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Abstract A dual logarithmic barrier method for solving large, sparse semidef-
inite programs is proposed in this paper. The method avoids any explicit use
of the primal variable X and therefore is well-suited to problems with a sparse
dual matrix S. It relies on inexact Newton steps in dual space which are com-
puted by the conjugate gradient method applied to the Schur complement of
the reduced KKT system.

The method may take advantage of low-rank representations of matrices Ai
to perform implicit matrix-vector products with the Schur complement matrix
and to compute only specific parts of this matrix. This allows the construction
of the partial Cholesky factorization of the Schur complement matrix which
serves as a good preconditioner for it and permits the method to be run in a
matrix-free scheme.

Convergence properties of the method are studied and a polynomial com-
plexity result is extended to the case when inexact Newton steps are employed.
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A Matlab-based implementation is developed and preliminary computational
results of applying the method to maximum cut and matrix completion

problems are reported.
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Inexact Newton method · Preconditioning
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1 Introduction

Let SRn×n denote the set of real symmetric matrices of order n and let U •
V denote the inner product between two matrices, defined by trace(UTV ).
Consider the standard semidefinite programming (SDP) problem in its primal
form

min C •X
s.t. X � 0

Ai •X = bi i = 1, . . . ,m,
(1)

where Ai, C ∈ SRn×n and b ∈ Rm are given and X ∈ SRn×n is unknown
and assume that matrices Ai, i = 1, 2, . . . ,m are linearly independent, that
is
∑m
i=1Aidi = 0 implies di = 0, i = 1, . . . ,m. The dual form of the SDP

problem associated with (1) is:

max bT y
s.t.

∑m
i=1 yiAi + S = C

S � 0,
(2)

where y ∈ Rm and S ∈ SRn×n.
In this paper we are concerned with the solution of problems where the

dual variable S is very sparse. Such situations arise when matrices Ai, i =
1, . . . ,m and C share the sparsity patterns [25], and are common in relaxations
of optimization problems such as, e.g. maximum cut and matrix completion
problems [3,5].

Semidefinite programming is a well established area of convex optimiza-
tion [8,21,26]. Over the last two decades many powerful techniques have been
developed for the solution of SDP problems. Although the majority of devel-
opments in this area relied on interior point methods, there have been also
successful attempts to employ different techniques such as a specialized vari-
ant of bundle method [14], augmented Lagrangian approach [27] or modified
barrier method [15].

Interior point methods for SDP have an advantage: they have provable
low worst-case iteration complexity [8,21]. On the other hand, the solution
of real-life SDPs still remains a computational challenge because the linear
systems involved in interior point methods for SDP have dimensions n2 + m
or m for augmented system or Schur complement, respectively. Such systems
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may be prohibitive for any larger values of n and m. Most of standard IPM
implementations work with the m ×m Schur complement linear system. For
larger values of m building, storing and inverting this matrix is still a major
challenge. There have been of course several attempts to overcome these dif-
ficulties. They usually rely on an application of Krylov subspace methods for
solving the linear equations resulting from the reduced KKT systems [22,23].

The challenge originates from the complexity of the reduced KKT systems
which are large, involve products of matrices and often produce dense matrices
of very large dimension. In the large-scale setting, direct methods of linear
algebra are not an option. Iterative methods have to be employed. They are
efficient in the early stage of Interior Point procedures, but they struggle in
the late stage due to ill conditioning of matrices involved [23].

In quest for a perfect interior point method for SDP one has to compromise
between several conflicting objectives. An ideal algorithm would:

– share the best known worst-case iteration complexity,
– have low memory requirements (avoid storing dense matrices of size n or
m),

– efficiently compute the Newton direction.

The method presented in this paper is an attempt to satisfy these objectives
at least for a wide class of SDP problems which enjoy the property of having
sparse dual matrix S.

We propose a dual logarithmic barrier method which maintains only the
dual solution of the problem (y, S) and avoids any operations which could
involve the primal matrix X (which is likely to be dense). Benson, Ye and
Zhang [4] have analysed the dual potential reduction Interior Point method
and have demonstrated certain advantages resulting from the ability to avoid
using explicit primal matrix X. In a later technical report Choi and Ye [6]
mentioned a possibility of employing an iterative linear algebra approach in
the context of algorithm [4]. Without providing convergence analysis, authors
observed that in this latter approach the algorithm terminates at a primal-dual
sub-optimal solution depending on the accuracy imposed on the iterative linear
solver. Moreover, they proposed to use a simple diagonal preconditioner for the
linear system which naturally had only a very limited ability to improve the
spectral properties of the system. An alternative approach has been introduced
in [23] in the context of primal-dual method. In this approach in the late steps
of the method a decomposition of the Schur complement is performed giving
rise to a projected Schur complement to which the iterative method is applied.

The algorithm we propose here makes steps in inexact Newton directions
which are computed by an approximate solution of the reduced KKT systems.
The system is reduced to the Schur complement form and solved with the
preconditioned conjugate gradient method. The Schur complement does not
have to be constructed or stored because the CG algorithm needs only to
perform matrix-vector multiplications with it and these operations can be
executed as a sequence of simple matrix-vector products which involve only
very sparse matrices. The procedure is particularly attractive when matricesAi
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are low rank. Krylov-subspace methods are known to benefit from clustering
of the spectrum of linear system. Unfortunately, there is no chance for this to
happen in the case of systems arising from interior point methods. To improve
the spectral properties of the linear system we employ a partial Cholesky
preconditioner [1,12].

Much of the effort in the analysis of the proposed approach has gone into
designing implementable conditions for the acceptable inexactness in the New-
ton direction and choosing an appropriate preconditioned iterative method
which can meet such conditions. The used preconditioner is compatible with
the matrix-free regime of the whole method and still delivers the necessary
improvement of the spectral properties of the linear system. We are not aware
of any method prior to that one which would meet such conditions, except for
the strategies proposed in [22,23] that might provide an inspiration to create
a viable alternative.

We also design a short-step variant of the method and show that it enjoys
the O(

√
n ln n

ε ) worst-case iteration complexity.
The paper is organised as follows. After a brief summary of notation used

in SDP, in Section 2 a framework of the dual barrier algorithm is presented.
Next, in Section 3 an inexact variant of the method is introduced and some
basic facts concerning the proximity of the dual iterates to the central path are
discussed. Several technical results needed to establish the convergence of the
Inexact Newton method are presented in Section 4. Then a complete analysis of
the short-step inexact dual logarithmic barrier method is delivered in Section 5.
The methods proposed in this paper have been implemented. The computation
of inexact Newton directions employs the preconditioned conjugate gradient
algorithm to find an approximate solution of the Schur complement form of the
reduced KKT systems. The computation of a preconditioner and the matrix-
free implementation of the method are discussed in Section 6. The preliminary
computational results obtained with the methods applied to solve the SDP
relaxations of maximum cut and matrix completion problems are presented in
Section 7 and finally the conclusions are given in Section 8.
Notation. The norm of the matrix associated with the inner product between
two matrices U • V = trace(UTV ) is the Frobenius norm, written ‖U‖F :=
(U •U)1/2, while ‖·‖2 denotes the operator norm of a matrix. Norms on vectors
will always be Euclidean.

Let A be the linear operator A : SRn×n → Rm defined by

A(X) = (Ai •X)mi=1 ∈ Rm,

then its transposition AT is a mapping from Rm to SRn×n given by

AT v =

m∑
i=1

viAi.

Moreover, let AT denote the matrix representation of AT with respect to the
standard bases of Rn, that is

AT := [vec(A1), vec(A2), . . . , vec(Am)] ∈ Rn
2×m,
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and

A(X) = Avec(X) and AT v = mat(AT v),

where mat is the “inverse” operator to vec (i.e., mat(vec(Ai)) = Ai ∈ SRn×n).
Finally, given a symmetric matrix G, let G�G denote the operator from

SRn×n to itself given by

(G�G)U = GUG.

The notation U ⊗ V indicates the standard Kronecker product of U and V .

2 The dual barrier algorithm

Let us consider the dual barrier problem parametrized by µ > 0 (see [21,8])

max bT y − µ ln(det(S)),
s.t. AT y + S = C.

Let X = µS−1 � 0, then the first-order optimality conditions for this problem
are given by:

Fµ(X, y, S) =

AT y + S − C
A(X)− b
X − µS−1

 = 0. (3)

We adopt the dual-path following method described in [21,8] that we will
briefly describe below. Chosen a strictly dual feasible pair (y, S) and a scalar
µ > 0, damped Newton steps for the problem Fµ(X, y, S) = 0 are made,
maintaining S positive definite. Let (X`, y`, S`) be the current primal-dual
iterate, then the Newton step (∆X,∆y,∆S) is the solution of the following
linear system0 AT I

A 0 0
I 0 µ(S−1

` � S
−1
` )

∆X∆y
∆S

 = −

 0
0

X` − µS−1
`

 . (4)

Computing ∆X from the third equation in (4) (and applying earlier introduced
notation (S−1

` � S
−1
` )∆S = S−1

` ∆S S−1
` ) gives

∆X = −µ(S−1
` ∆S S−1

` )− (X` − µS−1
` ) (5)

and letting ∆S̃ = (S−1
` �S

−1
` )∆S, we get the linear system in the augmented

form [
S` � S` AT
A 0

] [
∆S̃
∆y

]
= −

[
0

1
µA(X` − µS−1

` )

]
. (6)

The Schur complement form of the system can be obtained computing ∆S
from the first equation in (4)

∆S = −AT∆y, (7)
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substituting it in (5) and getting

∆X = µ(S−1
` (AT∆y)S−1

` )− (X` − µS−1
` ). (8)

Finally from the second equation in (4) we obtain:

M`∆y =
1

µ
A(X` − µS−1

` ). (9)

where M` is the Schur complement matrix given by

M` := A(S−1
` ⊗ S

−1
` )AT ∈ SRm×m. (10)

We note that the matrix M` is symmetric and positive definite, its entries are
given by

(M`)i,j = (AiS
−1
` ) • (S−1

` Aj)

and it is generally dense.
Assuming that the initial guess is primal-dual feasible, primal-dual feasi-

bility is maintained at each Newton iteration. Therefore one can substitute
A(X`) with b in the right hand side of (9) and solve the linear system

M`∆y =
1

µ
b−A(S−1

` ). (11)

This substitution allows to avoid using the primal variable X` explicitly.
The subsequent damped iterates are given by y`+1 = y`+α∆y and S`+1 =

S` + α∆S with α such that S`+1 � 0. Given S` � 0, we define

X`+1 = argmin
X

{∥∥∥∥∥S1/2
` X S

1/2
`

µ
− I

∥∥∥∥∥
F

: A(X) = b

}
(12)

and notice that X`+1 has the following form:

X`+1 = µ(S−1
` + S−1

` (AT∆y)S−1
` ), (13)

see [8, Section 5.8]. From (8) we have X`+1 = X`+∆X. The adopted centrality
measure is

δ(S`, µ) :=

∥∥∥∥∥S1/2
` X`+1 S

1/2
`

µ
− I

∥∥∥∥∥
F

=
∥∥∥S−1/2

` ∆SS
−1/2
`

∥∥∥
F
, (14)

where in the last equality we have used (7) and (13). This measure is used in
the proximity stopping criterion since the damped Newton process is carried
out until

δ(S`, µ) ≤ τ

with τ ∈ (0, 1). Then the scalar µ is reduced and a new nonlinear system is
solved.
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3 The inexact dual-logarithmic barrier algorithm

We focus on sparse large dimension problems of the form (1)-(2) and propose
an inexact version of the dual-logarithmic barrier algorithm for its solution.
We therefore assume that the dual variable S is sparse, while the variable X
may be dense and that the memory storage of the Schur complement matrix
M` is prohibitive.

We fix the value of µ and use an Inexact Newton method. The step is
made in a direction which is an approximate solution of the Schur complement
formulation (11) computed in a matrix-free regime by using a Krylov method.
The method is iterated until the centrality measure δ(S`, µ) drops below a
prescribed tolerance. The barrier term µ is then reduced to force convergence.

Note that one might consider solving the augmented system (6) since both
the application of the coefficient matrix and the computation of ∆S manage
to avoid the inverse of S` hence are expected to be inexpensive. However,
this formulation has two drawbacks. Firstly, ∆S̃ = (S−1

` � S−1
` )∆S is very

likely to be dense despite ∆S being sparse. Secondly, solving linear system
(11) inexactly causes ∆S to lose symmetry.

The overall Long-Step Inexact Interior-Point procedure is described in Al-
gorithm 1. Clearly, the main step is the inexact solution of (3) at Line 4 whose
steps are described in detail in Algorithm 2.

Algorithm 1 The Long-Step Inexact Dual-Logarithmic barrier algorithm
input: Dual feasible pair (y, S) (S positive definite), µ > 0, ε > 0, σ ∈ (0, 1).
output: Approximation of the Primal-Dual solution (X, y, S).
1: y0 ← y, S0 ← S and µ0 ← µ.
2: for k = 0, 1, . . . do
3: Choose τk ∈ (0, 1).
4: (yk+1, Sk+1,∆S)← Inexact Newton(yk, Sk, µk, τk)
5: if µk ≤ ε then
6: Xk+1 = µk(S−1

k − S−1
k ∆S S−1

k )
7: return X ← Xk+1, y ← yk+1 and S ← Sk+1.
8: end if
9: µk+1 ← σµk.

10: end for

Some comments on the algorithms are in order. First, note that in Algo-
rithm 1 an initial primal variable X is not required. Also, if the dual vector
solution is not needed, one can avoid to update the vector y` in Algorithm 2
explicitly and deal with ∆y only. Second, the main task in Algorithm 2 is the
computation of the step ∆y at Lines 5-6. The computed step ∆y satisfies

M`∆y =
1

µ
b−A(S−1

` ) + r`, (17)

where the residual vector r` satisfies inequality (16). Hence it is an approximate
solution of (11) and the relative residual norm is bounded by the forcing term
η` > 0. Third, the backtracking in the while loop at Lines 8-10 of Algorithm



8 Stefania Bellavia et al.

Algorithm 2 The long-step Inexact-Newton algorithm
input: Dual feasible pair (y, S) (S positive definite), µ > 0, τ ∈ (0, 1).
output: New dual feasible pair (y, S) and the last computed dual Newton step ∆S.
1: procedure Inexact Newton(y, S, µ, τ)
2: S0 ← S, y0 ← y, `← 0 and is centered← 0.
3: while is centered = 0 do
4: Choose η` ∈ (0, 1).
5: Compute an (inexact) step ∆y such that

r` = M`∆y −
(

1

µ
b−A(S−1

` )

)
(15)

6: satisfies

‖r`‖ ≤ η`
∥∥∥∥ 1

µ
b−A(S−1

` )

∥∥∥∥ (16)

7: ∆S ← −AT (∆y) and α← 1.
8: while S` + α∆S is not positive definite do
9: α = α/2.

10: end while
11: y`+1 ← y` + α∆y and S`+1 ← S` + α∆S.

12: δ(S`, µ)←
∥∥∥S−1/2

` ∆SS
−1/2
`

∥∥∥
F
.

13: if δ(S`, µ) ≤ τ then
14: is centered← 1
15: else
16: `← `+ 1.
17: end if
18: end while
19: return y ← y`, S ← S` and ∆S.
20: end procedure

2 preserves positive definiteness of S`, for each `. Then, at each iteration k of
Algorithm 1, matrix Sk+1 computed at Line 4 is positive definite.

Moreover, in the inexact framework, we approximate the centrality measure
in (14) with the following “inexact” measure

δ(S`, µ) :=
∥∥∥S−1/2

` ∆SS
−1/2
`

∥∥∥
F

=

∥∥∥∥∥S1/2
` X`+1 S

1/2
`

µ
− I

∥∥∥∥∥
F

, (18)

where ∆S is computed at Line 7 of Algorithm 2 and X`+1 is defined by

X`+1 = argmin
X

{∥∥∥∥∥S1/2
` X S

1/2
`

µ
− I

∥∥∥∥∥
F

: A(X) = b+ µr`

}
. (19)

Although the algebraic formulae in (14) and (18) are identical, their meaning is
different because X`+1 in the latter is allowed to violate the primal feasibility.
The following result demonstrates that equality in (18) holds and the inexact
computation of ∆y in (15) yields a loss of primal feasibility.

Proposition 1 Let X`+1 be defined in (19). Then for each ` > 0

X`+1 = µ(S−1
` − S

−1
` ∆S S−1

` ) (20)
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and ∥∥∥S−1/2
` ∆SS

−1/2
`

∥∥∥
F

=

∥∥∥∥∥S1/2
` X`+1 S

1/2
`

µ
− I

∥∥∥∥∥
F

. (21)

Moreover, X`+1 satisfies

A(X`+1) = b+ µ r`.

Proof Equation (20) can be derived following [8, Section 5.8] and writing the
first-order optimality conditions for the minimization problem in (19). Equality
(21) easily follows from (20). Finally, we have

A(X`+1) = A(µ(S−1
` − S

−1
` ∆S S−1

` ))

= µA(S−1
` ) + µA(S−1

` � S
−1
` )AT∆y

= µA(S−1
` ) + µM`∆y

= µA(S−1
` ) + µ

(
1

µ
b−A(S−1

` ) + r`.

)
= b+ µ r`.

ut

Then, letting ∆X as in (5) we obtain

X`+1 = X` +∆X. (22)

Interestingly, dual feasibility is preserved even if inexact steps are used.
Assuming the pair (y`, S`) satisfies AT y` + S` = C, then dual feasibility of
(S` +α∆S, y` +α∆y) follows from the feasibility of (S`, y`) and the definition
of ∆S in Line 7 of Algorithm 2:

AT (y` + α∆y) + S` + α∆S = (AT y` + S`) + α(AT∆y +∆S) = C + 0.

In order to distinguish the “inexact” measure (18) from the “exact” one in
(14), we use the subscript ex for (14). Analogously, we denote with (∆Xex, ∆yex, ∆Sex)
the “exact” solution of (4) which corresponds to having r` = 0 in (15). Then,

δex(S`, µ) =

∥∥∥∥∥S1/2
` X`+1,ex S

1/2
`

µ
− I

∥∥∥∥∥
F

and

X`+1,ex = µ(S−1
` − S

−1
` ∆Sex S

−1
` ) = X` +∆Xex. (23)

The relationship between the two centrality measures follows.

Lemma 1 Let S` � 0. Then

|δex(S`, µ)− δ(S`, µ)| ≤ ‖A†‖2‖S`‖2‖r`‖
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Proof Combining (22) and (23) we get X`+1,ex = X`+1 + ∆Xex − ∆X and
then

δex(S`, µ) =

∥∥∥∥∥S1/2
` X`+1,ex S

1/2
`

µ
− I

∥∥∥∥∥
F

=

∥∥∥∥∥S1/2
` (X`+1 −∆X +∆Xex)S

1/2
`

µ
− I

∥∥∥∥∥
F

≤ δ(S`, µ) +

∥∥∥∥∥S1/2
` (∆X −∆Xex)S

1/2
`

µ

∥∥∥∥∥
F

. (24)

Moreover, (20) and (23) yield

∆X −∆Xex = X`+1 −X`+1,ex

= µ(S−1
` (∆Sex −∆S)S−1

` )

= µ(S−1
` (AT (∆y −∆yex))S−1

` ).

Since M`∆y = M`∆yex + r` we get∥∥∥∥∥S1/2
` (∆X −∆Xex)S

1/2
`

µ

∥∥∥∥∥
F

=
∥∥∥S−1/2

` (AT (M−1
` r`))S

−1/2
`

∥∥∥
F

=
∥∥∥(S

−1/2
` ⊗ S−1/2

` )AT (A(S−1
` ⊗ S

−1
` )AT )−1r`)

∥∥∥
2
.

Let G := A(S
−1/2
` ⊗ S−1/2

` ), then∥∥∥∥∥S1/2
` (∆X −∆Xex)S

1/2
`

µ

∥∥∥∥∥
F

=
∥∥GT (GGT )−1r`

∥∥ =
∥∥G†r`∥∥ .

We observe that the vector q̂ := G†r` ∈ Rn is the (unique) minimum length
solution of the least-squares problem minq∈Rn ‖Gq − r`‖. Let A = UΣV T be

the SVD of A. Then letting z = (S
−1/2
` ⊗ S−1/2

` )q̂,

‖Gq̂ − r`‖ = ‖Az − r`‖ = ‖UΣV T z − r`‖ = ‖Σg − UT r`‖,

where g = V T z. Therefore g = Σ†UT r`, z = V Σ†UT r` and finally

‖q̂‖ = ‖(S1/2
` ⊗ S1/2

` )z‖ ≤ ‖S`‖2‖A†‖2‖r`‖.

We therefore obtain by (24)

δex(S`, µ) ≤ δ(S`, µ) + ‖A†‖2‖S`‖2‖r`‖.

On the other hand, writing X`+1 = X`+1,ex +∆X −∆Xex and following the
steps above, we obtain

δ(S`, µ) ≤ δex(S`, µ) + ‖A†‖2‖S`‖2‖r`‖,

which completes the proof. ut
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Now, we bound the duality gap in terms of the centrality measure and the
residual vector.

Lemma 2 At each `-th iteration of Algorithm 2 the following inequality holds

µ(1−δ(S`, µ)/
√
n+(rT` y`)/n) ≤ C •X`+1 − bT y`

n
≤ µ(1+δ(S`, µ)/

√
n+(rT` y`)/n)

Proof Note that using Proposition 1 we have b = A(X`+1) − µr`, hence, fol-
lowing the proof of Lemma 5.8 in [8] we get

C •X`+1 − bT y` = C •X`+1 − (A(X`+1)− µr`)T y`
= (C −AT y`) •X`+1 + µrT` y`.

Using the dual feasibility of (y`, S`) we get

C •X`+1 − bT y` = S` •X`+1 + µrT` y`. (25)

Using the Cauchy-Schwartz inequality we have

δ(S`, µ)
√
n =

∥∥∥∥∥S1/2
` X`+1S

1/2
`

µ
− I

∥∥∥∥∥
F

‖I‖F ≥
∣∣∣∣S` •X`+1

µ
− n

∣∣∣∣
that implies

n− δ(S`, µ)
√
n ≤ S` •X`+1

µ
≤ n+ δ(S`, µ)

√
n. (26)

We get the thesis combing the above equation with (25). ut

4 Convergence analysis of the Inexact Newton inner procedure

In this section we will look into convergence properties of Algorithm 2. We
start from observing that once the stopping criterion at Line 13 of Algorithm
2 has been satisfied, say at iteration ¯̀, the corresponding matrix X¯̀+1 defined
in (20) is positive definite.

Lemma 3 Let S` � 0 and δ(S`, µ) < 1. Then X`+1 � 0.

Proof The proof follows by a straightforward modification of the proof of
Lemma 5.3 in [8]. ut

Moreover, the backtracking process in the while loop at Lines 8-10 is well-
defined and if S` is sufficiently well-centered, then α = 1 is taken. This is
proved in the next two Lemmas.

Lemma 4 Assume S` � 0. Then, there exists ᾱ > 0 such that S` + α∆S � 0
for any α in (0, ᾱ)
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Proof Assume ∆S is not positive definite, otherwise S` + α∆S � 0 for any
α ≥ 0. We have

S` + α∆S = S
1/2
` (I + αS

−1/2
` ∆SS

−1/2
` )S

1/2
` .

Then, as S
1/2
` � 0 by hypothesis, it follows that S` + α∆S � 0 whenever α is

sufficiently small. In particular, the thesis holds with ᾱ = 1/‖S−1/2
` ∆SS

−1/2
` ‖F .

ut

Lemma 5 Let S` � 0 and δ(S`, µk) < 1. Then S` +∆S � 0.

Proof The proof follows by a straightforward modification of the proof of
Lemma 5.4 in [8]. ut

We observe that the sequence {(y`, S`)}, computed by Algorithm 2 corre-
sponds to the sequence generated by an Inexact Newton method applied to
the reduced nonlinear system:

F̃µ(y, S) =

(
AT y + S − C
µA(S−1)− b

)
= 0. (27)

In fact, the Newton system is given by:[
AT I
0 µA(S−1 � S−1)

] [
∆y
∆S

]
= −

[
0

b− µA(S−1
` )

]
.

Then, the vector (∆y,∆S) computed at Lines 5 and 7 is an Inexact Newton
step for (27) as it satisfies[

AT I
0 µA(S−1 � S−1)

] [
∆y
∆S

]
= −

[
0

b− µA(S−1
` )

]
−
[

0
µr`

]
. (28)

Moreover, by (16) the residual vector satisfies the following inequality∥∥∥∥[ 0
µr`

]∥∥∥∥ ≤ µη` ∥∥∥∥ 1

µ
b−A(S−1

` )

∥∥∥∥ ≤ η` ∥∥∥F̃µ(y`, S`)
∥∥∥ . (29)

Then, if we equip Algorithm 2 with a line-search along the direction (∆y,∆S)
we obtain an Inexact Newton method in the framework of Algorithm INB
in [9]. Therefore, given t ∈ (0, 1), let us substitute the loop at Lines 8-10 of
Algorithm 2 with the steps described in Algorithm 3.

Algorithm 3 Backtracking strategy to enforce a decrease of ‖F̃µ‖ and positive
definiteness of S
1: while S` + α∆S is not positive definite or
2: ‖F̃µ(y` + α∆y, S` + α∆S)‖ > (1− t(1− η`))‖F̃µ(y`, S`)‖ do
3: α = α/2 and η` = (1− (1− η`)/2).
4: end while
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It is worth pointing out that when the inexact Newton method is applied
to find an approximate solution of (27) the value of barrier term µ remains
constant. This is independent of which mechanism is used to choose the step-
size (either Lines 8-10 of Algorithm 2 or the backtracking strategy suggested
in Algorithm 3). Moreover, letting ∆S̃ = (S−1

` � S−1
` )∆S the linear system

(28) may be rewritten as[
(S` � S`) AT
A 0

] [
∆S̃
∆y

]
= −

[
0

r` + b/µ−A(S−1
` )

]
.

Its coefficient matrix is nonsingular provided that S` � 0 and this is indeed the
case since µ is a fixed positive constant in this context. Therefore F̃ ′µ(y`, S`)
is nonsingular for any ` ≥ 0.

Assume that the sequences {‖S`‖}∞`=1, {‖y`‖}∞`=1 are bounded. Then, the
sequence {(y`, S`)} has at least one accumulation point and from Theorem
6.1 in [9] it follows that if there exists a limit point (y∗, S∗) of {y`, S`} such
that F̃ ′µ(y∗, S∗) is nonsingular, then F̃µ(y∗, S∗) = 0 and {y`, S`} → (y∗, S∗),
whenever ` goes to infinity. As a consequence we have

lim
`→∞

‖F̃µ(y`, S`)‖ = 0 (30)

as the sequence {‖F̃µ(y`, S`)‖} is monotonically decreasing and bounded from
below. This together with (29) implies that

lim
`→∞

‖r`‖ = 0. (31)

We now show that the stopping criterion at Line 13 of Algorithm 2 is
satisfied after a finite number of inner iterations. First, from (20), and (15) it
follows

‖X`+1 − µS−1
` ‖F = ‖µ(S−1

` ⊗ S
−1
` )AT∆y‖

= ‖(S−1
` ⊗ S

−1
` )ATM−1

` (r` +
b

µ
−A(S−1

` ))‖

= ‖(S−1/2
` ⊗ S−1/2

` )GT` (G`G
T
` )−1(r` +

b

µ
−A(S−1

` ))‖

= ‖(S−1/2
` ⊗ S−1/2

` )G†`(r` +
b

µ
−A(S−1

` ))‖

with G` = A(S
−1/2
` ⊗ S

−1/2
` ). Then, proceeding as in the proof of Lemma

1, i.e. letting A = UΣV T be the SVD of A, q̂ = G†`(r` + b
µ − A(S−1

` )) and

z = (S
−1/2
` ⊗ S−1/2

` )q̂, we get

z = V Σ†UT (r` +
b

µ
−A(S−1

` ))
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and

‖X`+1 − µS−1
` ‖F = ‖z‖ ≤ ‖A†‖2

(
‖r`‖+

∥∥b/µ−A(S−1
` )
∥∥)

≤ ‖A†‖2
(
‖r`‖+ µ‖F̃µ(y`, S`)‖

)
.

This yields ‖X`+1 − µS−1
` ‖F → 0 using (30) and (31). Then, as

δ(S`, µ) ≤ 1

µ
‖S`‖F ‖X`+1 − µS−1

` ‖F

and ‖S`‖F is bounded by assumption we can conclude that δ(S`, µ)→ 0.
Finally, we have that primal feasibility is recovered since

‖A(X`+1)− b‖ ≤ ‖A(X`+1 − µS−1
` )‖+ ‖b− µA(S−1

` )‖
≤ ‖A‖2‖X`+1 − µS−1

` ‖F + ‖F̃µ(y`, S`)‖

and therefore ‖A(X`+1)− b‖ → 0 whenever ` goes to ∞.
Then, in order to compute accurate primal solution, in the last iteration

of Algorithm 1 a small tolerance τk is set to force the Inexact Newton method
to iterate till convergence.

5 A short-step version of the inexact dual-logarithmic barrier
method

In this section we introduce a short-step version of Algorithms 1 and 2. This
corresponds to use a more conservative update µk+1 = σµk with σ = (1−θ) for
some small θ, to perform only two Inexact Newton iterations for each µ-value
and to consider an initial pair (y, S) sufficiently well centered with respect
to the initial µ. In particular, a sequence is generated such that if the initial
S is sufficiently close to the central path, i.e. such that δ(S, µ) ≤ 1/2, then
after two inexact Newton steps the new approximation serves as well-centered
starting iterate for the sub-sequent outer iteration. In this section we will use
two indices to specify the outer k-th iteration and the three inner iterations
` = 0, 1, 2.

In order to establish such convergence properties we need to modify the
accuracy requirement in the solution of the linear systems. Indeed, the norm
of the residual is controlled by the value of the centrality measure δ(Sk,`, µk)
instead of ‖b−µkA(S−1

k,` )‖ as in the long-step version. We state the short-step
version of the inexact dual-logarithmic barrier method in Algorithm 4.

Note that since r0,0 = 0, then X0,1 is primal feasible. Moreover, Lemmas
3–5 hold also for the short-step version and for its “exact” counterpart, as
the accuracy requirement in the solution of linear systems is never involved
in their proofs. The following observations about the exact counterpart of our
short-step algorithm are in order. First, the following result on the decrease
of centrality measure holds.
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Algorithm 4 The Short-Step Inexact Dual-Logarithmic barrier algorithm

input: Dual feasible S and µ > 0 such that δex(S, µ) ≤ 1
2

, γ, β > 0, ε > 0, θ ∈ (0, 1).
output: Primal-Dual solution (X,S).
1: S0,0 ← S and µ0 ← µ.
2: while nµk > ε do
3: First Newton Step
4: if k = 0 then
5: Compute the solution ∆y of

Mk,0∆y =
1

µk
b−A(S−1

k,0)

6: else
7: Compute an inexact step ∆y such that

rk,0 = Mk,0∆y −
(

1

µk
b−A(S−1

k,0)

)
8: satisfies

‖rk,0‖ ≤ γ
1

‖A†‖2‖Sk,0‖2
δ2(Sk−1,1, µk−1) (32)

9: end if
10: ∆S ← −(AT∆y).
11: Sk,1 ← Sk,0 +∆S.

12: δ(Sk,0, µk)← ‖S−1/2
k,0 ∆SS

−1/2
k,0 ‖F .

13: Second Newton Step
14: Compute an inexact step ∆y such that

rk,1 = Mk,1∆y −
(

1

µk
b−A(S−1

k,1)

)
(33)

15: satisfies

‖rk,1‖ ≤ β
1

‖A†‖2‖Sk,1‖2
δ2(Sk,0, µk). (34)

16: ∆S ← −(AT∆y).
17: Sk,2 ← Sk,1 +∆S.

18: δ(Sk,1, µk)← ‖S−1/2
k,1 ∆SS

−1/2
k,1 ‖F .

19: Update the iterates
20: Sk+1,0 ← Sk,2.
21: µk+1 ← (1− θ)µk.
22: end while
23: return X ← µk(S−1

k,1 − S
−1
k,1∆S S

−1
k,1) and S ← Sk+1,0.

Lemma 6 [8, Lemma 5.5] Fixed k ≥ 0, if Sk,` � 0 is dual feasible and
δex(Sk,`, µk) < 1, then

δex(Sk,`+1, µk) ≤ δ2
ex(Sk,`, µk),

with ` = 0, 1.

Second, it is shown in [8] that starting from Sk,0 such that δex(Sk,0, µk) <
1
2 , after one Newton step the obtained approximation Sk,1 can be used as the
subsequent well-centered starting point Sk+1,0, i.e. such that δex(Sk+1,0, µk+1) ≤
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1
2 and the process is quadratically convergent. In the inexact case, we are go-
ing to prove that we need two inexact Newton iterations to get an analogous
result. In other words we are going to show that the Inexact Newton process
is two-step quadratically convergent in terms of the centrality measure. Obvi-
ously, as in the long step case, in the last outer iteration, we need to iterate the
Inexact Newton method till convergence in order to recover primal feasibility.
Therefore after termination of Algorithm 4, an extra outer iteration is per-
formed: several steps of Inexact Newton method are made until the nonlinear
residual is small.

Remark 1 In the following proofs we will make use of the centrality measure
evaluated at Sk,2, i.e.

δ(Sk,2, µk) =
∥∥∥S−1/2

k,2 ∆SS
−1/2
k,2

∥∥∥
F
, (35)

where ∆S = −AT∆y and ∆y is an approximate solution of the linear system:

Mk,2∆y =
1

µk
b−A(S−1

k,2)

with residual

‖rk,2‖ ≤ γ
1

‖A†‖2‖Sk,2‖2
δ2(Sk,1, µk). (36)

This quantity will be used to provide a bound for δ(Sk+1,0, µk+1) that is com-
puted at Line 12 of the subsequent (k + 1)-th iteration in Algorithm 4. The
computation of δ(Sk,2, µk) would require a third Newton step but in fact it is
not needed in the algorithm.

Lemma 7 Let k ≥ 0, Sk,0 � 0 be dual feasible and

max{δ(Sk,1, µk), δ(Sk,0, µk)} ≤ 1/2. (37)

Moreover, let γ > 0, β ∈ (0, 2) and δ(Sk,2, µk) be given in (35).
Then, starting from Sk,0, the following inequality holds

δ(Sk,2, µk) ≤ C(γ, β) max{δ2(Sk,1, µk), δ2(Sk,0, µk)} (38)

with
C(γ, β) = (1 + β)2 + γ. (39)

Proof First, note that by Lemma 1 and (34) it follows

δex(Sk,1, µk) ≤ δ(Sk,1, µk) + ‖A†‖2‖Sk,1‖2‖rk,1‖
≤ δ(Sk,1, µk) + βδ2(Sk,0, µk) (40)

≤ 1/2 + β/4 < 1.

Then, using again Lemma 1, Lemma 6 and (36) we get

δ(Sk,2, µk) ≤ δex(Sk,2, µk) + ‖A†‖2‖Sk,2‖2‖rk,2‖
≤ δ2

ex(Sk,1, µk) + ‖A†‖2‖Sk,2‖2‖rk,2‖
≤ δ2

ex(Sk,1, µk) + γδ2(Sk,1, µk)
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and (40) and (37) yield

δ2
ex(Sk,1, µk) ≤ (1 + β)2 max{δ2(Sk,1, µk), δ2(Sk,0, µk)}.

Therefore we have

δ(Sk,2, µk) ≤ (1 + β)2 max{δ2(Sk,1, µk), δ2(Sk,0, µk)}+ γδ2(Sk,1, µk)

≤ C(γ, β) max{δ2(Sk,1, µk), δ2(Sk,0, µk)}.

with C(γ, β) given in (39). ut

The next step consists in bounding the centrality measure at the beginning
of the outer iteration k + 1 in terms of the centrality measure at the end of
the previous iteration k.

Lemma 8 Same assumptions as in Lemma 7. Then if µk+1 = (1 − θ)µk for
some θ ∈ (0, 1), then

δ(Sk+1,0, µk+1) ≤ 1

1− θ
(
δ(Sk,2, µk) + θ

√
n+ γ(2− θ)

)
.

Proof Proceeding as in Lemma 1 and recalling that Sk+1,0 = Sk,2 (Line 20 of
Algorithm 4) we have

δ(Sk+1,0, µk+1) ≤ δex(Sk+1,0, µk+1) + ‖Sk+1,0‖2‖A†‖2‖rk+1,0‖

=

∥∥∥∥∥S
1/2
k,2 X̄

ex
k+1,1 S

1/2
k,2

µk+1
− I

∥∥∥∥∥
F

+ ‖Sk+1,0‖2‖A†‖2‖rk+1,0‖.(41)

where

X̄ex
k+1,1 = argmin

X

{∥∥∥∥∥S
1/2
k+1,0X S

1/2
k+1,0

µk+1
− I

∥∥∥∥∥
F

: A(X) = b

}
.

Using the minimization property of X̄ex
k+1,1 and the form of µk+1 we obtain∥∥∥∥∥S

1/2
k,2 X̄

ex
k+1,1 S

1/2
k,2

µk+1
− I

∥∥∥∥∥
F

≤ 1

1− θ

∥∥∥∥∥S
1/2
k,2 X

ex
k+1,1 S

1/2
k,2

µk
− (1− θ)I

∥∥∥∥∥
F

≤ 1

1− θ
(δex(Sk,2, µk) + θ‖I‖F ) (42)

where

Xex
k+1,1 = argmin

X

{∥∥∥∥∥S
1/2
k+1,0X S

1/2
k+1,0

µk
− I

∥∥∥∥∥
F

: A(X) = b

}
.

Combining (41), (42) and (32) we obtain

δ(Sk+1,0, µk+1) ≤ 1

1− θ
(
δex(Sk,2, µk) + θ

√
n
)

+ γ.
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where we used that by assumption (37) δ(Sk,1, µk) < 1. Using Lemma 1 and
(36) we have

δex(Sk,2, µk) ≤ δ(Sk,2, µk) + ‖Sk,2‖2‖A†‖2‖rk,2‖
≤ δ(Sk,2, µk) + γ.

and we finally get the thesis. ut

The next result establishes a bound on the proximity of Sk+1,0 to the
central path.

Lemma 9 Same assumptions as in Lemma 7. If

θ =
2− C(γ, β)− 8γ

4
√
n− 4γ + 2

(43)

with C(γ, β) defined as in (39) and γ, β sufficiently small so that θ ∈ (0, 1),
then

δ(Sk+1,0, µk+1) ≤ 1

2
.

Proof Using Lemma 8 and Lemma 7 have

δ(Sk+1,0, µk+1) ≤ 1

1− θ
(
δ(Sk,2, µk) + θ

√
n+ γ(2− θ)

)
≤ 1

1− θ
(
C(γ, β) max{δ2(Sk,1, µk), δ2(Sk,0, µk)}+ θ

√
n+ γ(2− θ)

)
and (43) yields

δ(Sk+1,0, µk+1) ≤ 1

1− θ

(
C(γ, β)

1

4
+ θ
√
n+ γ(2− θ)

)
=

1

2
.

ut

Now we show that at each iteration k, Sk,0 can be used as a well-centered
starting point provided that the initial guess S0,0 is well centered.

Lemma 10 Let θ be given in (43) and µ0 > 0. Assume

δex(S0,0, µ0) ≤ 1

2
,

and γ, β ∈ (0, 1) in (39) are sufficiently small such that θ ∈ (0, 1) and 4γ +
γ2 + 4β ≤ 4. Then

δ(Sk+1,0, µk+1) ≤ 1

2
, for any k ≥ 0.
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Proof Let us consider the first outer iteration (k = 0). Then, as r0,0 = 0, it
follows that δ(S0,0, µ0) = δex(S0,0, µ0), and by Lemma 1, we get

δ(S0,1, µ0) ≤ δex(S0,1, µ0) + ‖A†‖2‖S0,1‖2‖r0,1‖.

Then, using Lemma 6, (34), and δ(S0,0, µ0) ≤ 1/2 we get

δ(S0,1, µ0) ≤ 1/2(1 + β)δ(S0,0, µ0).

This implies δ(S0,1, µ0) ≤ δ(S0,0, µ0) ≤ 1/2 as β < 1 by hypothesis. Therefore,
Lemma 9 ensures

δ(S1,0, µ1) ≤ 1/2.

Let us consider δ(S1,1, µ1). We are going to show that δ(S1,1, µ1) ≤ 1/2. We
have, using Lemma 6 and Lemma 1,

δ(S1,1, µ1) ≤ δex(S1,0, µ1)2 + ‖A†‖2‖S1,1‖2‖r1,1‖

≤
(
δ(S1,0, µ1) + ‖A†‖2‖S1,0‖2‖r1,0‖

)2
+ ‖A†‖2‖S1,1‖2‖r1,1‖.

Then the stopping rules (32) and (34) and max{δ(S1,0, µ1), δ(S0,1, µ0)} ≤ 1/2
yield

δ(S1,1, µ1) ≤
(

1

2
+
γ

4

)2

+
β

4
.

Therefore, δ(S1,1, µ1) ≤ 1/2 provided that 4γ + γ2 + 4β ≤ 4. Then, Lemma 9
yields δ(S2,0, µ2) ≤ 1/2. Proceeding in this way we can prove that δ(Sk,1, µk) ≤
1/2 for k ≥ 0. ut

Summing up, we have proved that, starting from a dual feasible point S0,0

such that δex(S0,0, µ0) ≤ 1/2, at a generic iteration k performing two inexact
Newton steps and reducing µk by a factor (1− θ), we get δ(Sk+1,0, µk+1) ≤ 1

2
at the subsequent iteration.

Theorem 1 Let ε be an accuracy parameter, θ given in (43) and µ > 0.
Assume S is strictly dual feasible such that δex(S, µ) ≤ 1/2 and γ and β in
(39) are sufficiently small such that θ ∈ (0, 1) and 2β + β2 + 9γ < 1/3 and
4γ + γ2 + 4β ≤ 4.

Then,

(i) Algorithm 4 terminates after at most
⌈
18
√
n log nµ

ε

⌉
inexact Newton steps.

(ii) Let k̄ be the last iteration of Algorithm 4, then the following inequality
holds:

Sk̄,1 •Xk̄,2 ≤ 3/2ε

and

C •Xk̄,2 − bT yk̄,1 ≤ 3/2ε+ rTk̄,1yk̄,1.
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Proof We follow the lines of proof of Theorem 5.1 in [8]. At the end of each
k-th iteration of Algorithm 4 Sk,2 is strictly feasible, µk = (1− θ)kµ0 (µ0 = µ
at Line 1) and the algorithm stops at iteration k̄ where

nµk̄ ≤ ε. (44)

Using −log(1 − θ) > θ for θ ∈ (0, 1) we can derive that (44) is guaranteed to
hold whenever

k̄θ > log
nµ0

ε
.

By (43) it follows
1

θ
=

4
√
n− 4γ + 2

2− (1 + β)2 − 9γ

and it can be easily shown that 9
√
n > 1

θ whenever 2β+β2 + 9γ < 1/3. Then,
nµk ≤ ε for any

k ≥ 9
√
n log

nµ0

ε
.

Then, the stopping criterion is met after at most 18
√
n log nµ0

ε inexact Newton
steps and (i) follows.

Moreover, by (26) we have:

Sk̄,1 •Xk̄,2 ≤ µk̄n
(

1 +
δ(Sk̄,1, µk̄)
√
n

)
≤ 3/2ε,

as δ(Sk̄,1, µk̄) ≤ 1/2.
Then, Lemma 2 yields (ii).

ut

We underline that, as already noted, at termination of Algorithm 4, a further
outer iteration has to be carried out in order to recover primal feasibility. In
this case, a sequence {Sk̄+1,`}`≥0 is generated and by Lemma 7 it follows that
δ(Sk̄+1,`, µk̄+1) goes to zero whenever `→∞. Therefore, ‖rk̄+1,`‖ goes to zero

and C •Xk̄+1,`+1 − bT yk̄+1,` is bounded by 3/2ε.

6 Matrix-free implementation

In this section we describe our matrix-free implementation of Algorithms 1
and 2.

Since we use a Krylov solver to compute an approximate solution of (9), the
matrix M` given in (10) is required only to perform matrix-vector products.
Due to the structure of M`, its action on a vector involves the inverse of
the sparse matrix S`. Then, at each iteration of Algorithm 2, the Cholesky
factorization RT` R` of the sparse matrix S` has to be computed. Taking into
account that the dual matrix is assumed to be sparse, a sparse Cholesky factor
is expected. Note that the structure of dual matrix does not change during the
iterations of Algorithm 1, hence reordering of S0 can be carried out once at the
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very start of Algorithm 1 and then may be reused to compute the Cholesky
factorization of S` at each iteration of Algorithm 2.

As pointed out in [2], the cost of evaluation of each column of M` depends
strongly on the structure of constraint matrices Ai. More precisely, it is shown
that the computation of the i-th column of M` involves pi back-solves with S`,
where pi is the rank of the constraint matrix Ai. Then, if we assume that the
constraint matrices have the same rank p, the cost of forming M` amounts to
2mp backsolves with R`. If M` is too large to be stored, we need to work in a
matrix-free regime and therefore, in order to compute matrix vector products
with M` we compute each column of M` once at a time and then discard it. In
this latter case, letting dens(R`) be the density of the Cholesky factor R`, the
cost of one matrix-vector product is given by 2mp×O(n2 dens(R`)) operations.
Clearly, this procedure allows to save memory as the whole matrix M` does
not need to be stored, but it is more expensive than computing matrix vector-
product with explicitly available matrix M`. Finally, we note that backsolves
with R` can be performed in parallel.

More specifically, let us consider the constraint matrices represented as a
sum of vector outer products, that is

Ai =

pi∑
r=1

αi,rvi,rv
T
i,r, (45)

such that αi,r ∈ R and vi,r ∈ Rn, for r = 1, . . . , pi, e.g. represented by an
eigendecomposition. Then a matrix-vector product can be performed using
Algorithm 5 based on [2, Technique M2]. The algorithm is efficient when the
ranks of the constraint matrices are low.

Algorithm 5 Matrix-vector product with the Schur complement matrix with
constraint matrices in the form (45)

input: Cholesky factor R` ∈ Rn×n of S` and a vector y ∈ Rm.
output: Matrix-vector product q = M`y.
1: for i = 1, . . . ,m do
2: for r = 1, . . . , pi do
3: Solve the linear system RT` u = vi,r.
4: Solve the linear system R`w = u.
5: qi ← qi + αi,r(w

TAiw) ∗ yi.
6: end for
7: end for
8: return q.

It is well known (see [23]) that a CG-like method applied to (9) may be slow,
in particular in the late stage of an Interior Point method. On the other hand
in our context traditional preconditioners cannot be incorporated as the ma-
trix M` is dense and we assume that it is not available. For this latter reason
matrix-free preconditioners are needed. Incomplete Cholesky (IC) factoriza-
tions are matrix-free in the sense that the columns of M` can be computed
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one at a time, and then discarded, but they rely on drop tolerances to reduce
fill-in and have unpredictable memory requirements. Alternative approaches
with predictable memory requirements depend on the entries of M`, [17,19,
20,13] and have high storage requirements if M` is dense. On the other hand,
the limited memory preconditioner given in [1,12] has a predictable memory
requirements and for this reason we employed it in our runs. It consists in a
partial Cholesky factorization limited to q columns of M` combined with a
diagonal approximation of the Schur complement. In this approach, first an
integer q < m is chosen and the following formal partition of M` is considered

M` =

[
M11 M

T
21

M21 M22

]
,

where M11 ∈ Rq×q, M21 ∈ R(m−q)×q, M22 ∈ R(m−q)×(m−q). Then, the first
q columns of M` have to be computed and the Cholesky factorization of M`

limited to [
M11

M21

]
is formed giving

M` =

[
L11

L21 Im−q

] [
Q11

Z

] [
LT11 L

T
21

Im−q

]
,

where L11 ∈ Rq×q is lower triangular with ones on the diagonal, L21 ∈
R(m−q)×q, Q11 ∈ Rq×q is diagonal and

Z = M22 −M21M
−1
11 M

T
21,

is the Schur complement of M11 in M`. Then, letting diag(·) the operator that
extracts the diagonal of a matrix and returns the diagonal matrix based on it,
Z is approximated by

Q22 = diag(Z) = diag(M22)− diag(L21Q11L
T
21)

and the following preconditioner is formed:

P` =

[
L11

L21 Im−q

]
︸ ︷︷ ︸

L

[
Q11

Q22

]
︸ ︷︷ ︸

Q

[
LT11 L

T
21

Im−q

]
︸ ︷︷ ︸

LT

.

Storage of the preconditioner requires remembering the partial Cholesky factor

L =

[
L11

L21 Im−q

]
and the diagonal Q, which overall needs at most (q + 1)m nonzero entries.
The a priori known bound on the storage requirements is an advantage. To
compute L one needs to compute the first q columns and the diagonal of M`
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first. The cost of doing it is negligible compared to the cost of each matrix-
vector product in the iterative linear solver. Therefore, the choice of q in this
context depends only on the memory available.

Regarding spectral properties of the above outlined preconditioner, it has
been proved in [1] that q eigenvalues of P−1

` M` are equal to 1 and the remaining
ones are the eigenvalues of Q−1

22 Z. Then,

λmax(P−1
` M`) ≤ trace(Q−1

22 Z) = m− q.

Therefore, the maximum eigenvalue of the preconditioned matrix stays bounded
and does not grow to ∞ as µk goes to zero and the solution is approached.
Moreover, in [12] a “greedy” heuristic technique acting on the largest eigen-
values of M` has been proposed. It consists in permuting rows and columns of
M` so that M11 contains the q largest elements of the diagonal of M`. This
choice is motivated by the well known result about the eigenvalues of the Schur
complement (which was also used in [1])

λmax(Q−1
22 Z) ≤ λmax(Z)

λmin(Q22)
≤ λmax(M22)

λmin(Q22)
≤ trace(M22)

λmin(Q22)
.

Hence, by reducing the trace of M22, a reduction in the value of λmax(P−1
` M`)

is expected. Therefore we adopted this heuristic in our implementation.

As a final comment, the computation of δ(S`, µ) at Line 12 of Algorithm
2 is not needed. Indeed, as observed in [4],

∥∥∥S−1/2
` ∆S S

−1/2
`

∥∥∥2

F
= ∆yTM`∆y.

Moreover, if Conjugate Gradient method is initialized with the zero vector and
∆y is computed at a certain iteration of it then the quadratic form ∆yTM`∆y
satisfies

∆yTM`∆y = ∆yT (b− µA(S−1
` )).

A similar property holds also when the preconditioned CG is used [10].

7 Numerical experiments

In this section we report on our numerical experience with the proposed inexact
dual-logarithmic barrier algorithms described in Algorithms 1-2 and 4. We did
not use the backtracking strategy described in Algorithm 3 because we verified
that in practice it was not needed to obtain convergence of Algorithm 2. We
first describe the problem sets, then discuss the numerical results.

All the results have been obtained using a Matlab (R2015a) code on an
Intel Core i5-6600K CPU 3.50 GHz x 4 16GB RAM.
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7.1 Test problem sets

We evaluated the performance of the proposed methods on two classes of
problems where the sparsity of the dual variable S is inherited from the sparsity
of C and the structure of the Ai’s. The first class of test examples arises in
the SDP relaxation of maximum cut problems; the constraint matrices in this
reformulation have rank 1 and n = m. The second class of test examples
is obtained by a reformulation of matrix completion problems. The obtained
SDP problems are characterized by constraint matrices of rank 2. In this case
n � m and therefore these problems could potentially be solved also by a
primal-dual method. However, we considered this class for the sake of gaining
more computational experience with problems which involve low-rank Ai’s.

The maximum cut problem consists in partitioning the vertices of a graph
into two sets that maximize the sum of the weighted edges connecting vertices
in one set with vertices in the other. Its SDP relaxation [21] is

max C •X
s.t. diag(X) = e

X � 0,

where e is the vector of all ones and C depends on the weighted adjacency
matrix of the graph. Therefore, sparsity of C depends on the sparsity of the
adjacency matrix of the graph. The dual problem is given by:

max eT y
s.t. Diag(y) + S = C

S � 0.

The constraint matrices Ai are given by Ai = eie
T
i , i = 1, . . . ,m, where ei ∈

Rm is the i-th vector of the canonical basis. Therefore, the Ais are trivially
in the form (45), and each matrix has rank one. The form of matrix M` and
vector A(S−1

` ) in the right-hand side of (9) simplifies and is given by

M` = (S−1
` ). ∗ (S−1

` ) and A(S−1
` ) = diag(M`),

where we have borrowed the Matlab notation; i.e. M` is the componentwise
product of (S−1

` ) times itself. We specialized Algorithm 5 for the maximum
cut problem in Algorithm 6, taking into account the special structure of each
Ai.

As a second set of problems, we considered large and sparse SDPs which
originate from a reformulation of the matrix completion problem, that is the
problem of recovering a low rank data matrix B ∈ Rn̂×n̂ from a sampling of
its entries [5].

Let Bs,t, (s, t) ∈ Ω be the given entries of matrix B. The SDP relaxation
of this problem is given by

min Tr(W1) + Tr(W2)

s.t.

[
W1 X̄
X̄T W2

]
� 0

X̄s,t = Bs,t (s, t) ∈ Ω,

(46)
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Algorithm 6 Matrix-vector product with the Schur complement matrix in
the maximum cut problem

input: Cholesky factor R` ∈ Rn×n of S` and a vector y ∈ Rn.
output: Matrix-vector product q = M`y.
1: for j = 1, . . . , n do
2: Solve the linear system RT` u = ej .
3: Solve the linear system R`w = u.
4: qj ←

∑n
i=1 w

2
i yi.

5: end for
6: return q.

where X̄,W1,W2 ∈ Rn̂×n̂ are the unknowns, and Bs,t, (s, t) ∈ Ω are given, see
[18].

We can reformulate (46) as (1) setting n = 2n̂ and m equal to the car-
dinality of Ω, i.e. the number of known entries of B. The primal variable X

takes the form X =

[
W1 X̄
X̄T W2

]
∈ Rn×n, while the matrix C in the objective is

C = 1
2In. In order to define the operators Ai’s, we enumerate the m couples

(s, t) ∈ Ω so that bi = Bs,t for i ∈ {1, . . .m} and (s, t) ∈ Ω. Moreover, for
each (s, t) ∈ Ω let us define the matrix Θst ∈ Rn̂×n̂ such that

(Θst)kl =

{
1 if (k, l) = (s, t)
0 otherwise.

Then, the constraint matrices Ai ∈ Rn×n with i ∈ {1, . . .m} (and correspond-
ing (s, t) ∈ Ω) are given by

Ai =
1

2

[
0 Θst

(Θst)T 0

]
. (47)

Having defined all the ingredients C, b,Ai, X as above, we obtain the SDP
relaxation of matrix completion problem in the form (1).

We note that since C is diagonal and Ai’s have at most 2 nonzero elements,
the slack variable S has at most 2m+ n nonzero elements. We also underline
that m� n̂2.

Constraint matrices are rank 2 and they can easily be expressed in the

form (45) using the eigendecomposition of the 2× 2 matrix

[
0 0.5

0.5 0

]
. This is

described in Algorithm 7, where we borrowed again the Matlab notation.

7.2 Implementation issues for the long-step algorithm

We set the initial parameters µ = 1 in Algorithm 1. In all the iterations except
for the last one, the Newton procedure was stopped whenever a full Newton
step is taken (i.e. α = 1 in Line 11 of Algorithm 2) and δ(S`, µ) ≤ 0.5. Then,
only a rough accuracy is required in the solution of the nonlinear systems (3)
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Algorithm 7 Matrix-vector product with the Schur complement matrix in
the matrix completion problem

input: Cholesky factor R` ∈ Rn×n of S`, eigenvalues λ̄1, λ̄2 and eigenvectors v̄1, v̄2 of[
0 0.5

0.5 0

]
and a vector y ∈ Rm.

output: Matrix-vector product q = M`y.
1: for i = 1, . . . ,m do
2: for r = 1, 2 do
3: Let (k, l) be the row and column indexes of the nonzero element of Ai(1 : n/2, :).
4: Set z ← zeros(n, 1), z(k)← v̄r(1), z(l)← v̄r(2) ;
5: Solve the linear system RT` u = z.
6: Solve the linear system R`w = u.
7: qi ← qi + λr(wTAiw) ∗ yi.
8: end for
9: end for

10: return q.

except in the last iteration where, in order to recover primal feasibility, the
Newton process is carried out until δ(S`, µ) ≤ 10−5.

In Algorithm 2 we employed the Matlab function pcg to compute the
approximate solution of (9), i.e. we used the CG method [11]. We work in a
nearly matrix-free regime, so we do not store the whole matrix M` but we
only store the q columns needed for building the preconditioner. At Line 4 of
Algorithm 2, we set η` = 10−3 for each `, that is CG is stopped when the
relative residual is less than 10−3. However, if (16) is not satisfied within 100
iterations, CG is halted and the algorithm progresses with the best iterate
computed by CG, that is the approximation returned by pcg at which the
smallest residual has been obtained. Denoting with CGit the CG iteration at
which this occurred, we set CGit as a limit on the number of CG iterations at
the subsequent Newton’s iteration.

Finally, at Line 8 of Algorithm 2 we perform the Cholesky decomposition
of S` + α∆S in order to detect whether the matrix is positive definite.

7.3 Numerical results for the long-step algorithm: maximum cut test
problems

We considered random graphs available in the GSet group of University of
Florida Sparse Matrix Collection [7]. More precisely, we selected five matri-
ces (G48, G57, G62, G65, G66, G67) corresponding to toroidal graphs of
dimension that ranges from m = 3000 to m = 20000 and two matrices (G60,
G63) of dimension m = 7000 corresponding to less structured graphs. We
also considered the smaller problem G11 to show in detail the preconditioner
behaviour.

In Table 1 we report statistics of our runs. These results have been obtained
setting ε = 10−8 in Algorithm 1 and computing q = 0.3m columns in the
partial Cholesky preconditioner, thus saving 70% of memory in comparison
with a direct approach which applies the complete Cholesky factorization of
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Test name m dens(S) dens(R) IT NEW CG AV TIME AV ‖A(X)− b‖ X • S
G48 3000 1.7e-3 1.7e-2 48 7 1.2e1 1.3e-8 3.0e-5
G57 5000 1.0e-3 9.0e-3 67 32 1.2e2 1.9e-6 1.9e-5
G60 7000 8.4e-4 4.2e-2 108 12 2.1e2 1.9e-6 4.1e-4
G62 7000 7.1e-4 7.1e-3 73 37 3.1e2 3.5e-6 2.1e-4
G63 7000 1.8e-3 5.6e-2 188 8 2,7e2 2.5e-6 5.2e-4
G65 8000 6.2e-4 7.1e-3 72 36 3.5e2 1.8e-6 1.7e-4
G66 9000 5.5e-4 3.4e-3 71 41 6.5e2 1.5e-6 1.3e-4
G67 10000 5.0e-4 6.3e-3 71 42 9.3e2 1.2e-6 1.0e-4

Table 1 Statistics of the runs on the GSET family

the Schur complement. Problems corresponding to toroidal graphs have been
solved using σ = 0.1, while results for the graphs G60 and G63 were obtained
using σ = 0.5.

A feasible starting couple (S, y) is easily obtained as in [24].

The heading of the columns has the following meaning: dens(S): density
of the dual matrix S0; dens(R) density of the Cholesky factor of S0; IT NEW:
overall number of inner Newton iterations; CG AV: average number of CG
iterations for each Newton iteration; TIME AV: average time in seconds to
perform one inner Newton iteration; ‖A(X) − b‖: primal feasibility; X • S:
complementarity gap. We can observe that both S0 and its Cholesky factor are
quite sparse in all the tests. The number of overall Newton iterations and the
average number of CG iterations are more or less the same in problems G57,
G62, G65, G66 and G67. So they do not seem to increase with m. The higher
number of Newton iterations in G60 and G63 is due to the less aggressive choice
of σ. Problem G48 is easier than the other ones as it requires noticeably fewer
Newton and CG iterations. As expected the execution time increases with the
dimension of the problem. It should be underlined that the high execution
time is the price we pay for avoiding to store matrix M`. For example, in
the solution of problem G67 the average time to perform one inner Newton
iteration drops to 111 seconds if matrix M` is computed once and then stored.
Moreover, we observe that a major part of the execution time originates from
the last iteration of Algorithm 1 as the linear systems become more difficult
and their solution requires a higher number of CG iterations and therefore a
higher number of matrix-vector products with M`.

To give some insight into the behaviour of the preconditioner, we considered
the smaller problem G11 (m=800) and we focused on the most challenging last
interior point iteration where the arising linear systems are ill-conditioned and
several inexact Newton steps are required because the primal feasible solution
X is sought. For this example, 8 Newton iterations were needed; we built the
sequence of linear systems generated by Algorithm 2 (with the partial Cholesky
preconditioner using the 30% of the columns of M) and we solved it also with
unpreconditioned CG and with CG using the Diagonal preconditioner.

Firstly, we compare in Table 2 the smallest and largest eigenvalues of ma-
trix M` with those of M` preconditioned by partial Cholesky (P−1M) and
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Fig. 1 Eigenvalue distribution of M and P−1M at the first Newton’s iteration (last outer
iteration).

Fig. 2 Eigenvalue distribution of M` and P−1M` at the last Newton’s iteration (last outer
iteration).

M` preconditioned by the Diagonal preconditioner (D−1M). We note that
the eigenvalues of unpreconditioned M` vary between 104 and 1010 at itera-
tion 1 and their spread increases to 104 − 1012 at iteration 8. The spread of
eigenvalues of the preconditioned Schur complement P−1

` M` is significantly
smaller. Indeed, the eigenvalues vary between 10−3 and 101, that is the par-
tial Cholesky preconditioner drastically reduces the largest eigenvalues of the
unpreconditioned matrix M`; the smallest eigenvalue is pushed closer to zero
but overall the condition number of the preconditioned matrix is smaller than
that of M`. On the other hand, the Diagonal preconditioner is not as effective.
It simply shifted the whole spectrum towards zero. We also plot in Figures 1
and 2 the histograms of eigenvalues of M` and P−1

` M` of the first (` = 1) and
the last (` = 8) Newton system. The histograms use the logarithmic scale to
demonstrate the magnitude of eigenvalues. They reveal that in both linear sys-
tems more than 50% of the eigenvalues of P−1

` M` are clustered around one.
Although a good clustering of the spectrum of P−1

` M` does not necessarily
imply fast convergence of the conjugate gradient method (see Section 5.6.5 in
[16]) it usually benefits its behaviour.

Secondly, from the statistics reported in Table 3, we can observe that CG
preconditioned by the partial Cholesky (CG+P) outperforms the unprecondi-
tioned CG. Failures are denoted by the symbol ‘*’ and, in this case, the min-
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` λmin(M) λmax(M) λmin(D−1M) λmax(D−1M) λmin(P−1M) λmax(P−1M)
1 1.2e4 1.7e10 1.2e-4 1.7e2 8.2e-3 4.7e1
2 2.9e4 1.0e11 4.7e-5 1.7e2 1.0e-2 2.8e1
3 1.7e4 3.7e12 8.2e-6 1.8e2 4.1e-3 3.8e1
4 1.3e4 2.2e12 1.1e-5 1.8e2 4.0e-3 3.9e1
5 1.2e4 1.8e12 1.2e-5 1.8e2 3.5e-3 3.8e1
6 1.2e4 1.8e12 1.2e-5 1.8e2 6.8e-4 6.0e1
7 1.2e4 1.8e12 1.2e-5 1.8e2 1.1e-3 3.6e1
8 1.2e4 1.8e12 1.2e-5 1.8e2 1.4e-3 5.7e1

Table 2 Problem G11: minimum and maximum eigenvalues of M , M preconditioned by
the diagonal (D) and the partial Cholesky (P) preconditioner, at the last outer iteration of
Algorithm 1

` CG CG + D CG + P ‖rCG` ‖ ‖rCG+D
` ‖ ‖rCG+P

` ‖
1 * * 6 1.1e-3 1.1e-3
2 * * 12 1.1e-3 1.0e-3
3 54 30 17
4 * * 23 1.4e-3 1.4e-3
5 * * 66 4.0e-3 4.0e-3
6 * * 31 1.1e-2 1.1e-2
7 * * * 2.3e-2 2.3e-2 2.6e-3
8 * * * 3.5e-1 3.5e-1 3.1e-3

Table 3 Problem G11: number of CG iterations (unpreconditioned and preconditioned with
D and P) and norm of the corresponding residual, at the last outer iteration of Algorithm
1.

imum value of the relative residual obtained during the iterations performed
by CG is also reported. CG+P fails in the last two inner iterations but the ob-
tained residuals are quite close to the desired values, while unpreconditioned
CG stops with large residuals. Unsurprisingly, CG with Diagonal precondi-
tioner (CG+D) behaves as poorly as the unpreconditioned CG. We also stress
that the cost of application of the partial Cholesky preconditioner is negligible
in the tested matrix-free implementation compared to the cost of performing
matrix-vector product with M` and therefore the preconditioner choice has to
be guided only by its behavior in terms of reducing CG iterations.

Finally, in Figure 3 we plot the convergence history of the whole procedure
applied to problem G48. In particular the value of the duality gap and of primal
feasibility versus the Newton iterations are displayed. We can observe that the
duality gap reduces with µ and primal feasibility is recovered at the last outer
iteration.

7.4 Numerical results for the long-step algorithm: matrix completion test
problems

In the solution of the SDP reformulation of matrix completion problems, the
extra-diagonal submatrix X̄ of the primal variable X returned by Algorithm
1 is the computed approximation of matrix B that we would like to recover.
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Fig. 3 Problem G48: duality gap and primal feasibility.

Test r n m IT NEW CG AV TIME AV εB ‖A(X)− b‖ X • S
MC1 4 800 12736 76 52 2.3e2 5e-4 4.3e-3 6.1e-3
MC2 5 1000 19900 81 37 5.1e2 4e-6 6.4e-6 7.6e-3
MC3 6 1200 28656 82 36 9.8e2 2e-6 4.8e-6 9.2e-3
MC4 7 1400 39004 80 33 1.0e3 1e-6 2.1e-6 1.0e-2
MC5 8 1600 50944 79 33 3.2e3 8e-7 1.0e-6 1.2e-2

Table 4 Statistics of the runs on the matrix completion set.

Following [5] we considered a matrix recovered when εB = ‖X̄−B‖F /‖B‖F ≤
10−3 and we observed that high accuracy in the solution of the SDP problem
is not needed to get such accuracy in the recovered matrix. Then, we set the
stopping tolerance ε equal to 10−6 and σ = 0.5 in Algorithm 1.

Following [5], we generated matrices B ∈ Rn̂×n̂ of rank r, by sampling two
n̂×r factors BL and BR, each having independently and identically distributed
Gaussian entries, and setting B = BLB

T
R. The set of observed entries Ω is

generated sampling m entries of B uniformly at random. We set m = 4r(2n̂−
r), that is m is four times the degrees of freedom of rank r matrices and
we choose r = n̂/100. This way, we obtained dual matrices S with density
dens(S) ≈ 4 ·10−2 and Cholesky factor’s density of the order of 1.4 ·10−1. The
dimensions of the generated SDP problems are shown in Table 4.

Since in these problems m is large and reaches tens of thousand, we set
q = 0.1m in the partial Cholesky preconditioner with a saving of the 90% of
memory. A feasible starting couple (S, y) is trivially computed by setting y = 0
and S = C.

Results are reported setting the Matlab random generator rng(‘default’)
and rng(1), similar results have been found with different random seeds. In
Table 4 we report statistics of our runs. The headings are the same as in Table
1 with extra information on the rank r of matrix B to be recovered and the
relative error of the recovered matrix εB .
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We observe that the average number of nonlinear Newton iterations is
larger than in maximum cut problems indicating that the arising nonlinear
systems are quite difficult. On the other hand the average number of CG
iterations remains small. Overall, the average CPU time is comparable to
that obtained for maximum cut problems of similar size. The matrices B are
recovered with a satisfactory accuracy.

7.5 Numerical validation of the short-step algorithm

Following the suggestion of the Anonymous Referee we carried experiments in
order to validate the theoretical analysis conducted in Section 5 for the Short-
Step Inexact Dual-Logarithmic barrier algorithm. We implemented Algorithm
4 and chose parameters β, γ, θ according to (43) and satisfying the assumptions
in Theorem 1. We set the tolerance ε = 10−5. After iteration k̄, at which the
algorithm stops, a further outer iteration is performed until δ(Sk̄+1,`, µk̄+1) ≤
10−5. Finally, we set a maximum number of 50 CG iterations. Algorithm 4
requires a starting couple (S, µ) such that S is feasible, µ > 0 and δex(S, µ) ≤
1/2. Setting µ = 1, we built S by applying one iteration of Algorithm 1. Linear
systems at Lines 5-6 of Algorithm 2 have been solved until δex(S`, µ) ≤ 1/2
(τ = 1/2).

Here we report the results obtained in the solution of the maximum cut
problem using graph G11. Using the above strategy, we obtained for G11 a
well-centered dual feasible S with δex(S, 1) = 0.1. For this problem n = 800
and consequently we used θ = 0.008 with β = γ = 0.01. At the last interior
point iteration, three Newton steps have been performed. Note that for this
problem ‖A†‖ = 1.

In Figures 4 and 5 we report statistics concerning the first and last 5
outer iterations, each involving 2 Newton inner iterations, except for the last
one where 3 Newton iterations have been performed. In Figure 4, we plot
the values of log10 δ(Sk,`, µk); the horizontal line corresponds to the value
log10(1/2). We can observe that, as Lemma 10 states, starting from (Sk,0, µk)
such that δex(Sk,0, µk) ≤ 1/2 after merely 2 Newton steps we obtain again a
starting value Sk+1,0 for the next iteration that is well-centered with respect
to µk+1.

Let ρk,` for ` = 0, 1 be the upper bound on the relative residual norms in
Algorithm 4 (see (32) and (34)). Figure 5 shows the relative accuracy require-
ment ρk,` dictated by the theory and the actual value of the relative residual
‖rk,`‖/‖b/µk−A(S−1

k,` )‖ returned by CG, still in the first and in the last 5 outer
iterations. We observe that in the first iterations, the two quantities have the
same order of magnitude that is around 10−1 and 10−7 in the first and the
second Newton iteration, respectively. On the other hand, in the last iterations
the prescribed accuracy is too tight and it is not needed to preserve the two-
step quadratic convergence of the method. In fact, we can observe from the
figures that in 50 iterations CG provides a higher value of the relative residual
than that prescribed by the theory, but after 2 Newton steps, we still obtain a
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Fig. 4 Problem G11: Values of δ(Sk,`, µk) for ` = 1, 2(, 3) in first 5 (left figure) and last 5
(right figure) outer iterations (logarithmic scale).
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Fig. 5 Problem G11: Values of ρk,` and ‖rk,`‖/‖b/µk −A(S−1
k,`)‖ for ` = 1, 2(, 3) in first 5

(left) and last 5 (right) outer iterations (logarithmic scale).

starting value Sk+1,0 for the next iteration that is well-centered with respect
to µk+1, as already noted.

8 Conclusions

A variant of dual interior point method for semidefinite programming has been
proposed in this paper. The method uses inexact Newton steps and it is well
suited to problems with sparse dual matrix S. The computations avoid any ex-
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plicit use of primal variable X (which might be noticeably more dense than S)
and therefore the method offers advantages in memory required to solve very
large SDPs. Krylov subspace method preconditioned with partial Cholesky
factorization of the Schur complement matrix is employed to solve the re-
duced KKT systems. Convergence properties and the O(

√
n ln n

ε ) complexity
result have been established. A prototype Matlab-based implementation of the
method has been developed and it has been demonstrated to perform well on
medium scale SDP problems arising in maximum cut and matrix completion
problems.
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