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Pressure-induced chemistry for the 2D to 3D transformation of 
zeolites  

Michal Mazur,a,c* Angel M. Arévalo-López,b Paul S. Wheatley,a Giulia P. M. Bignami,a Sharon E. 

Ashbrook,a Ángel Morales-García,c,d Petr Nachtigall,c J. Paul Attfield,b Jiři Čejka,c,e and Russell E. 

Morrisa,c

ADOR, an unconventional synthesis strategy based on a 

four-step mechanism: assembly, disassembly, 

organization, and reassembly, has opened new 

possibilities in zeolite chemistry. The ADOR approach led 

to discovery of IPC family of materials with tuneable 

porosity. Here we present the first pressure-induced ADOR 

transformation of the 2D zeolite precursor IPC-1P into fully 

crystalline 3D zeolite IPC-2 (OKO topology) using a Walker-

type multianvil apparatus under pressure of 1 GPa at 200 
0C. Surprisingly, the high-pressure material is of lower 

density (higher porosity) than the product from simply 

calcining the IPC-1P precursor at high temperature, which 

produces IPC-4 (PCR topology). The sample was 

characterized by PXRD, 29Si MAS NMR, SEM, and HRTEM. 

Theoretical calculations suggest that high pressure can 

lead to the preparation of other ADOR zeolites that have 

not yet been prepared. 

Zeolites are microporous aluminosilicates with pores and 

cavities of molecular dimensions.1 More than 230 unique zeolite 

structures had been recognized by the International Zeolite 

Association;2 however, there are millions of possible, 

theoretically predicted frameworks,3 which makes the synthesis 

of new zeolites a continuing challenge. Zeolites are 

predominantly synthesised using hydrothermal approaches,4 

but alternative preparative techniques have been developed, 

such as ionothermal synthesis5 and the ADOR method.6 The 

development of the ADOR process (Figure 1) has opened new 

possibilities in zeolite chemistry.7, 8 This strategy includes four 

steps: 1) A – assembly of the 3D zeolite structure, 2) D – 

disassembly of the parent zeolite into layered precursor by 

hydrolysis, 3) O – organization of layers into a more ordered 

arrangement, 4) R – reassembly of the 3D into a structure that 

is different to the parent zeolite. The ADOR strategy is more 

complicated than solvothermal methods and requires multi-

step synthesis, however it is more controllable and some of the 

zeolites can be produced exclusively by this method.7  

 

Figure 1. Schematic representation of ADOR process. ‘A’ stands for assembly of 
the parent UTL (with D4R units) structure, ‘D’ – disassembly to IPC-1P zeolite 
precursor, ‘O’ – organizing by intercalation of organics, and ‘R’ – reassembly by 
calcination (in this example to IPC-2 (OKO), with S4R units). 
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The ADOR strategy exploits the instability of germanosilicate 

parent zeolites allowing the disassembly of the structure. The 

germanosilicate with the UTL topology9, 10 has silica layers 

connected by double four ring (D4R) units that contain almost 

all the Ge-centred tetrahedra. Hydrolysis in acidic media allows 

removal of the D4Rs with preservation of silica layers producing 

the layered zeolite precursor IPC-1P.8 Reassembly of the IPC-1P 

layers can produce a family of zeolites with controlled 

porosities; ranging from small pore IPC-4 (PCR topology) to the 

larger pore IPC-2 (OKO topology).6 Through controlled 

organisation of the layered precursors11 one can also prepare 

other materials: IPC-6,12 IPC-7,13 IPC-9, and IPC-10.14 The ADOR 

process can also be applied to other parent zeolites, such as 

germanosilicate UOV.15, 16 

The intermediate layered precursor IPC-1P can be isolated from 

Ge-UTL after the disassembly step. The key to preparing the 

different 3D materials from IPC-1P is control over the 

organisation and reassembly steps. The simplest method of 

connecting the IPC-1P layers into a 3D zeolite is to calcine the 

system at above 500 °C (Figure 2). The high temperature 

condenses the silanol groups on the surface of the IPC-1P layers, 

producing Si-O-Si linkages that connect the layers into the 3D 

zeolite and releasing water.6 The topology of the material 

formed is IPC-4 (PCR), the expected product from simple 

condensation of IPC-1P layers. The relationship between this 

material and the original UTL parent is that IPC-4 has lost the 

entire D4R unit from between the layers. We therefore can also 

describe the PCR topology as UTL–D4R. 

Another new way of zeolite synthesis was presented by Jordá 

et. al. as a phase transition process.17 The high-pressure 

conditions were applied on ITQ-29 zeolite inducing the 

transformation to novel ITQ-50 zeolite. It was the first pressure- 

induced 3D → 3D zeolite transition. The previous high-pressure 

experiments on zeolites led to the amorphization of the 

material, not producing the ordered phase.18    

Here we present the first application of high-pressure 

conditions beyond those of hydrothermal chemistry to induce 

the 2D → 3D transformation of zeolites. IPC-1P layers were 

treated in a Walker-type multianvil apparatus19, 20 at 1 GPa with 

heating at 200 oC applied for 2 min. After the treatment the 

sample was allowed to cool and the pressure slowly released. 

The product was characterized using PXRD, 29Si MAS NMR, SEM, 

and HRTEM. Surprisingly, the obtained material was not IPC-4 

but PXRD (Figure 3) identified the product as IPC-2 (with the 

OKO topology); a less dense member of IPC family of zeolites. 

Compared to the initial UTL parent IPC-2 can be described by 

the overall loss of only a single four ring (UTL–S4R). This is 

particularly interesting as to form IPC-2 requires that extra 

silicon must end up between the layers to form the S4R linkers 

(Figure 2). 

In previous work on the ADOR process, IPC-2 can be realized in 

two ways: 1) the rearrangement of the structure of UTL 

germanosilicate in hydrochloric acid,21 or 2) the alkoxysilylation 

of IPC-1P, using diethydimethoxysilane in 1M nitric acid at 

hydrothermal conditions.6 However, using the high-pressure 

synthesis we describe here does not require use of any solvent 

and the transformation is induced by high-pressure at the 

relatively low temperature of 200 oC. The material recovered 

after the high-pressure synthesis can also be calcined at high 

temperature. The PXRD of the calcined sample shows no change 

in the position of the diffraction peaks, although there are some 

changes in relative intensities (Figure 3). The uneven baseline of 

the experimental PXRD pattern could indicate the presence of 

traces of amorphous silica in the material obtained by the use 

of high pressure. 

 

Figure 2. Transformation of IPC-1P layered precursor under high-temperature and 
high-pressure conditions into IPC-4 (density = 1.87 g/cm3) using calcination and 
into IPC-2 (density = 1.75 g/cm3) using high pressure.  

SEM images (Figure 4a) show the morphology of the crystals 

after recovery from the high-pressure cell. IPC-2 zeolite 

obtained by standard ADOR synthesis has plate-like crystals 

with the shape similar to the original, parent UTL zeolite.10 The 

crystals of the sample obtained by the pressure-induced 

method have different shape (see ESI Figure S2.); they are less 

well defined. Most probably this is because of the extreme 

conditions of the treatment, which resulted in loss of the plate-

like shape after the application of the high pressure. The TEM 

image (Figure 4b) shows the connected 1 nm thick layers with 

the d-spacing of 1.2 nm, which corresponds to the IPC-2 (OKO) 

zeolite model.  

 

Figure 3. X-ray diffraction powder patterns of IPC-2 zeolite synthesized under 
high-pressure conditions (black), after further calcination (red), and theoretical 
one (brown). The positions of the main peaks of the theoretical pattern are 
indicated by the vertical lines. 



 Journal of Materials Chemistry A  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Mater. Chem. A ., 2017, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

 

Figure 4. SEM (a) and HRTEM (b) images of IPC-2 zeolite synthesized under high-
pressure conditions. The measured d-spacing (1.2 nm) corresponds to the 
theoretical model of OKO zeolite. 

Calcined, high-pressure synthesized IPC-2 was also examined by 
29Si MAS NMR (Figure 5). The analysis of the spectrum showed 

two types of species: Q4 (Si(OSi)4) and Q3 (Si(OSi)3(OH)) species 

visible at δ = –111 and –102 ppm, respectively. A cross-

polarization (CP NMR) spectrum confirms the presence of Q3 

species (Figure 5). Most of the silicon is in Q4 form (≈90 %), 

however in the ideal scenario, fully connected 3D IPC-2 

(neglecting the effect of external surface), has no Q3 sites (i.e. 

the Q4/Q3 ratio is infinite). This means that the IPC-2 

synthesized at high pressure has remaining silanols (≈10 %) that 

are not fully condensed in the final calcined solid. The IPC-2 

made using the high-pressure method described here is 

therefore more defective than the more ideal samples prepared 

using other methods. 

 

Figure 5. 29Si (14.1 T, 30 kHz MAS) NMR spectrum of calcined IPC-2 zeolite 
synthesized under high pressure (black, 1280 scans) and the 29Si (14.1 T, 30 kHz 
MAS) CP NMR spectrum of it (red, 8192 scans). 

The key to control the phase transition was application of the 

accurate conditions that induced the condensation of layers 

without their decomposition. The formation of IPC-2 was 

obtained under the specific pressure, time, and temperature. 

To have a better understanding of the behavior of IPC-1P under 

various conditions the series of experiments were performed. 

The results are collected in the Table 1.  

 

Table 1. The influence of the pressure, temperature, and time of the treatment of 

IPC-1P layered zeolite precursor on the final product. 

Pressure 

[GPa] 

Temperature [oC] Time [min] Resulting phase 

1 RT - IPC-1P 

1 700 20 Quartz 

1 550 20 Quartz 

1 550 2 Quartz 

5 500 2 Coesite 

1 400 2 Amorphous 

1 300 2 Amorphous 

1 250 2 Amorphous/IPC-2 

1 200 2 IPC-2 

 

The trial at room temperature under 1 GPa pressure did not 

cause any structure transformation and the resulting phase was 

unchanged IPC-1P. Pressures of 1 GPa at 550-700 oC resulted in 

the complete recrystallization of the IPC-1P to quartz. The 

transformation is completed in 2 min. This transformation 

indicates that at high temperatures and pressures of ~1 GPa, 

the bonds in IPC-1P are labile enough to break quickly and allow 

the rearrangement needed for the formation of quartz.22 An 

increase in pressure up to 5 GPa at 500 oC drove the system 

towards the well-known high pressure phase coesite 

production.23 Using the same pressure (1 GPa) but a lower 

temperature of 250 oC caused the amorphization of the sample.  

The direct formation of IPC-2 from IPC-1P is a surprising result. 

IPC-4 has a higher density than IPC-2 (1.87 g/cm3 and 1.75 g/cm3 

respectively). Theoretically, in the absence of other 

considerations, high-pressure experiments should favor more 

dense phases, and given that there is an available pathway for 

the formation of IPC-4 one might imagine that this would be the 

product. The thermal calcination of IPC-1P without any 

intercalated organics, under ambient pressure, led to formation 

of pure, well crystalline IPC-4. In addition, at first glance the IPC-

1P material does not have enough silicon to form the S4Rs that 

are required to link the layers together in the final material. So 

the questions raised by the formation of IPC-2 are: why does the 

system not produce the denser IPC-4 and where does the extra 

silicon come from to form the S4R units that link the layers 

together in the final structure? Of course, the first thing to note 

is that high pressure minimizes the volume of the whole system 

and not just the solid. The condensation of the silanols into 

silicate linkages produces water, and this must also be 

accommodated in the system as a whole. This is likely the 

reason why IPC-2 is favored under these pressure conditions: 

the volume of the whole system (zeolite plus water) is lower 

when the zeolite is IPC-2 because more water can be 

accommodated in the pores than can be accommodated in the 

smaller pores of IPC-4.  

Taking the question of where the silicon comes from to make 

the extra S4R units, the 29Si MAS NMR results shows the 

defective nature of the sample, however it is not possible to 

define the position of defects. It should be noticed from Table 1 

that the combination of pressure plus temperatures above 250 

°C is clearly enough to break the Si-O bonds in the materials and 



COMMUNICATION Journal of Materials Chemistry A 

4 | J. Mater. Chem. A ., 2017, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

instigate rearrangement process. This is the only way to explain 

the formation of amorphous materials and the dense phase 

silicas such as quartz and coesite. Therefore, it would be of no 

real surprise to see that temperatures almost as hot (200 °C) 

and the same pressures (1 GPa) may also induce some 

rearrangement of the system. Indeed, this must be the case as 

there is no extra silicon in the system that could account for the 

final product – the silicon in the S4R units must come from the 

IPC-1P itself. This idea is further confirmed by the change in 

morphology seen in the SEM. There seems to be substantial 

changes to the crystals themselves, and so a rearrangement 

process is very likely. This is in marked contrast to the usual 

ADOR process, where such large-scale rearrangement has not 

been seen. There is always the possibility of the presence of 

small amounts of amorphous silica in the original IPC-1P starting 

material, and the crystallization of this material into IPC-2 may 

also drive the minimization of the volume. However, there is 

little evidence for extensive amorphous impurity in the sample 

of IPC-1P. 

There are other possible rearrangement products that show 

similar overall structures of UTL-type layers linked via S4R units 

and the targeting of such previously unknown materials is one 

of the great advantages of the ADOR approach.24 For the UTL-

derived layers found in IPC-1P there are four possible ways of 

connecting the layers into new zeolites; two of these have been 

realized experimentally but two have not.6,14 Therefore, the 

thermodynamic stability of the four possible products of 

condensation via S4R bridges at high pressure was investigated 

computationally (see ESI for further details). Calculations 

carried out at the density functional theory (DFT) level show 

that the IPC-2 (OKO) zeolite is the most stable up to 1.8 GPa 

(Figure 6), in agreement with experimental findings.  

A further goal would be the pressure-induced synthesis of the 

other possible ADOR products. Calculations show that zeolites 

with new topologies could be obtained at pressures above 1.8 

GPa (Figure 6). This is perhaps the most intriguing aspect of the 

current study, and further work is ongoing in this area to 

identify the correct conditions. Of particular interest is the 

material that is of lowest energy at higher pressure (listed as 

UTL-S4R(Pm’) in Figure 6 is currently unknown experimentally. 

 

 

Figure 6. Enthalpy vs. pressure curve for UTL-S4R zeolites (IPC-1P layers connected 
with S4R units). Relative energies ΔH are with respect to IPC-2 (OKO). Notation 
adopted from Ref.6  

Yet another possibility is to find experimental conditions that 

lead to synthesis of zeolites obtained by direct condensation of 

IPC-1P layers, such as IPC-4 (PCR). The crucial point to control 

the transformation may be the organization step of the ADOR-

type high-pressure synthesis. It can be studied by the 

intercalation methods, further optimization of the synthesis 

conditions, or use of different zeolitic precursors.  

Conclusions 

The results presented here show the first pressure-induced 

synthesis of a regular 3D zeolite from 2D precursor. It is also an 

extension of the ADOR zeolite synthesis procedure. In contrast 

to calcination under ambient pressure, the high-pressure 

conditions unexpectedly produced a more porous phase, IPC-2, 

rather than the expected denser IPC-4. This new use of high 

pressure in the ADOR process opens a new route that can lead 

to the synthesis of many predicted zeolite structures that 

cannot be accessed by standard methods. Those new structures 

are interesting due to high framework energies and very rare, 

odd-member ring channels that can be exploited in catalysis and 

sorption. The high-pressure ADOR approach is precise and 

controllable method allows to reach the synthesis targets 

beyond the scope of the solvothermal synthesis. 
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