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Summary
Background The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated 
with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite 
antibody titres and the magnitude and duration of vaccine effi  cacy using data from a phase 3 trial done between 2009 
and 2014.

Methods Using data from 8922 African children aged 5–17 months and 6537 African infants aged 6–12 weeks at fi rst 
vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a 
booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite 
antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective 
immunity over time.

Findings RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5–17 months than 
in those aged 6–12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in 
children aged 6–12 weeks and higher immunogenicity in those aged 5–17 months. The immunogenicity of the 
booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres 
wane according to a biphasic exponential distribution. In participants aged 5–17 months, the half-life of the short-
lived component of the antibody response was 45 days (95% credible interval 42–48) and that of the long-lived 
component was 591 days (557–632). After primary vaccination 12% (11–13) of the response was estimated to be long-
lived, rising to 30% (28–32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98–153) was 
estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of effi  cacy 
against clinical malaria across diff erent age categories and transmission intensities, and effi  cacy wanes more rapidly 
at higher transmission intensity.

Interpretation Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of 
RTS,S/AS01 effi  cacy, with or without a booster dose, providing a valuable surrogate of eff ectiveness for new RTS,S 
formulations in the age groups considered.

Funding UK Medical Research Council.

Copyright © White et al. Open Access article distributed under the terms of CC BY.

Introduction
Malaria imposes an enormous burden on public health, 
causing an estimated 584 000 deaths worldwide in 2013, 
with most attributable to Plasmodium falciparum in 
African children.1 An eff ective malaria vaccine would help 
to protect this vulnerable population. The RTS,S/AS01 
candidate vaccine for preventing P falciparum malaria was 
assessed in a phase 3 trial done between 2009 and 2014, in 
11 sites in sub-Saharan Africa.2,3 8922 children aged 
5–17 months and 6537 infants aged 6–12 weeks were 
randomly assigned to receive either three doses of 
RTS,S/AS01 once per month for 3 months and a booster 
dose at 20 months (R3R group); three doses of RTS,S/AS01 

and a dose of comparator vaccine at 20 months (R3C); or 
three doses of a comparator vaccine once per month for 
3 months and a booster dose at 20 months (C3C). The 
median time until the end of the study was 48 months 
after the fi rst dose for children and 38 months for infants. 
Over the entire duration of the trial, vaccine effi  cacy 
against clinical malaria in children was 28% (95% CI 
23–33) in the R3C group and 36% (32–41) in the 
R3R group. Effi  cacy was lower in infants: 18% (12–24) in 
the R3C group, and 26% (20–32) in the R3R group.

RTS,S/AS01 is a recombinant protein candidate 
malaria vaccine that targets the P falciparum 
circumsporozoite protein. It contains part of the 

http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(15)00239-X&domain=pdf
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circumsporozoite sequence, coexpressed with hepatitis 
B surface antigen, inducing anti-circumsporozoite 
antibodies and circumsporozoite-specifi c CD4-positive 
T cells that are associated with protection from 
P falciparum infection and episodes of clinical malaria.4,5 
Anti-circumsporozoite antibody titres might also be 
associated with the duration of protection, with the rate 
at which anti-circumsporozoite antibodies wane similar 
to the rate of decline of effi  cacy.6,7

Vaccine protection is the probability that vaccine-
induced immune responses prevent infection with pre-
erythrocytic stages of P falciparum. It is measured most 
directly as effi  cacy against infection in controlled human 
malaria infection trials in malaria-naive adults.4,8 Vaccine 
effi  cacy against clinical malaria as reported in fi eld 
trials2,3 is a relative measure of the incidence of malaria 
in vaccinated and control cohorts, and can be aff ected by 
immune responses apart from that induced by 
vaccination. In the case of RTS,S/AS01, infections 
prevented in vaccinated individuals might reduce anti-
blood-stage immunity over time in vaccinated people 
compared with control participants. This eff ect could 
cause effi  cacy against clinical malaria to wane at a faster 
rate than effi  cacy against infection, particularly in 
regions of high transmission.

Assessing the duration of protection following 
RTS,S/AS01 vaccination remains a challenge. Clinical 
trials have reported vaccine effi  cacy as fi xed point 
estimates,9 or as continuously varying estimates 
throughout follow-up.10 Several statistical methods have 
been used to assess waning vaccine effi  cacy, including 
testing for non-parametric patterns of waning,11 or the 
incorporation of time-dependent covariates into 
proportional hazards models.7,12 In this Article, we extend 

existing statistical methods6 to evaluate the vaccine’s 
effi  cacy profi le, defi ned as the initial effi  cacy after 
vaccination and the pattern of waning over time.

Methods
Data
RTS,S/AS01 was tested in an individually randomised 
controlled double-blind phase 3 trial designed to evaluate 
vaccine effi  cacy, safety, and immunogenicity.2,3 We 
analysed the immunogenicity of the vaccine after primary 
vaccination with or without a booster dose and assessed 
how effi  cacy against clinical malaria depends on the rate 
of waning of vaccine-induced antibodies and trans mission 
intensity.

We used the primary case defi nition of an episode of 
clinical malaria: illness in a child brought to a study facility 
with a measured temperature of 37·5°C or more, or 
reported fever within the past 24 h and P falciparum asexual 
parasitaemia at a density of more than 5000 parasites 
per μL. We focused on the per-protocol population for 
which follow-up begins 3 weeks after the third dose. 
Serological data were available for a subset of participants 
from each trial site. Anti-circumsporozoite and anti-
hepatitis B surface antigen antibodies were measured by 
standardised enzyme-linked immunosorbent assays and 
antigens in a single laboratory.13 Table 1 shows malaria 
transmission intensity and anti-circumsporozoite antibody 
titres at each trial site.

Immunogenicity
We assessed the eff ects of several covariates on anti-
circumsporozoite antibody titres following primary 
vaccination with RTS,S/AS01, and following a booster 
dose of RTS,S/AS01. The covariates were age at 

Research in context

Evidence before this study
We searched PubMed on June 9, 2015, for studies on the 
association between the immunogenicity of RTS,S and effi  cacy 
using the MeSH terms “RTS,S” and (“circumsporozoite” OR 
“immunogenicity” OR “antibody”). We identifi ed 115 reports. 
23 were studies of the statistical association between 
RTS,S-induced immune responses (anti-circumsporozoite 
antibody titres or circumsporozoite-specifi c T-cell responses) 
and effi  cacy against either Plasmodium falciparum infection or 
episodes of clinical malaria, based on data from phase 2 clinical 
trials. Five studies measured RTS,S-induced immune responses 
over a period greater than 2 years, showing associations 
between antibody titres and protection, and decaying 
antibodies over time. 

Added value of this study
This study includes data from a large phase 3 trial spanning a 
wide range of malaria transmission intensities. The study 
combines measurements of anti-circumsporozoite antibody 

titres over time with individual-level data for episodes of 
clinical malaria to provide estimates of the duration of the 
antibody response over time and the association between 
anti-circumsporozoite antibody titres and effi  cacy. The decay of 
anti-circumsporozoite antibody titres over 4 years can be 
described by a biphasic exponential distribution. An anti-
circumsporozoite antibody titre of 121 EU/mL (95% credible 
interval 98–153) was estimated to prevent 50% of infections.

Implications of all available evidence
The RTS,S malaria vaccine provides signifi cant effi  cacy against 
episodes of clinical malaria in diff erent age groups across 
diff erent transmission settings. This analysis shows that 
RTS,S/AS01-induced anti-circumsporozoite antibody titres 
can be used as a correlate of protection to predict vaccine 
effi  cacy over time. The estimated relationship between 
anti-circumsporozoite antibody titres and effi  cacy can be used 
to assess future versions of RTS,S and second generation 
anti-circumsporozoite vaccines.
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vaccination, malaria transmission intensity, HIV status, 
and anti-circumsporozoite and anti-hepatitis B surface 
antigen antibody titres at screening. We analysed the data 
using linear regression models with trial site as a random 
eff ect to account for additional heterogeneity not captured 
by the fi xed eff ects.

Antibody dynamics
After primary vaccination with RTS,S/AS01, anti-
circumsporozoite antibody titres are assumed to increase 
to a peak value (CSpeak) and then wane over time (t) 
according to a biphasic exponential model:

where rs=loge(2)/ds and rl=loge(2)/dl are the decay rates of 
the short-lived and long-lived components of the 
antibody response, and ρpeak is the proportion of the 
antibody response that is short-lived. After a booster 
dose at time tboost, antibody titres increase to CSboost. We 
assumed that the rates of decay of the short-lived and 
long-lived components of the antibody response remain 

the same, but that the proportion of the response that is 
short-lived (ρboost) might change. For t>tboost the antibody 
dynamics can be described as follows:

Association between anti-circumsporozoite antibodies 
and clinical malaria
The pattern of waning of antibody titres can be used to 
estimate the change in vaccine effi  cacy over time. For 
estimated anti-circumsporozoite antibody titres, vaccine 
effi  cacy against infection can be estimated with a dose–

response curve defi ned as follows:

where Vmax, α, and β are parameters to be estimated. 
RTS,S/AS01-induced anti-circumsporozoite antibodies 
prevent episodes of clinical malaria by reducing or 
preventing pre-erythrocytic P falciparum infection. To 
investigate the association between anti-circum sporozoite 

CS(t) = CSpeak (ρpeak e –r t + (1 – ρpeak) e –r t)s l

lCS(t) = CSboost (ρboost e –r  (t – t          ) + (1 – ρboost) e –r (t – t               ) )s boost boost

V (t) = Vmax
1 – 1

1 +
β

CS (t) α

Per-protocol cohort 
(C3C, R3C, R3R)

Incidence 
(cases per year)

Serology cohort 
(C3C, R3C, R3R)

CSbase (EU/mL) CSpeak (EU/mL) CSboost (EU/mL)

Age 6–12 weeks

Kilifi 102, 95, 90 0·04 104, 97, 87 0·39 (0·25–2·71) 247 (20–1326) 187 (11–1041)

Korogwe 183, 191, 191 0·09 74, 64, 64 0·34 (0·25–1·59) 232 (20–905) 163 (21–559)

Bagamoyo 245, 249, 252 0·15 70, 78, 74 0·34 (0·25–1·46) 163 (15–844) 149 (14–609)

Lambarene 62, 75, 72 0·17 64, 67, 72 0·28 (0·25–1·10) 283 (58–1374) 207 (15–1240)

Manhica 188, 187, 193 0·20 100, 107, 113 0·27 (0·25–0·70) 327 (46–1471) 254 (14–1141)

Lilongwe 257, 250, 247 0·42 104, 96, 99 0·39 (0·25–2·30) 218 (30–1213) 104 (7–668)

Agogo 221, 209, 209 0·84 70, 70, 63 0·46 (0·25–3·00) 151 (7–858) 128 (3–850)

Kombewa 196, 193, 195 1·62 68, 76, 75 0·38 (0·25–2·51) 202 (3–1250) 121 (2–876)

Kintampo 100, 101, 98 1·69 66, 69, 68 0·62 (0·25–3·20) 148 (24–829) 91 (0–591)

Siaya 229, 231, 221 3·12 91, 94, 94 0·46 (0·25–2·51) 208 (4–1442) 155 (0–1272)

Nanoro 224, 224, 217 3·14 65, 72, 64 0·94 (0·25–7·10) 115 (3–862) 156 (19–1101)

Age 5–17 months

Kilifi 172, 172, 163 0·08 60, 72, 69 0·25 (0·25–0·25) 593 (41–2387) 231 (20–928)

Korogwe 293, 282, 286 0·10 66, 69, 66 0·25 (0·25–0·25) 540 (178–2098) 303 (130–965)

Bagamoyo 236, 242, 228 0·27 69, 68, 67 0·28 (0·25–1·59) 450 (52–1820) 297 (42–1417)

Lambarene 196, 196, 187 0·23 74, 78, 68 0·27 (0·25–0·86) 374 (55–1621) 193 (21–1121)

Manhica * * 81, 76, 76 0·26 (0·25–0·30) 621 (141–2315) 205 (36–834)

Lilongwe 185, 183, 176 0·23 70, 73, 77 0·26 (0·25–0·72) 360 (103–1630) 277 (65–747)

Agogo 191, 183, 188 1·01 69, 70, 68 0·28 (0·25–1·80) 667 (208–2703) 267 (89–909)

Kombewa 312, 301, 315 1·64 86, 65, 75 0·30 (0·25–1·41) 716 (204–2794) 306 (92–1386)

Kintampo 301, 310, 299 1·71 75, 71, 74 0·31 (0·25–1·91) 726 (112–2046) 260 (33–1339)

Siaya 252, 242, 240 3·15 93, 99, 89 0·37 (0·25–4·34) 677 (52–3154) 342 (67–1959)

Nanoro 198,195, 194 2·69 67, 70, 72 0·37 (0·25–4·24) 689 (184–3010) 499 (161–1922)

Cases are based on the primary case defi nition of clinical malaria: illness in a child brought to a study facility with a measured temperature of ≥37·5˚C and Plasmodium 
falciparum asexual parasitaemia at a density of >5000 parasites per μL. Incidence is based on reported cases of malaria in the per-protocol population from 2·5 months 
to the end of the study. The serology cohort includes some children from the intention-to-treat population not included in the per-protocol population. CS antibody 
titres are presented as geometric mean titres with 95% ranges (2·5–97·5 percentile). CS=anti-circumsporozoite. R3C=three doses of RTS,S/AS01 and a booster with a 
comparator vaccine. R3R=three doses of RTS,S/AS01 and a booster with RTS,S/AS01. C3C=three doses of comparator vaccine and a booster with a comparator vaccine. 
*No data in the per-protocol cohort.

Table 1: Malaria transmission intensity and anti-circumsporozoite antibody titres by site
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antibodies and clinical malaria, we used this equation to 
estimate the probability of infection. To account for the 
probability that blood-stage infection progresses to a 
detected episode of clinical malaria, we used a model for 
the age-dependent and exposure-dependent acquisition 
of anti-blood-stage immunity.14 This model accounted for 
a trial site’s transmission intensity, age, heterogeneity and 
seasonality in exposure, and bednet use. The model 
predicts that the prevention of infections by RTS,S/AS01 
reduces naturally acquired anti-blood-stage immunity in 
the vaccine cohort compared with the control cohort. This 
eff ect results in a higher probability of blood-stage 
infections progressing to symptomatic episodes of clinical 
malaria in the vaccine cohort.14

Statistical analysis
We fi tted the antibody dynamics model to longitudinal 
data on anti-circumsporozoite antibody titres in a 
Bayesian framework using Markov chain Monte Carlo 
methods with mixed eff ects to capture between-
individual variation. The parameters describing the 
association between anti-circumsporozoite antibodies 
and effi  cacy against infection in the equation for the 
dose–response curve were estimated by fi tting to indivi-
dual-level data on times of episodes of symptomatic 
malaria (primary case defi nition, per-protocol population) 
with survival analysis methods in a Bayesian Markov 
chain Monte Carlo framework. Best fi t para meters were 
taken to be the medians of the estimated posterior 
distributions. Parameters are presented with 95% 
credible intervals (CrI; appendix).

Role of the funding source
The sponsors had no role in the design of this secondary 
analysis, in doing the analysis, interpreting the data, or 
writing this report. The corresponding author had full 
access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
Table 2 shows the dependence of anti-circumsporozoite 
antibody titre after primary vaccination or a booster dose 
on covariates. RTS,S/AS01 was more immunogenic in 
children aged 5–17 months than in those aged 6–12 weeks. 
Being HIV positive was associated with reduced immuno-
genicity. Within the 5–17 month age category, younger 
children had higher anti-circumsporozoite antibody titres 
after vaccination. In children aged 6–12 weeks, high 
baseline anti-circumsporozoite antibody titres were 
associated with low anti-circumsporozoite antibody titres 
after vaccination, suggesting that maternal antibodies or 
fetal exposure to malaria parasites might inhibit immuno-
genicity.6,15 We recorded no signifi cant associations 
between baseline anti-hepatitis B surface antigen anti-
bodies and immunogenicity (appendix).

The booster dose was more immunogenic in children 
aged 5–17 months than those aged 6–12 weeks. There 
were no signifi cant associations between age and booster 
dose immunogenicity. The most signifi cant predictor of 
anti-circumsporozoite antibody titre after the booster 
dose was anti-circumsporozoite antibody titre after 
primary vaccination. This fi nding might be a result of the 
fact that individuals with higher capacity to respond to 
vaccination have higher responses at both timepoints, 
but might also be because the residual eff ects of priming 
by the primary vaccination leads to more eff ective 
boosting.

The dynamics of anti-circumsporozoite antibody 
titres after vaccination with or without a booster dose of 
RTS,S/AS01 are well described by a biphasic exponential 
model (fi gure 1A–D). The short-lived component of the 
antibody response wanes rapidly within the fi rst 
6 months, with the long-lived component waning over 
the next 4 years (table 3). The waning of antibody titres 
after the booster dose follows a similar pattern to that 
after the primary schedule; however, the proportion of 
the response that is long-lived was estimated to 

Primary schedule (n=2650) Booster dose (n=1093)

Estimate (95% CI) p value Estimate (95% CI) p value

RTS,S (5–17 months): intercept 3·01 (2·91 to 3·10) ·· 1·36 (1·08 to 1·65) ··

RTS,S (6–12 weeks) –0·88 (–1·00 to –0·76) <0·0001 –0·62 (–0·07 to –0·28) <0·0001

Age (5–17 months)* –0·015 (–0·022 to –0·009) <0·0001 –0·006 (–0·015 to 0·003) 0·19

Age (6–12 weeks)* 0·022 (–0·038 to 0·081) 0·48 0·085 (–0·0002 to 0·174) 0·058

HIV positive –0·53 (–0·64 to –0·42) <0·0001 –0·22 (–0·51 to 0·07) 0·136

log10(CSbase; 5–17 months)† 0·14 (0·05 to 0·24) 0·003 ·· ··

log10(CSbase; 6–12 weeks)† –0·58 (–0·70 to –0·46) <0·0001 ·· ··

log10(CSpeak; 5–17 months)† ·· ·· 0·42 (0·34 to 0·51) <0·0001

log10(CSpeak; 6–12 weeks)† ·· ·· 0·17 (0·06 to 0·29) 0·0025

Estimates from linear regression analyses of the eff ect of covariates on peak anti-circumsporozoite antibody titre after primary vaccination of RTS,S/AS01 (log10[CSpeak/(EU/mL)]) 
or after a booster dose (log10[CSboost/(EU/mL)]). The intercept is taken to be vaccination of a child aged 5–17 months. Trial site was included in the regression models as a random 
eff ect. Transmission intensity, sex, preterm delivery, low weight-for-age Z score, and previous cases of clinical malaria were all tested as covariates but were not signifi cant 
(appendix). *Change associated with a 1 month change in age. †Change associated with a ten-fold change in titre.

Table 2: Determinants of immunogenicity of RTS,S

See Online for appendix
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increase. In children aged 5–17 months, 12% (95% CrI 
11–13) of the response is estimated to be long-lived after 
primary vaccination, increasing to 30% (28–32) after 
the booster dose. In children aged 6–12 weeks, 7% (6–8) 
of the response was estimated to be long-lived after 
primary vaccination, increasing to 21% (18–23) after the 
booster dose.

Figure 1E shows the estimated dose–response relation-
ship between anti-circumsporozoite antibody titres and 
effi  cacy against infection. Effi  cacy against infection was 
predicted to increase smoothly with antibody titre—we 
found no threshold for protection.16 Our model predicts 
that an anti-circumsporozoite antibody titre of 121 EU/mL 
(95% CrI 98–153) prevents 50% of infections. The vaccine 

effi  cacy profi le against infection can be obtained by 
combining the antibody dynamics and the dose–response 
relationship. A biphasic pattern of waning effi  cacy was 
present mirroring the pattern of decay of anti-
circumsporozoite antibodies (fi gure 1F). In children aged 
5–17 months, effi  cacy against infection is estimated to 
begin at 74% (95% range [2·5–97·5 percentile] 46–85) and 
wanes to 28% (5–59) at 12 months, and 9% (1–32) after 
5 years. A booster dose at 18 months increases effi  cacy to 
59% (95% range 17–80), resulting in 17% (2–43) effi  cacy at 
5 years. In children aged 6–12 weeks, effi  cacy against 
infection was estimated to begin at 63% (95% range 
18–82) and waned to 11% (1–42) at 12 months, and to 3% 
(1–19) after 5 years. A booster dose at 18 months increases 

Figure 1: Anti-circumsporozoite antibody dynamics and association with effi  cacy against infection
(A–D) Anti-circumsporozoite antibody dynamics after a primary schedule of RTS,S/AS01 with or without booster. The black bars denote the median and 95% ranges 
(2·5–97·5 percentile). The solid and dashed curves denote the median of the model predicted antibody titres. The dark and light shaded regions represent 50% and 
95% of the model predicted variation in antibody titres. (E) Estimated dose–response relationship for the association between anti-CS antibody titre and effi  cacy 
against infection. (F) Estimated vaccine effi  cacy profi le for infection based on waning antibody titres. CS=circumsporozoite. R3C=three doses of RTS,S/AS01 and a 
booster with a comparator vaccine. R3R=three doses of RTS,S/AS01 and a booster with RTS,S/AS01.
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A R3C, age 6–12 weeks C R3R, age 6–12 weeks E Dose–response relationship

B R3C, age 5–17 months D R3R, age 5–17 months F Efficacy against infection

R3C, 6–12 weeks
R3R, 6–12 weeks
R3C, 5–17 months
R3R, 5–17 months

R3C, 6–12 weeks R3C, 6–12 weeks

R3C, 5–17 months R3C, 5–17 months

Parameter Prior Posterior

6–12 week category 5–17 month category

ds Half-life of short-lived component of antibody response 46 days (43–49) 45 days (43–48) 45 days (42–48) 

dl Half-life of long-lived component of antibody response 572 days (269–1045) 634 days (574–709) 591 days (557–632) 

ρpeak Proportion of short-lived component following primary schedule 0·83 (0·63–0·95) 0·93 (0·92–0·94) 0·88 (0·87–0·89)

ρboost Proportion of short-lived component following booster dose 0·83 (0·63–0·95) 0·79 (0·77–0·81) 0·70 (0·68–0·72)

β Scale parameter of dose–response curve 24·5 EU/mL (1·4–112·3) 99·2 EU/mL (67·6–132·6) 99·2 EU/mL (67·6–132·6) 

α Shape parameter of dose–response curve 0·92 (0·27–2·19) 0·74 (0·62–0·93) 0·74 (0·62–0·93)

Vmax Maximum effi  cacy against infection 0·91 (0·74–0·99) 0·93 (0·83–0·99) 0·93 (0·83–0·99)

Parameter estimates for anti-circumsporozoite antibody dynamics and the dose–response relationship between antibody titres and effi  cacy against infection. Priors and 
posteriors are presented as median and 95% credible intervals. Informative priors are taken from phase 2 data.6

 Table 3: Parameter estimates
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effi  cacy to 58% (95% range 8–80), resulting in 8% (1–35) 
effi  cacy at 5 years.

For participants from all cohorts in all sites and both 
age categories, the antibody dynamics model predicted a 
vaccine effi  cacy profi le for infection that depends on anti-
circumsporozoite antibodies according to the dose–
response relationship in fi gure 1E). The vaccine effi  cacy 
profi le for clinical malaria will depend on transmission 
intensity and seasonality at each trial site (fi gures 2, 3). 
The diff erence between effi  cacy against infection and 
effi  cacy against clinical malaria is caused by the higher 
levels of naturally acquired immunity in the control 
group than in the vaccine group, and is predicted to be 
greater in sites with higher transmission intensity. For 
example, in Kilifi  (where transmission is low), effi  cacy 
against clinical malaria is predicted to be roughly equal 
to effi  cacy against infection (fi gures 2, 3). By contrast, in 

Nanoro (where transmission is high), effi  cacy against 
clinical malaria is predicted to be substantially lower 
than effi  cacy against infection.

Discussion
In the identifi cation of correlates of protection against 
P falciparum infection, diff erent trial designs provide 
diff erent categories of evidence. Controlled human 
malaria infection trials provide the most direct evidence 
because mosquito infection can be controlled and 
immune responses measured on the day of challenge.8,17 
Field trials with an endpoint of naturally acquired 
P falciparum infection provide valuable evidence but are 
limited by heterogeneity in exposure.18 Field trials with 
clinical malaria as an endpoint also provide valuable 
evidence but are complicated by the eff ect of vaccination 
on the acquisition of clinical immunity.10 RTS,S-induced 

Figure 2: Vaccine effi  cacy profi le for clinical malaria in children aged 6–12 weeks
Data are point estimates of effi  cacy with 95% CIs, presented in 6 month and 3 month windows in low and high transmission sites, respectively. Kilifi , Korogwe, Bagamoyo, Lambarene, Manhica, and 
Lilongwe are low transmission sites. Agogo, Kombewa, Kintampo, Siaya, and Nanoro are high transmission sites. Cases of malaria are based on the primary case defi nition in the per-protocol 
population from 2·5 months to study end. The posterior median estimates of effi  cacy against clinical malaria predicted by the antibody dynamics model are presented in red. R3C=three doses of 
RTS,S/AS01 and a booster with a comparator vaccine. R3R=three doses of RTS,S/AS01 and a booster with RTS,S/AS01.
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anti-circumsporozoite antibody titres are associated with 
protection in each of these types of trial.4–6,19 Here, we 
provide further validation that anti-circumsporozoite 
antibodies are a surrogate of protection against clinical 
malaria using data from a phase 3 trial. For both primary 
vaccination and booster dose of RTS,S/AS01, anti-
circumsporozoite antibodies predict effi  cacy against 
clinical malaria in both age categories across all 11 sites 
over the duration of the trial, thus satisfying the Prentice 
criteria (appendix).20 In the terminology proposed by Qin 
and colleagues,21 anti-circumsporozoite antibodies are a 
level 2 surrogate of protection because vaccine effi  cacy is 
predicted across diff erent settings and age groups. The 
model was fi tted to data from the subset of participants 
in the serology cohort, and was predictive of effi  cacy in 
the full per-protocol population.

The association between RTS,S/AS01-induced anti-
circumsporozoite antibodies and protection is consistent 
with data from other vaccine candidates and studies of 

naturally acquired immunity.22–24 However, such an 
association does not prove that anti-circumsporozoite 
antibodies cause protection.25 CD4-positive T cells also have 
a role in preventing infection,26,27 but whether these cells act 
as direct eff ectors or indirectly through modulation of 
antibody responses is unclear. The lack of data on cell-
mediated immunity is a potential limitation of this analysis. 
Analysis of the dynamics of anti-circumsporozoite 
antibodies after vaccination showed a biphasic pattern with 
rapid waning in the fi rst 6 months followed by slower 
waning over the next 4 years. This pattern accords with 
waning of naturally acquired P falciparum antibody 
responses.28 The relatively short half-life of the long-lived 
component of the RTS,S-induced antibody response 
contrasts with vaccine-induced responses to other 
pathogens, which can have a much longer half-life.29,30

The waning of effi  cacy after vaccination with 
RTS,S/AS01 makes characterisation of the duration of 
protection particularly important. Duration of effi  cacy 

Figure 3: Vaccine effi  cacy profi le for clinical malaria in children aged 5–17 months
Data are point estimates of effi  cacy with 95% CIs, presented in 6 month and 3 month windows in low and high transmission sites, respectively. Kilifi , Korogwe, Bagamoyo, Lambarene, and Lilongwe 
are low transmission sites. Agogo, Kombewa, Kintampo, Siaya, and Nanoro are high transmission sites. There were no data for infants aged 5–17 months Manhica in the per-protocol cohort. Cases of 
malaria are based on the primary case defi nition in the per-protocol population from 2·5 months to study end. The posterior median estimates of effi  cacy against clinical malaria predicted by the 
antibody dynamics model are presented in red. R3C=three doses of RTS,S/AS01 and a booster with a comparator vaccine. R3R=three doses of RTS,S/AS01 and a booster with RTS,S/AS01.
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has previously been estimated by point estimates for 
consecutive time windows.2,10 Assessment of the waning 
of effi  cacy with a parametric form (the vaccine effi  cacy 
profi le) enables robust estimation of duration without 
loss of statistical power because of the aggregation of 
data into time windows. This approach enables the 
incorporation of biologically relevant information on 
vaccine-induced immune responses. We predicted that 
the pattern of waning of effi  cacy against infection would 
mirror the dynamics of anti-circumsporozoite 
antibodies with rapid waning in the fi rst 6 months 
followed by slower waning over the next 4 years. Effi  cacy 
against infection was not predicted to depend on 
transmission intensity because we assumed no 
acquisition of eff ective pre-erythrocytic immunity in 
young children.31 By contrast, lower levels of acquired 
blood-stage immunity in vaccinated compared with 
control participants means that those infections not 
prevented by vaccine-induced responses have a higher 
probability of progressing to episodes of clinical malaria. 
This eff ect causes the rate of waning of effi  cacy against 
clinical malaria to depend on transmission intensity.10 
In low transmission areas, effi  cacy against clinical 
malaria wanes because of the reduction in anti-
circumsporozoite antibody titres over time. In high 
transmission areas, effi  cacy against clinical malaria 
wanes more rapidly because of both the reduction in 
anti-circumsporozoite antibody titres and the lower 
levels of blood-stage immunity in vaccinated participants 
compared with control participants.

A combined analysis of the trial data incorporating anti-
circumsporozoite antibodies and other covariates enables 
a detailed investigation of the results. For example, in the 
6–12 week age category in Kintampo, effi  cacy against 
clinical malaria following primary vaccination was lower 
than in other sites (fi gure 2). Our analysis suggests that 
this fi nding might be partly explained by the low anti-
circumsporozoite antibody titres in Kintampo, possibly 
because of high concentrations of maternally acquired 
antibodies before vaccination (table 1). This situation 
contrasts with the 5–17 month age category from 
Kintampo, in whom anti-circumsporozoite antibody 
titres were the highest of all trial sites with high levels of 
effi  cacy (fi gure 3).

In the event of a recommendation for vaccination of 
African children with RTS,S/AS01 with a booster dose, 
further analysis of the immunogenicity and effi  cacy of 
the booster will be crucial. The low anti-circumsporozoite 
antibody responses after the booster dose compared with 
primary vaccination suggests that the classic immuno-
logical picture of vaccine-induced responses being 
boosted to higher levels than after primary vaccination 
does not apply in the case of RTS,S/AS01. This fi nding 
might indicate shorter than usual half-lives for memory 
B cells or helper CD4-positive T cells. However, in the 
5–17 month age category the long-lived component of the 
anti-circumsporozoite antibody response increased from 

12% of the post-primary antibody response to 30% of the 
post-boost response, and the absolute titre of the long-
lived response was higher after boost than after primary 
vaccination, suggesting there are longlasting benefi ts of 
the booster dose. The close concordance between data for 
clinical vaccine effi  cacy and anti-circumsporozoite 
antibody titres suggests that serological data might be 
used to assess future versions of RTS,S/AS01 and second 
generation anti-circumsporozoite vaccines, despite the 
limitations of extrapolating to other populations and 
vaccines. This approach will be much faster and more 
cost eff ective than running larger and larger effi  cacy 
trials to test new variations in dose, schedule, and 
adjuvant systems.
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