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Abstract 16 

Influenza virus infection is a significant global health threat. Because of the lack of cross protective 17 

universal vaccines, short time window during which antivirals are effective and drug resistance, new 18 

therapeutic anti-influenza strategies are required. Broadly cross-protective antibodies that target 19 

conserved sites in the hemagglutinin (HA) stem region, have been proposed as therapeutic agents. FI6 20 

is the first proven such monoclonal antibody to bind to H1-H16 and is protective in mice and ferrets. 21 

Multiple studies have shown that Fc-dependent mechanisms are essential for FI6 in vivo efficacy. Here 22 

we show that therapeutic administration of FI6 either intravenously or by aerosol to pigs did not reduce 23 

viral load in nasal swabs or broncho-alveolar lavage, but aerosol delivery of FI6 reduced gross 24 

pathology significantly. We demonstrate that pig Fc receptors do not bind human IgG1 and that FI6 25 

did not mediate antibody dependent cytotoxicity (ADCC) with pig PBMC, confirming that ADCC is 26 

an important mechanism of protection by anti-stem antibodies in vivo.  Enhanced respiratory disease, 27 

which has been associated in pigs with cross-reactive non-neutralising anti-HA antibodies, did not 28 

occur after FI6 administration. Our results also show that in vitro neutralizing antibody responses are 29 

not a robust correlate of protection for the control of influenza infection and pathology in a natural host 30 

model.   31 

Introduction 32 

Influenza virus infection and immunization induce protective antibody responses. A major part of the 33 

antibody response is directed at the hemagglutinin (HA) glycoprotein.  Influenza HA is composed of 34 
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two domains: the immunodominant globular head, which is strain specific and the stalk which is 35 

relatively conserved within each subtype.  Seasonal immunization induces antibodies predominantly 36 

against the globular head which neutralize the immunizing strain very effectively, but escape variants 37 

rapidly emerge and are responsible for antigenic drift. In the last decade influenza-neutralizing 38 

antibodies that target conserved sites in the HA stem of influenza A viruses (IAVs) have been described 39 

and these show cross-reactivity between group 1 and group 2 viruses (1-7). Anti-stem antibodies are 40 

less potent at direct viral neutralization as compared to anti-head antibodies, but they mediate 41 

protection in vivo through Fc-dependent effector functions, which can be assessed in vitro by 42 

measuring antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxiticy 43 

(CDC) or antibody-dependent cellular phagocytosis (ADCP) (4, 8, 9). FI6 was the first proven broadly 44 

neutralizing antibody to be described, capable of recognizing the HAs of all 16 subtypes and 45 

neutralizing both group 1 and 2 IAVs (4). Passive transfer of FI6 conferred protection in mice and 46 

ferrets. It has been proposed that such broadly cross-reactive antibodies might have potential as 47 

therapeutic agents for treatment of severe influenza and several are tested in clinical trials (10, 11).  48 

A potential problem of developing such antibodies as immune therapeutics is enhanced respiratory 49 

disease and increased pathology, associated with immune complexes of low avidity or non-neutralizing 50 

antibodies. Vaccine-associated enhanced respiratory disease (VAERD) has been observed in pigs when 51 

heterologous IAV infection occurs after immunization with mismatched whole inactivated vaccine 52 

(WIV) (12-15). VAERD was associated with the presence of high titer cross-reacting non-neutralizing 53 

antibodies targeting the conserved stem domain at a site adjacent to the fusion peptide. In the absence 54 

of neutralizing antibodies against the globular head of H1N1pdm09, stem antibodies were associated 55 

increased virus infection of MDCK cells in vitro and enhanced membrane fusion (16).  56 

As both pigs and humans are readily infected with IAVs of similar subtype, the pig is an appropriate 57 

model for investigating both swine and human disease. Like humans, pigs are outbred, and 58 

physiologically, anatomically and immunologically similar to humans. The porcine lung also 59 

resembles the human in terms of its physiology, morphology and distribution of receptors bound by 60 

IAV (17, 18). Here we used the pig influenza model to test whether therapeutic administration of FI6 61 

would reduce or enhance disease.  62 

Materials and Methods 63 

Animals and influenza virus challenge  64 

Animal experiments were approved by the Pirbright Institute ethics committee, according to the UK 65 

Animal (Scientific Procedures) Act 1986.  Five to six week old landrace cross, female pigs were obtained 66 

from a commercial high health status herd. Pigs were screened for absence of IAV infection by matrix 67 

(M) gene real-time quantitative reverse transcriptase polymerace chain reaction (qRT-PCR) (19) and 68 

antibody-free status was confirmed using haemagglutination inhibition (HAI) with 4 swine IAV antigens 69 

– pandemic H1N1, H1N2, H3N2 and avian-like H1N1. Pigs weighed between 9 and 12 kg. All pigs were 70 

challenged with 1 x 107 plaque forming units (PFU) of A/sw/Eng/1353/09 (pdmH1N1) influenza virus 71 

strain. The pigs were inoculated by the intra-nasal route using a mucosal atomization device, MAD300 72 

(Wolfe Tory Medical) with 2ml of virus administered to each nostril. The virus was propagated in Madin-73 

Darby canine kidney (MDCK) cells. The challenged pigs were randomly divided into five groups of 5 74 

animals and received the following antibodies (experimental design in Fig 1A). 1) Control group – no 75 

treatment; 2) 15 mg/kg of FI6 antibody intra-venously (FI6 I.V.) in the ear vein at 1 day post infection 76 

(dpi); 3) 1.5 mg/ml FI6 antibody administered by aerosol (FI6 aer) using InnosSpire Mini (Philips 77 

Respironics  http://evergreen-nebulizers.co.uk/respironics/innospire_mini.html) with Aerogen mesh 78 
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reservoir with an airspeed of 2 L/min at 1 and 2 days post infection (dpi); 4) 15 mg/kg of EVB114 79 

antibody I.V. in the ear vein at 1 dpi and 5) 1.5 mg/kg of the MPE8 antibody by aerosol at 1 and 2 dpi as 80 

described above. All antibodies were provided by Humabs BioMed. They were produced in Chinese 81 

hamster ovary (CHO) cells,  affinity-purified using HiTrap Protein A columns (GE Healthcare) followed 82 

by desalting using HiTrap Fast desalting columns (GE Healthcare). The final product were sterilized by 83 

filtration through 0.22 μm filters and stored at +4°C until use. Antibodies were diluted in phosphate 84 

buffered saline (PBS) to the desired concentration before administration. Animals were monitored by 85 

observing demeanour, appetite and respiratory signs such as coughing and sneezing.  86 

Gross pathology and histopathological scoring of lung lesions  87 

Animals were humanely killed 4 dpi with an overdose of pentobarbital sodium anaesthetic. At post 88 

mortem the lungs were removed and digital photographs taken of the dorsal and ventral aspects. 89 

Macroscopic pathology scoring was performed blind using Nikon-NIS Br software to determine the 90 

proportion of the total surface area of each lung lobe affected by typical influenza-like gross lesions. Five 91 

lung tissue samples per animal from the right lung (2 pieces from apical lobe, 1 from the medial, 1 from 92 

the diaphragmatic and 1 from the accessory) were collected into 10% neutral buffered formalin for 93 

routine histological processing at the University of Surrey. Formalin fixed tissues were paraffin wax-94 

embedded and 4-m sections were cut and routinely stained with haematoxylin and eosin. 95 

Histopathological changes in the stained lung tissue sections were scored by a veterinary pathologist 96 

blinded to the treatment group. Lung histopathology was scored using five parameters (necrosis of the 97 

bronchiolar epithelium, airway inflammation, perivascular/bronchiolar cuffing, alveolar exudates and 98 

septal inflammation) scored on a 5-point scale of 0 to 4 and then summed to give a total slide score 99 

ranging from 0 to 20 and a total animal score from 0 to 100. Scoring criteria were based upon a previously 100 

published method  (20).  101 

Tissue sample processing  102 

Four nasal swabs (NS) (two per nostril) were taken at 0, 1, 2, 3, 4 dpi. The swabs were placed into 2 ml 103 

of virus transport medium comprising tissue culture medium 199 (Sigma-Aldrich) supplemented with 104 

25mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.035% sodium bicarbonate, 0.5% 105 

bovine serum albumin (BSA), penicillin 100 IU/ml, streptomycin 100 µg/ml and nystatin 0.25 µg/ml, 106 

vortexed, centrifuged to remove debris and stored at -80oC for subsequent virus titration. Serum samples 107 

were collected at the start of the study (prior to challenge) and at 2 and 4 dpi. For Fc binding and ADCC 108 

assays blood from healthy humans and uninfected pigs was used. Heparinized blood samples were diluted 109 

1:1 in PBS before density gradient centrifugation. PBMC were harvested from the interface, washed and 110 

red blood cells lysed with ammonium chloride lysis buffer, washed again and used in Fc binding and 111 

ADCC assays described below. Broncho-alveolar lavage (BAL) was collected from the entire left lung 112 

with 150ml of virus transport medium (described above). BAL samples were centrifuged at 300 x g for 113 

15 minutes, supernatant was removed, aliquoted and frozen for antibody analysis.  114 

Virus titration  115 

Viral titers in nasal swabs and BAL were determined by plaque assay on MDCK cells. Duplicate samples 116 

were 10-fold serially diluted in Dulbecco’s modified Eagles medium (DMEM) and 100 l of each 117 

dilution added to confluent MDCK cells in 12 well tissue culture plates. After 1 hour, the plates were 118 

washed and overlayed with 2 ml 1:3 2% (w/v) agarose:medium. Plates were incubated at 37°C for 48 119 

hours, plaques visualized by staining the monolayer with 0.1% (v/v) crystal violet and enumerated. RNA 120 

was extracted using the QIAamp viral RNA mini kit (Qiagen) according to the manufacturer’s protocol 121 
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and viral titers in nasal swabs and BAL fluid was also determined by real-time qRT-PCR amplification 122 

of the M gene using PCR conditions as previously described (21). Forward primer sequence AGA TGA 123 

GTC TTC TAA CCG AGG TCG, reverse primer sequence TGC AAA GAC ACT TTC CAG TCT CTG 124 

and probe sequence FAM-TCA GGC CCC CTC AAA GCC GA-TAMRA  125 

Enzyme-linked immunosorbent assay (ELISA)  126 

Human IgG1 antibody levels in serum and BAL fluid were determined by IgG1 Ready-SET-Go! ELISA 127 

(Affymetrix, eBioscience) according to the manufacturer’s instructions. After heat inactivation (56oC for 128 

30 min) samples were diluted 1:40 (serum) and 1:2 (BAL fluid). Influenza-specific human Ab titers in 129 

serum and BAL fluid were determined by ELISA as previously described (20) with the following 130 

modifications. The IgG ELISA was performed in 96-well ELISA plates (BD Biosciences) coated with 131 

1x106 PFU/ml of A/swine/England/1353/09 over night at 4°C. Two-fold dilutions of BAL fluid samples 132 

or serum (heat inactivated for 30 min at 56°C) were added, starting from 1:2 or 1:10 dilution respectively. 133 

Binding of influenza specific Abs was detected using a monoclonal anti-human IgG (Fc) (Biorad) and 134 

3,3',5,5'-tetramethylbenzidine (TMB) substrate (BioLegend). Optical density (OD) readings were taken 135 

at 450 and 570 nm (wavelength correction). Ab values were expressed as endpoint titers defined as the 136 

highest dilution at which the OD was higher than twice the background OD. 137 

Fc binding 138 

To determine if FI6 was able to bind pig Fc receptors FI6, MPE8 and serum from influenza negative and 139 

immune (14 dpi) animals were incubated at 37°C for 1 hour with and without influenza virus. Human 140 

and pig PBMC were added and incubated for a further hour at 4°C. Human PBMC were stained with 141 

near-infrared fixable Live/Dead (Invitrogen) and anti-human IgG AF488 (HP6017, Biolegend) for 20 142 

minutes at 4°C. Pig PBMC were stained with near-infrared fixable Live/Dead (Invitrogen), CD3 AF647 143 

(BB23-8E6-8C8, BD), CD8α Pe (76-2-11, BD) anti-human IgG or anti-pig IgG FITC (BIO-RAD). 144 

Samples were run on a BD LSR Fortessa and data analysed using FlowJo (Treestar). 145 

Entry microneutralization assay 146 

Serum and BAL fluid were heat inactivated at 56°C for 30 minutes, serially diluted 1:2 in 50µl PBS, 147 

starting dilution 1:40 for serum and 1:4 for BALF, before addition of 50µl green-fluorescent protein 148 

(GFP) - H1 virus diluted in virus growth medium (22). Following incubation for 2 hours at 37°C 3×104 149 

indicator MDCK-SIAT1 cells were added in a volume of 100µl virus growth medium without trypsin 150 

and incubated overnight at 37°C. Plates were fixed using 4% paraformaldehyde and GFP fluorescence 151 

intensity (FI) was measured at an excitation of 483 nm and an emission of 515 nm. Serum and BALF 152 

from animals 14 days post influenza challenge and purified FI6 antibody were included as positive 153 

controls. 154 

Antibody-dependent cell-mediated cytotoxicity (ADCC) assay  155 

MDCK- 2,6-sialtransferase (SIAT1) stably transduced with the lentiviral vector pHR-SIN engineered to 156 

express the full-length open-reading frame (ORF) of HA from A/Eng/195/2009 were used as target cells 157 

for the ADCC assay (22). The HA from A/Eng/195/2009 differs by a single exposed residue at D222G 158 

from the Eng/1353 that was used to challenge the pigs. MDCK-HA cells were seeded in round-bottom 159 

96 well plates and incubated with different dilutions of heat-inactivated serum (1:10, 1:20, 1:40, 1:80 or 160 

1:160) or with different amounts of antibody (FI6 or MPE8) for 10 min at 37C. After that freshly-isolated 161 

human or pig PBMCs from healthy donors or animals respectively, were added in a 20 to 1 E:T ratio to 162 

the 96 well plates and incubated for 4h at 37ºC. MDCK-HA and PBMC were cultured in serum-free 163 
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AIM-V medium (Life Technologies, UK). At the end of the incubation period 100 µl of cell-free 164 

supernatant was transferred into a flat-bottom 96 well plate and the Lactate dehydrogenase (LDH) release 165 

measured with the Cytotoxicity Detection Kit from Roche according to the manufacturer’s instructions. 166 

The absorbance was measured at 490 nm and 620 nm in a plate reader. When the purified antibodies 167 

MPE8 and FI6 were used the percentage of cytotoxicity on the Y-axis was calculated with the formula: 168 

[Sample at each immune antibody dilution with target cells and PBMC minus control antibody at the 169 

same dilution with target cells and PBMC] divided by [maximum release of target cells and PBMC in 170 

the presence of detergent minus control target and effector spontaneous release without antibody] x 100. 171 

In assessing the ADCC activity of serum samples, the percentage of cytotoxicity was calculated as 172 

described above but using the naïve sera (corresponding dilution to sera of immunized pigs to calculate 173 

the spontaneous release). 174 

Statistical analysis  175 

One-way non-parametric ANOVA (Kruskall-Wallis) with Dunn’s post-test for multiple comparisons 176 

was performed using GraphPad Prism 6.   177 

Results 178 

Lung pathology and viral load after antibody administration 179 

In order to determine the therapeutic effect of FI6 antibody in the pig influenza model, FI6 was 180 

administered I.V. at 15 mg/kg 1 day post infection (dpi). The ebola virus specific antibody, EVB114 181 

was used as a control and delivered at the same concentration I.V. (23). We also administered FI6 as 182 

an aerosol (aer) as this route of delivery is highly efficient in targeting the respiratory tract, which is 183 

the site of entry and infection of IAV (20, 24-28). We administered 10 times less FI6 by aerosol (1.5 184 

mg/kg) at 1 and 2 dpi. As a control for the aerosol delivery we used MPE8, which is a broadly-185 

neutralizing antibody for human respiratory syncytial virus (HRSV), human metapneumovirus 186 

(HMPV), bovine RSV (BRSV) and pneumonia virus of mice (PVM) but not IAV (29) (Fig. 1A). All 187 

of the mAbs were monoclonal, fully human IgG1. The clinical signs observed were mild and none of 188 

the pigs developed moderate or severe disease. The control group showed the most severe gross and 189 

histopathology (Fig. 1B). A reduction in the gross and histopathology score was observed in all the 190 

mAb treated groups. However, this reduction was statistically significant only in gross pathology for 191 

the FI6 aer group. Interestingly despite the reduced lung pathology, there were no differences in viral 192 

load in nasal swabs at 1, 2, 3 and 4 dpi (Fig. 2A) or in the broncho-alveolar lavage (BAL) at the time 193 

of sacrifice at 4 dpi (Fig. 2B) as determined by plaque forming assays and PCR. This is in contrast 194 

with previous studies in mice and ferrets where FI6 administration significantly reduced viral load in 195 

the lungs (4). 196 

These results indicate that administration of therapeutic FI6 to pigs did not reduce viral load in NS or 197 

BAL but also it did not exacerbate disease as previously shown with anti- stem antibody (16). The 198 

mAb treated groups showed reduced pathology, although the reduction was significant only for the aer 199 

FI6 group. The reduced pathology is also observed using control antibodies, a finding that might be 200 

related to the anti-inflammatory and immunomodulatory activities of human IgG1 Fc. Indeed, it has 201 

been shown that the anti-inflammatory activity of human intravenous immunoglobulin   is dependent 202 

on sialylation of the N-linked glycan of the IgG1 Fc fragment (30, 31).  203 

Influenza binding and neutralizing activity of administered antibodies 204 
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ELISA for hum IgG1 confirmed that all antibodies were delivered successfully, albeit the control 205 

EVB114 was detected at a lower concentration in the serum perhaps due to differences in the catabolic 206 

rates of this mAb. The mAb concentrations declined at 4 dpi compared to 2 dpi, but were still ~107 207 

g/ml for FI6 and ~45 g/ml for EVB114 (Fig. 3A). Aerosol administration of FI6 and MPE8 did not 208 

result in detectable quantities of mAbs in the serum. However, mAbs were detected in BAL, with ~ 209 

6.5 g/ml for FI6 and 0.5 g/ml for MPE8 measured at 4 dpi, 2 days after the last aerosol 210 

administration, most likely indicating that the mAbs are catabolized rapidly after aerosol delivery (Fig. 211 

3A). Furthermore I.V. FI6 delivery resulted in the presence of ~ 0.33 g/ml in the BAL 4 days after 212 

the administration of the antibody, approximately 20 fold less as compared to the aer FI6 group. To 213 

further confirm the presence and specificity of FI6 after delivery, virus specific ELISA was performed 214 

with the challenge virus. As expected influenza specific human  mAb was detected in serum after FI6 215 

I.V. delivery at both 2 and 4 dpi, while in BAL a higher titer was seen after aerosol (1:84) compared 216 

to FI6 I.V. administration (1:24) (Fig. 3B). 217 

To determine whether the FI6 in the serum and BAL was still able to neutralize the virus, which might 218 

explain the lack of reduction of viral titer, we performed entry virus neutralization using MDCK cells 219 

transfected with H1 HA. The serum from the FI6 I.V. group was neutralizing at both 2 and 4 dpi with 220 

a mean 50% inhibitory titer of  1:812 at 2 dpi and 1:448 at 4 dpi (Fig. 4A and B), comparable to control 221 

immune pig serum. In the BAL of the FI6 aer group the mean 50% inhibitory titer was 1:10 at 4 dpi 222 

and in the FI6 I.V. group 1:3.4 (although only 2 out of the 5 animals had positive results) (Fig 4A and 223 

C). The neutralization values for the BAL were lower than a control BAL fluid (1:640) from a pig 224 

sacrificed 14 days post challenge with the same virus. No neutralization was detected in the animals 225 

receiving control antibodies or in the untreated controls. Pre-challenge sera from FI6 treated animals 226 

and BAL from control animals did not show any neutralizing activity (Fig. 4D). 227 

Overall these results indicate that the mAbs were successfully delivered and retained their influenza 228 

binding and neutralizing activity as measured in vitro.   229 

Fc binding and ADCC  230 

As it has been shown convincingly that most broadly neutralizing anti-IAV mAbs mediate their in vivo 231 

effect through antibody effector functions (4, 9, 32) we next asked whether the FI6 or human IgG1 can 232 

bind pig FcR and mediate ADCC. Fc binding was assessed after pre-incubating the mAbs with 233 

pdmH1N1 virus in order to form immune complexes. As expected human lymphocytes bound FI6 with 234 

74% of the lymphocytes stained compared to less than 2% for the controls (Fig. 5A). In contrast, 235 

minimal binding of FI6/pdmH1N1 to pig PBMC was detected. A more detailed analysis was performed 236 

by gating on pig NK cells, defined as CD3-CD8+ (Fig. 5B and C), which bound immune pig serum 237 

pre-incubated with pdmH1N1, but bound very little FI6 (51.8% for immune pig serum versus 2.37% 238 

for FI6). Similar results were obtained after detection of immune complexes with secondary anti-239 

human IgG, indicating that this antibody could bind the pig Ig (Fig. 5C). 240 

Finally, to determine whether FI6 can mediate ADCC in pigs we evaluated killing by LDH release 241 

from MDCK cells stably transfected with H1 HA. As previously described FI6 was able to mediate 242 

ADCC with human PBMC as effector cells (Fig. 6), but not with pig PBMC. Immune pig serum from 243 

influenza infected or immunized pigs gave specific killing. 244 

These results suggest that the failure of FI6 to protect against influenza infection in pigs is most likely 245 

due to the inability of FI6 to bind pig FcR and mediate ADCC, and possibly other effector functions 246 

(e.g. ADCP). 247 
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Fc binding sites in human, mouse, and pig FcRs and IgG subclasses  248 

The apparent failure of FI6 to interact functionally with pig FcR led us to compare the putative binding 249 

sites on both the FcRs and the Fc portion of IgG. Importantly, crystallographic analyses of human IgG 250 

(hIgG) complexed with human FcRIII and the structure for human FcRI have elucidated the 251 

important contact sites for this interaction (33-36). On the receptor, the Fc contact sites are spread 252 

across the second immunoglobulin domain, and most notably in the BC, C’E, and FG loops (Fig. 7A). 253 

Comparison of known mouse, human, and pig FcR sequences revealed species-specific variation 254 

within these regions, and does not immediately suggest that mouse FcRs would have greater affinity 255 

for hIgG than the pig (Fig. 7A). However, it has been shown that human IgG1 binds to mouse FcgRIV 256 

and effectively induces ADCC and ADCP with mouse NK cells, mouse polymorphonuclear 257 

leukocytes, and mouse macrophages (37). 258 

Among the hIgG subclasses, hIgG1 and hIgG3 bind most strongly to FcRs; whereas, hIgG2 and hIgG4 259 

bind either poorly or not at all (38). Notably on the Fc portion of the antibody, the lower hinge region, 260 

the hinge-proximal portion of the CH2 domain, and an N-linked glycosylation site in CH2 are 261 

implicated in Fc binding. In particular, the motif “LLGG” in the lower hinge is believed to play a 262 

crucial role (39-41). Indeed, mutation of this motif in hIgG1 to either “VLGG” or “LAGG” was 263 

previously shown to reduce or prevent binding to FcRI, respectively (42). In addition, the mutation of 264 

residues L234 and L235 to alanine to generate the so called LALA mutant abrogates binding to all FcR 265 

and C1q (43). Conversely, mutation of hIgG2 from “VAG” to “LLGG” and of hIgG4 from “FLGG” 266 

to “LLGG” restored FcRI binding to levels comparable to hIgG1 (42). Interestingly, mice have fully 267 

conserved this motif in mIgG2a, and have similar motifs in mIgG2b and mIgG3 (“LEGG” and “ILGG”, 268 

respectively) (Fig. 7B). Of the porcine IgGs, however, pIgG3 is most similar (“VLGA”), whereas the 269 

rest of the subclasses lack this motif, and are generally more similar to hIgG2 in this region. Thus, the 270 

presence of the canonical (“LLGG”) FcR binding motif in both human and mouse IgG, but not in pig 271 

IgG, suggests that porcine FcRs recognise the Fc portion of IgG differently than in humans and mice. 272 

Structural analysis revealed that the LLGG motif of human IgG1 interacts with hydrophobic residues 273 

(LVG) in the FG loop of the human FcRIIIB. Similarly, hydrophobic residues are found in human 274 

FcRIIIB and mouse FcRIV (LFG and LIG, respectively). Conversely, the pig FcRIII carries the IIK 275 

motif in the FG loop. The analysis of the interaction of the Fc of human IgG1 with human FcRIIIB 276 

indicates that the presence of a lysin at position 159, as found in the porcine FcRIIIB, would clash 277 

with L235, thus interfering with the favorable interaction of the LLGG motif of human IgG1 with the 278 

FG loop required for FcRIII binding (Fig. 7C). This observation might explain the lack of binding of 279 

human IgG1 FI6 to pig PBMCs. Of note, the hinge regions of all pig IgGs (except for pig IGHG3) are 280 

shorter as compared to human IgG1, a finding that might suggest a different modality of interaction of 281 

the pig Fcs with the cognate FG loop of porcine FcRIII.  282 

Discussion 283 

Our data shows that therapeutic administration of the broadly neutralizing FI6 antibody either 284 

intravenously or by aerosol to pigs did not result in exacerbation of disease. Aerosol delivery of FI6 285 

was the only treatment to reduce gross pathology significantly, although viral titers in nasals swabs or 286 

BAL were unchanged. We further demonstrated that the pig Fc receptors do not bind human IgG1 and 287 

that FI6 did not mediate ADCC with pig PBMC, suggesting that the pig is an inappropriate model to 288 

evaluate human IgG1 antibodies. 289 
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Previous studies have shown that all neutralizing and non-neutralizing anti-HA (and anti-290 

neuraminidase) mAbs that recognise a breadth of influenza strains require FcRs for protection in vivo 291 

(4, 9, 32), while strain specific mAbs did not. This suggests that the in vitro neutralization mechanism 292 

of broadly neutralizing mAbs such as inhibition of viral fusion or egress, do not dominate in vivo at the 293 

doses tested. Our results clearly demonstrate therefore that in vitro neutralising antibody responses are 294 

not a robust correlate of protection for the control of influenza virus infection and pathology in a natural 295 

host model.   296 

There are limited studies describing porcine FcRs. Although there is obvious overall similarity to their 297 

human and mouse counterparts, some FcR in domestic animals are unusual, perhaps most notably 298 

bovine Fcγ2R, which although related to other mammalian FcγRs, belongs to a novel gene family and 299 

porcine FcγRIIIA, which associates with a molecule that contains significant homology to the cathelin 300 

family of antimicrobial proteins (44, 45). Furthermore, the conservation of FcγR binding sites in human 301 

and mouse IgG, but not in pig IgG, is consistent with our findings. Clearly differences in interaction 302 

with IgG subclasses, cell type and tissue specific expression, as well as species differences should be 303 

considered when using these models for in vivo evaluation of therapeutic mAbs.  Substituting the 304 

human Fc portion of the FI6 antibody with a pig Fc would provide definitive proof of the importance 305 

of Fc binding and ADCC for therapeutic efficacy of FI6.   306 

It is clear that the delivery of FI6 did not cause pathology or exacerbation of disease as described by 307 

Khurana et al (16). In their study the pigs were immunized with a whole irradiation inactivated, 308 

adjuvanted H1N2 (human like virus) and challenged with a different pdmH1N109 strain. The authors 309 

suggested that the vaccine-induced anti-HA stem antibodies facilitated a conformational change in HA 310 

that enhanced its fusion and increased virus entry into cells in vitro. Nevertheless because FI6 does not 311 

engage FcR mediated effector mechanisms in pigs, it is still possible that these might contribute to 312 

VAERD, for example by massive killing of infected cells, leading to inflammation and pathology. 313 

In summary our data shows that therapeutic administration of FI6 or a control, either intravenously or 314 

by aerosol to pigs did not exacerbate disease. Aerosol delivery is an effective means of administration 315 

for therapeutic mAbs in large animals and possibly humans. FI6 does not bind to pig Fc receptors or 316 

mediate ADCC, confirming previous evidence that ADCC is an important mechanism for protection 317 

by anti-stem Ab in vivo.   318 
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Data Availability Statement 495 

All datasets for this study are included in the manuscript and the supplementary 496 

files. 497 

Figure Legends 498 

Fig. 1. Experimental design and lung pathology. Pigs were infected with A/sw/Eng/1353/09 and 499 

received the indicated antibodies either by the I.V. route at 1 dpi or by aerosol at 1 and 2 dpi (A). The 500 

animals were sacrificed at 4 dpi and lungs scored for appearance of gross (B) and histopathologcial 501 

lesions (C). Each data point represents an individual within the indicated group and lines represent the 502 

mean. * denotes significant difference from the control group (P< 0.05).  Representative gross 503 

pathology of a pig from control group (D) and FI6 aer (E). 504 

Fig. 2. Viral load in nasal washes and BAL. Pigs were infected with A/sw/Eng/1353/09 and 505 

administered the indicated antibodies either by the I.V. route (I.V. solid symbols) or by aerosol (aer, 506 

hollow symbols). Nasal swabs (NS) were taken at 0, 1, 2 and 3 dpi and pigs sacrificed at 4 dpi. Viral 507 

titers in the nasal swabs (A) and BAL (B) were determined by plaque forming assay (PFU) or real-508 

time qRT-PCR. Each data point represents an individual within the indicated group and bars represent 509 

the mean. 510 

Fig. 3. Mucosal and systemic IgG responses following administration of antibodies. Human IgG1 511 

(A) and pdmH1N1 specific IgG (B) titers in serum at 0, 2 and 4 dpi and in BAL at 4 dpi. Note for 512 

pdmH1N1specific antibody in serum – all five pigs had titers of 1:640 at 4dpi, while 2 animals at 513 

1:1024 and three at 1:640 at 2dpi. 514 

Fig. 4. Entry eutralization activity of serum and BAL following administration of antibodies. A) 515 
Individual 50% inhibition titers in the serum at 0, 2 and 4 dpi and BAL at 4 dpi. B) Neutralizing 516 

antibody response measured in the serum of the pigs following FI6 I.V. administration at 2 and 4 dpi. 517 

C) Antibody response in the BAL of animals given FI6 I.V. or by aerosol at 4dpi. D) Negative sera 518 

from pre-challenge samples and negative BAL from control animals are shown alongside positive 519 

control. The dashed line represents the 50% inhibition titer and FI the fluorescence intensity of GFP. 520 

The neutralizing titer of serum and BAL from animals infected with the same A/sw/Eng/1353/09 virus 521 

and sacrificed at 14 dpi is shown in red.  522 

Fig. 5: FI6 binding to human and pig Fc receptors. Antibody and pdmH1N1 virus were pre-523 

incubated for 1 hour at 37oC and then added to the either human or pig PBMC. A) Gated on live cells, 524 

singlets and SSCA vs IgG FITC. B) and C) Gated on live cells, singlets and CD3—  CD8+ IgG FITC. 525 

Fig. 6:  ADCC activity of pig and human PBMC. MDCK cells expressing H1 HA were incubated 526 

with FI6, MPE8, immune or normal pig sera in the presence of either pig or human PBMC. ADCC was 527 

measured in triplicate by LDH release. FI6 and MPE8 mAbs were used at 10 µg/ml (left panel) or at a 528 

concentration range from 0.1 to 1000 ng/ml (right panel). Representative of three experiments. 529 

Fig. 7. Putative amino acid sequence alignment of FcR and IgG subclasses. A) Second IgG 530 

domain of human, mouse, and pig Fc receptors. B) Lower hinge and CH2 domain of human, mouse, 531 

and pig IgG subclasses. Previously reported Fc-FcR contact sites are shaded. Beta-strands are labelled 532 

and shown at top. C) Left. Model of the interaction of the Fc region of human IgG1 (green) with human 533 

FcgRIIIb (light blue) (pdb, 1t83). Fc-bound glycans are shown as orange spheres.  The L234 and L235 534 

Fc residues (purple) and the G159 residue of the FcRIIIb FG loop are identified.  Right. Modelling of 535 

the positioning of the porcine K159 residue in the FG loop and its clash with the Fc residue L235 536 

In review



Figure 1.TIF

In review



Figure 2.TIF

In review



Figure 3.TIF

In review



Figure 4.TIF

In review



Figure 5.TIF

In review



Figure 6.TIF

In review



Figure 7.TIF

In review


