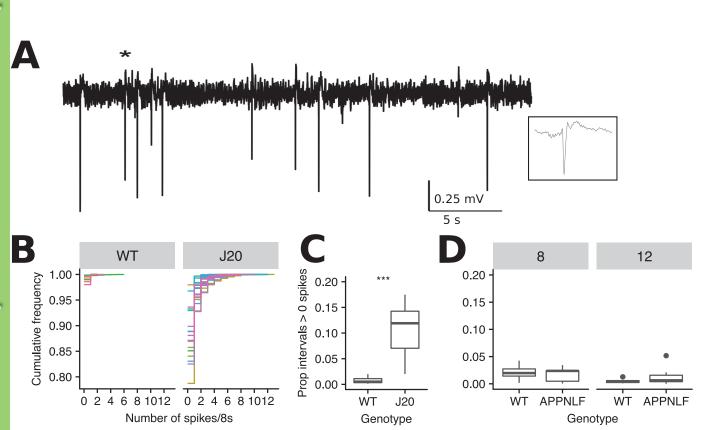
References

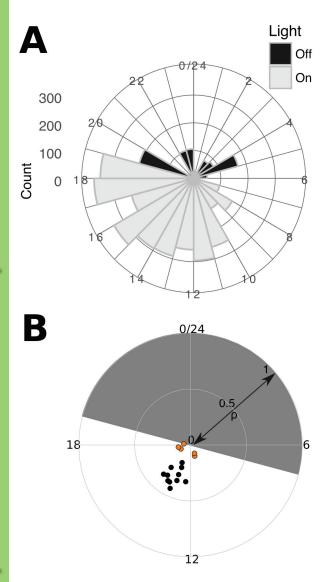
927	Agostinelli C, Lund U (2013) R package "circular": Circular Statistics. Available at:
928	https://r-forge.r-project.org/projects/circular.
929	Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K,
930	Albert M, Brandt J, Stern Y (2006) Incidence and predictors of seizures in
931	patients with Alzheimer's disease. Epilepsia 47:867–872.
932	Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett
933	SS, Shelton AL, Gallagher M (2012) Reduction of Hippocampal Hyperactivity
934	Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron 74:467–
935	474.
936 937	Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.
938 939	Bazil CW, Walczak TS (1997) Effects of Sleep and Sleep Stage on Epileptic and Nonepileptic Seizures. Epilepsia 38:56–62.
940 941 942	Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee J-M, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid- [beta] deposition. Nat Neurosci 14:750–756.
943	Bezzina C, Verret L, Juan C, Remaud J, Halley H, Rampon C, Dahan L (2015) Early
944	Onset of Hypersynchronous Network Activity and Expression of a Marker of
945	Chronic Seizures in the Tg2576 Mouse Model of Alzheimer's Disease. PLOS
946	ONE 10:e0119910.
947	Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA,
948	Mazziotta JC, Small GW (2000) Patterns of Brain Activation in People at Risk
949	for Alzheimer's Disease. N Engl J Med 343:450–456.
950	Born HA (2015) Seizures in Alzheimer's disease. Neuroscience 286:251–263.
951	Born HA, Kim J-Y, Savjani RR, Das P, Dabaghian YA, Guo Q, Yoo JW, Schuler DR,
952	Cirrito JR, Zheng H, Golde TE, Noebels JL, Jankowsky JL (2014) Genetic
953	Suppression of Transgenic APP Rescues Hypersynchronous Network Activity
954	in a Mouse Model of Alzeimer's Disease. J Neurosci 34:3826–3840.
955	Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE (2014) Discharge Profiles
956	across the Sleep–Waking Cycle of Identified Cholinergic, GABAergic, and
957	Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat.
958	The Journal of Neuroscience 34:4708–4727.
959	Brankačk J, Kukushka VI, Vyssotski AL, Draguhn A (2010) EEG gamma frequency
960	and sleep–wake scoring in mice: Comparing two types of supervised
961	classifiers. Brain Res 1322:59–71.
962	Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B,
963	Konnerth A (2012) Critical Role of Soluble Amyloid-B for Early Hippocampal

964	Hyperactivity in a Mouse Model of Alzheimer's Disease. Proc Natl Acad Sci U
965	S A.
966 967	Busche MA, Konnerth A (2015) Neuronal hyperactivity – A key defect in Alzheimer's disease? BioEssays 37:624–632.
968	Buzsáki G (2002) Theta Oscillations in the Hippocampus. Neuron 33:325–340.
969 970	Chang P, Hashemi KS, Walker MC (2011) A novel telemetry system for recording EEG in small animals. J Neurosci Methods 201:106–115.
971	Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul
972	SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial
973	fluid amyloid-beta levels in vivo. Neuron 48:913–922.
974	Colom LV, García-Hernández A, Castañeda MT, Perez-Cordova MG, Garrido-
975	Sanabria ER (2006) Septo-Hippocampal Networks in Chronically Epileptic
976	Rats: Potential Antiepileptic Effects of Theta Rhythm Generation. J
977	Neurophysiol 95:3645–3653.
978 979 980	Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev 35:1397–1409.
981	Cretin B, Sellal F, Philippi N, Bousiges O, Di Bitonto L, Martin-Hunyadi C, Blanc F
982	(2016) Epileptic Prodromal Alzheimer's Disease, a Retrospective Study of 13
983	New Cases: Expanding the Spectrum of Alzheimer's Disease to an Epileptic
984	Variant? J Alzheimers Dis 52:1125–1133.
985 986 987	Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167.
988	Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM,
989	Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005)
990	Increased hippocampal activation in mild cognitive impairment compared to
991	normal aging and AD. Neurology 65:404–411.
992	Dong H, Yuede CM, Coughlan CA, Murphy KM, Csernansky JG (2009) Effects of
993	Donepezil on Amyloid-β and Synapse Density in the Tg2576 Mouse Model of
994	Alzheimer's Disease. Brain Res 1303:169–178.
995	Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP, St Clair DK, Donohue
996	KD, Striz M, O'Hara BF (2012) Effects of aging and genotype on circadian
997	rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a
998	model for Alzheimer's disease. Exp Neurol 236:249–258.
999 1000 1001	Ellman GL, Courtney KD, Andres V, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95.

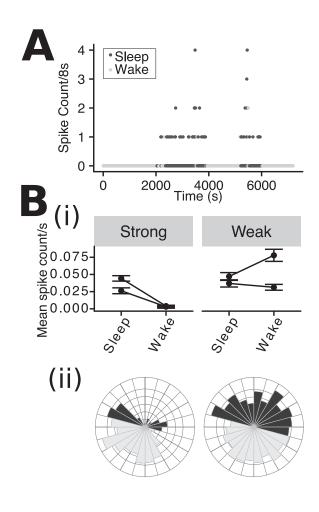
1002	Ewell LA, Liang L, Armstrong C, Soltesz I, Leutgeb S, Leutgeb JK (2015) Brain
1003	State Is a Major Factor in Preseizure Hippocampal Network Activity and
1004	Influences Success of Seizure Intervention. J Neurosci 35:15635–15648.
1005	Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003)
1006	Molar absorption coefficients for the reduced Ellman reagent: reassessment.
1007	Anal Biochem 312:224–227.
1008	Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM,
1009	Matthews PM, Beckmann CF, Mackay CE (2009) Distinct Patterns of Brain
1010	Activity in Young Carriers of the APOE-E4 Allele. Proc Natl Acad Sci U S A
1011	106:7209–7214.
1012	García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the Role of
1013	Acetylcholinesterase in Alzheimer's Disease: Cross-Talk with P-tau and β-
1014	Amyloid. Front Mol Neurosci 4:22.
1015 1016 1017	Gelinas J, Khodagholy D, Thesen T, Devinsky O, Buzsáki G (2016) Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 22:641–648.
1018	Grosmark AD, Mizuseki K, Pastalkova E, Diba K, Buzsáki G (2012) REM Sleep
1019	Reorganizes Hippocampal Excitability. Neuron 75:1001–1007.
1020	Haberman RP, Branch A, Gallagher M (2017) Targeting Neural Hyperactivity as a
1021	Treatment to Stem Progression of Late-Onset Alzheimer's Disease.
1022	Neurotherapeutics 14:662–676.
1023 1024	Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm. R package. J Stat Softw 33.
1025	Herman ST, Walczak TS, Bazil CW (2001) Distribution of partial seizures during
1026	the sleepwake cycle: differences by seizure onset site. Neurology 56:1453–
1027	1459.
1028 1029	Hesdorffer DC, Hauser WA, Annegers JF, Kokmen E, Rocca WA (1996) Dementia and adult-onset unprovoked seizures. Neurology 46:727–730.
1030	Holmes GL, Lenck-Santini P-P (2006) Role of interictal epileptiform
1031	abnormalities in cognitive impairment. Epilepsy Behav 8:504–515.
1032	Horváth A, Szűcs A, Barcs G, Kamondi A (2017) Sleep EEG Detects Epileptiform
1033	Activity in Alzheimer's Disease with High Sensitivity. J Alzheimers Dis
1034	56:1175–1183.
1035 1036	Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363.
1037	Huitrón-Reséndiz S, Sánchez-Alavez M, Gallegos R, Berg G, Crawford E, Giacchino
1038	JL, Games D, Henriksen SJ, Criado JR (2002) Age-independent and age-
1039	related deficits in visuospatial learning, sleep–wake states, thermoregulation

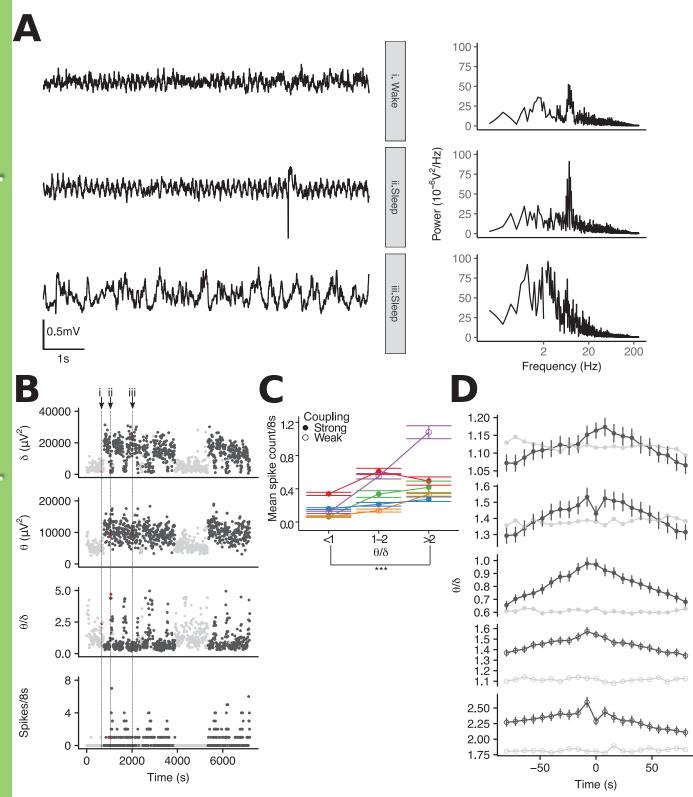
1040	and motor activity in PDAPP mice. Brain Res 928:126–137.
1041 1042	Hut RA, Van der Zee EA (2011) The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 221:466–480.
1043 1044 1045	Jyoti A, Plano A, Riedel G, Platt B (2010) EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer's disease mouse. J Alzheimers Dis 22:873–887.
1046	Kam K, Duffy ÁM, Moretto J, LaFrancois JJ, Scharfman HE (2016) Interictal spikes
1047	during sleep are an early defect in the Tg2576 mouse model of β-amyloid
1048	neuropathology. Sci Rep 6:20119.
1049	Kazim SF, Chuang S-C, Zhao W, Wong RKS, Bianchi R, Iqbal K (2017) Early-Onset
1050	Network Hyperexcitability in Presymptomatic Alzheimer's Disease
1051	Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human
1052	APP/Aβ Antibody and by mGluR5 Blockade. Front Aging Neurosci 9:1246.
1053	Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ (2017) Silent
1054	hippocampal seizures and spikes identified by foramen ovale electrodes in
1055	Alzheimer's disease. Nat Med 23:678–680.
1056	Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic Basal Forebrain
1057	Neurons Burst with Theta during Waking and Paradoxical Sleep. J Neurosci
1058	25:4365–4369.
1059	Lee S-H, Dan Y (2012) Neuromodulation of Brain States. Neuron 76:209–222.
1060	Louie K, Wilson MA (2001) Temporally Structured Replay of Awake
1061	Hippocampal Ensemble Activity during Rapid Eye Movement Sleep. Neuron
1062	29:145–156.
1063 1064 1065	Lozsadi DA, Larner AJ (2006) Prevalence and causes of seizures at the time of diagnosis of probable Alzheimer's disease. Dement Geriatr Cogn Disord 22:121–124.
1066	Mander BA, Winer JR, Jagust WJ, Walker MP (2016) Sleep: A Novel Mechanistic
1067	Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's
1068	Disease? TINS 39:552–566.
1069	Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S (2016) Cognitive
1070	deficits in single App knock-in mouse models. Neurobiol Learn Mem 135:73–
1071	82.
1072 1073	Minecan D, Natarajan A, Marzec M, Malow B (2002) Relationship of epileptic seizures to sleep stage and sleep depth. Sleep 25:899–904.
1074	Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke
1075	B, Zilberter Y, Harkany T, Pitkänen A, Tanila H (2009) Amyloid beta-Induced
1076	Neuronal Hyperexcitability Triggers Progressive Epilepsy. J Neurosci
1077	29:3453–3462.

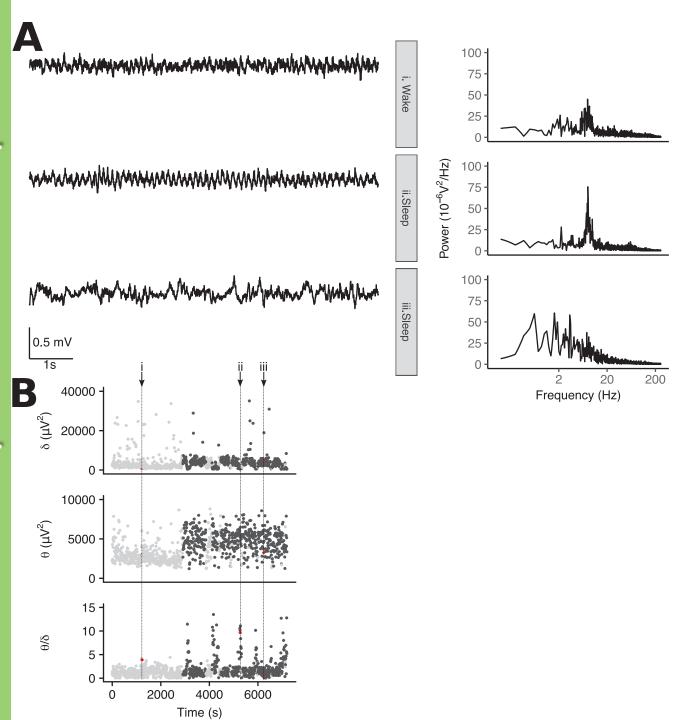

1078	Mitra P, Bokil H (2007) Observed brain dynamics. Oxford University Press.
1079	Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, Hu K,
1080	Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-Level Neuronal
1081	Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor
1082	Transgenic Mice: Synaptotoxicity without Plaque Formation. J Neurosci
1083	20:4050–4058.
1084	Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju Y-ES (2018)
1085	Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer
1086	Disease. JAMA Neurol.
1087 1088	Musiek ES, Xiong DD, Holtzman DM (2015) Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Exp Mol Med 47:e148.
1089	Ng M, Pavlova M (2013) Why Are Seizures Rare in Rapid Eye Movement Sleep?
1090	Review of the Frequency of Seizures in Different Sleep Stages. Epilepsy Res
1091	Treat 2013:1–10.
1092	Pack AI, Galante RJ, Maislin G, Cater J, Metaxas D, Lu S, Zhang L, Smith Von R, Kay
1093	T, Lian J, Svenson K, Peters LL (2007) Novel method for high-throughput
1094	phenotyping of sleep in mice. Physiol Genomics 28:232–238.
1095	Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu G-Q,
1096	Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant Excitatory
1097	Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal
1098	Circuits in Mouse Models of Alzheimer's Disease. Neuron 55:697–711.
1099 1100	Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777–792.
1101	Patel V, Oh A, Voit A, Sultatos LG, Babu GJ, Wilson BA, Ho M, McArdle JJ (2014)
1102	Altered Active Zones, Vesicle Pools, Nerve Terminal Conductivity, and
1103	Morphology during Experimental MuSK Myasthenia Gravis Phillips W, ed.
1104	PLOS ONE 9:e110571.
1105 1106	Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzheimer's disease. Sleep Med Rev 19:29–38.
1107	Pignatelli M, Lebreton F, Cho YH, Leinekugel X (2012) "Ectopic" theta oscillations
1108	and interictal activity during slow-wave state in the R6/1 mouse model of
1109	Huntington's disease. Neurobiol Dis 48:409–417.
1110	Quigg M (2000) Circadian rhythms: interactions with seizures and epilepsy.
1111	Epilepsy Res.
1112	Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillón G, Lopera F, Stern
1113	CE (2010) Hippocampal hyperactivation in presymptomatic familial
1114	Alzheimer's disease. Ann Neurol 68:865–875.
1115	Rambli A, Abuzaid AHM, Bin Mohamed I, Hussin AG (2016) Procedure for

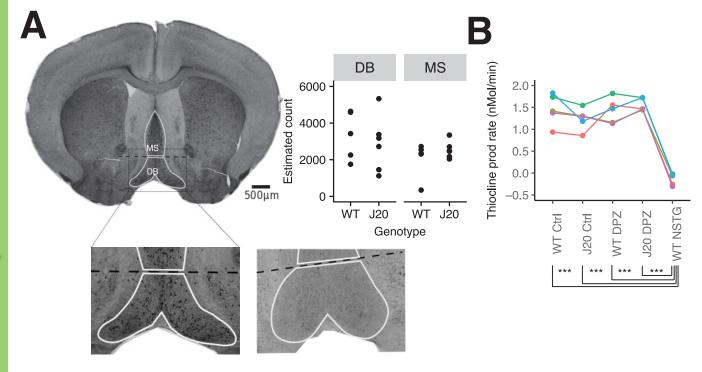

1116	Detecting Outliers in a Circular Regression Model. PLOS ONE 11:e0153074.
1117	Rasch B, Born J (2013) About Sleep's Role in Memory. Physiol Rev 93:681–766.
1118	Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM
1119	(2012) Disruption of the Sleep-Wake Cycle and Diurnal Fluctuation of β-
1120	Amyloid in Mice with Alzheimer's Disease Pathology. Sci Transl Med
1121	4:150ra122–150ra122.
1122 1123 1124	Rosenfeld C, Kousba A, Sultatos LG (2001) Interactions of rat brain acetylcholinesterase with the detergent Triton X-100 and the organophosphate paraoxon. Toxicol Sci 63:208–213.
1125	Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC
1126	(2014) Single App knock-in mouse models of Alzheimer's disease. Nat
1127	Neurosci 17:661–663.
1128	Sammaritano M, Gigli GL, Gotman J (1991) Interictal spiking during wakefulness
1129	and sleep and the localization of foci in temporal lobe epilepsy. Neurology
1130	41:290–297.
1131	Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu G-
1132	Q, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network
1133	dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's
1134	disease model. Proc Natl Acad Sci U S A 109:E2895–E2903.
1135	Sarkis RA, Dickerson BC, Cole AJ, Chemali ZN (2015) Clinical and
1136	Neurophysiologic Characteristics of Unprovoked Seizures in Patients
1137	Diagnosed With Dementia. J Neuropsychiatry Clin Neurosci 28:56–61.
1138 1139	Scharfman HE (2012) Alzheimer's disease and epilepsy: insight from animal models. Future Neurol 7:177–192.
1140	Sedigh-Sarvestani M, Blumenfeld H, Loddenkemper T, Bateman LM (2015)
1141	Seizures and brain regulatory systems: Consciousness, sleep, and autonomic
1142	systems. J Clin Neurophysiol 32:188–193.
1143	Sedigh-Sarvestani M, Thuku GI, Sunderam S, Parkar A, Weinstein SL, Schiff SJ,
1144	Gluckman BJ (2014) Rapid eye movement sleep and hippocampal theta
1145	oscillations precede seizure onset in the tetanus toxin model of temporal
1146	lobe epilepsy. J Neurosci 34:1105–1114.
1147	Shankar GM, Leissring MA, Adame A, Sun X, Spooner E, Masliah E, Selkoe DJ,
1148	Lemere CA, Walsh DM (2009) Biochemical and immunohistochemical
1149	analysis of an Alzheimer's disease mouse model reveals the presence of
1150	multiple cerebral $A\beta$ assembly forms throughout life. Neurobiol Dis36:293–
1151	302.
1152 1153 1154	Shouse MN, Farber PR, Staba RJ (2000) Physiological basis: how NREM sleep components can promote and REM sleep components can suppress seizure discharge propagation. Clin Neurophysiol 111:S9–S18.

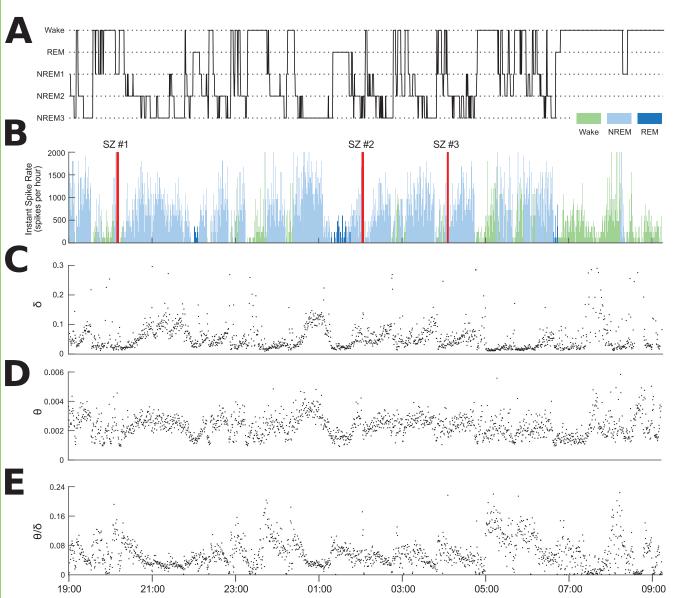
1155	Skaggs WE, McNaughton BL (1996) Replay of Neuronal Firing Sequences in Rat
1156	Hippocampus During Sleep Following Spatial Experience. Science 271:1870–
1157	1873.
1158 1159 1160	Sterniczuk R, Dyck RH, LaFerla FM, Antle MC (2010) Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 1. Circadian changes. Brain Res 1348:139–148.
1161	Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J,
1162	Schoch S, Becker A, Kammer von der H, Remy S (2014) Dendritic Structural
1163	Degeneration Is Functionally Linked to Cellular Hyperexcitability in a Mouse
1164	Model of Alzheimer's Disease. Neuron 84:1023–1033.
1165	Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM,
1166	Nolan MA, Wang K, Weng F-J, Lin Y, Wilson MA, Brown EN (2015)
1167	Optogenetic activation of cholinergic neurons in the PPT or LDT induces
1168	REM sleep. Proc Natl Acad Sci U S A112:584–589.
1169	Vazquez J, Baghdoyan HA (2001) Basal forebrain acetylcholine release during
1170	REM sleep is significantly greater than during waking. Am J Physiol
1171	280:R598–R601.
1172	Vitiello MV, Bokan JA, Kukull WA, Muniz RL, Smallwood RG, Prinz PN (1984)
1173	Rapid eye movement sleep measures of Alzheimer's-type dementia patients
1174	and optimally healthy aged individuals. Biol Psychiatry 19:721–734.
1175	Vloeberghs E, Van Dam D, Engelborghs S, Nagels G, Staufenbiel M, De Deyn PP
1176	(2004) Altered circadian locomotor activity in APP23 mice: a model for BPSD
1177	disturbances. Eur J Neurosci 20:2757–2766.
1178 1179	Vossel KA, Beagle AJ, Rabinovici GD, Mucke L (2013) Seizures and epileptiform activity in the early stages of alzheimer disease. JAMA Neurol 70:1158–1166.
1180	Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, Darwish
1181	SM, Van Berlo V, Barnes DE, Mantle M, Karydas AM, Coppola G, Roberson ED,
1182	Miller BL, Garcia PA, Kirsch HE, Mucke L, Nagarajan SS (2016) Incidence and
1183	impact of subclinical epileptiform activity in Alzheimer's disease. Ann Neurol
1184	80:858–870.
1185	Wickham H (2009) ggplot2: elegant graphics for data analysis. R package.
1186 1187	Wickham H, Francois R (2015) dplyr: A grammar of data manipulation. R package
1188 1189 1190	Wilensky AE, Schafe GE, LeDoux JE (2000) The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J Neurosci 20:7059–7066.
1191	Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM, Lapustea N, Murphy
1192	GM (2005) Sleep and circadian abnormalities in a transgenic mouse model of
1193	Alzheimer's disease: a role for cholinergic transmission. Neuroscience


1194 131:375–385.


1195	Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, Sanders DW,
1196	Cook C, Fu H, Boonen RACM, Herman M, Nahmani E, Emrani S, Figueroa YH,
1197	Diamond MI, Clelland CL, Wray S, Duff KE (2016) Neuronal activity enhances
1198	tau propagation and tau pathology in vivo. Nat Neurosci 19:1085–1092.
1199	Xu W, Fitzgerald S, Nixon RA, Levy E, Wilson DA (2015) Early hyperactivity in
1200	lateral entorhinal cortex is associated with elevated levels of AβPP
1201	metabolites in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol
1202	264:82–91.
1203	Yuan P, Grutzendler J (2016) Attenuation of -Amyloid Deposition and
1204	Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci
1205	36:632–641.
1206 1207	Zhang L (2011) Voluntary oral administration of drugs in mice. Protocol Exchange.
1208	




eNeuro Accepted Manuscript



eNeuro Accepted Manuscript

Table 1: Statistical table

	Data Structure	Type of test	Confidence/ credible interval parameter	95% CI
а	Normal (square root transformed)	t-test	Difference of means of square root data	(0.20, 0.30)
b	Normal (square root transformed)	Linear mixed model	β-Genotype β-Age	(-0.01. 0.03) (-0.02, -0.002)
с	IIS count data – (analysed with log-link function)	MCMC generaliz ed model	Difference between estimates of θ/δ<1 vs. θ/δ>2. Provided for animals JF221, JF220, JF218, J0460, J0456, respectively	(1.619, 2.122) (0.261, 0.471) (0.254, 0.478) (1.166, 1.392) (2.128, 2.372)
d	Normal (fourth root transformed)	Linear mixed model	β-????	(-0.004, 0.008)
е	Normal	Linear mixed model	β-Genotype	(-1015.7, 1029.0)
f	Non-normal	Wilcoxon -signed rank test	Difference of medians	(0.08, 0.65)

g					
	Normal (log transformed)		J20_Ctrl - WT_Ctrl	(-0.24, 0.03)	
			WT_DPZ - WT_Ctrl	(-0.15, 0.12)	
		Tukey	J20_DPZ - WT_Ctrl	(-0.08, 0.19)	
		contrasts	WT_NSTG - WT_Ctrl	(-1.50, -1.23)	
			WT_DPZ - J20_Ctrl	(-0.04, 0.23)	
			J20_DPZ - J20_Ctrl	(0.02, 0.29)	
			WT_NSTG - J20_Ctrl	(-1.40, -1.13)	
			J20_DPZ - WT_DPZ	(-0.07, 0.21)	
			WT_NSTG - WT_DPZ	(-1.49, -1.22)	
			WT_NSTG - J20_DPZ	(-1.56, -1.29)	
	Normal	Paired t-	Difference of mean	(-0.01, 0.03)	
h		test	IIS rate		
	1				

	Patient #2	1 (AD dementia)	Patient #2 (aMCI)		
Sleep Stage	Total Hours in Record	Average spike rate (spikes/hour)	Total Hours in record	Average spike rate (spikes/hour)	
Wake	4.7	11	5.2	329	
NREM1	0.7	31	1.5	670	
NREM2	2.1	80	3.8	739	
NREM3	1.4	62	3.1	903	
REM	0	n/a	0.7	159	