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Abstract 

Background: The ActualHCA™ system continuously monitors the activity, temperature and 

behavior of group-housed rats without invasive surgery.  The system was validated to detect 

the contrasting effects of sedative and stimulant test agents (chlorpromazine, clonidine and 

amphetamine), and compared with the modified Irwin test (mIT) with rectal temperature 

measurements.   

Methods: Six male Han Wistar rats per group were used to assess each test agent and 

vehicle controls in separate ActualHCA™ recordings and mIT.  The mIT was undertaken at 

15, 30 mins, 1, 2, 4 and 24h post-dose.  ActualHCA™ recorded continuously for 24h post-

dose under 3 experimental conditions: dosed during light phase, dark phase, and light phase 

with a scheduled cage change at the time of peak effects determined by mIT.   

Results: ActualHCA™ detected an increase stimulated activity from the cage change at 1-

2h post-dose which was obliterated by chlorpromazine and clonidine.  Amphetamine 

increased activity up to 4h post-dose in all conditions. Temperature from ActualHCA™ was 

affected by all test agents in all conditions.  The mIT showed effects on all 3 test agents up 

to 4h post-dose, with maximal effects at 1-2h post-dose.  The maximal effects on 

temperature from ActualHCA™ differed from mIT.  Delayed effects on activity were detected 

by ActualHCA™, but not on mIT. 

Conclusions: Continuous monitoring has the advantage of capturing effects over time that 

may be missed with manual tests using pre-determined time points.  Thisautomated 

behavioural system does not replace the need for conventional methods but could be 

implemented simultaneously to improve our understanding of behavioural pharmacology.  

 

Keywords:  

Behaviour; Continuous monitoring; Group-housed; Home cage; Irwin; Locomotion; 

Methods; Sedative; Stimulant; Temperature. 

 

 

Abbreviations:  

ActualHCA™ Actual Home Cage Analyzer 
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AUC  Area under the curve 

CNS  Central nervous system 

mIT  Modified Irwin test 

RFID  Radiofrequency identification 

%MPS  Percentage of maximum possible score 
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1. Introduction 

Neurobehavioural assessments of drugs in rodents provide insights into 

pharmacological effects on the central nervous system (CNS) and are often 

conducted using manual measurements at pre-selected time points.  Automated 

methods of monitoring locomotor activity and behavior in laboratory rats have been 

emerging that can continuously assess the responses to test agents (Alexandrov et 

al., 2015; Dunne et al., 2007; Van de Weerd et al., 2001).  Automated systems have 

advantages over conventional manual observations that are often susceptible to 

observer bias, are of shorter duration and performed during the light phase only 

(Alexandrov et al., 2015; Dunne et al., 2007; Van de Weerd et al., 2001).  However, 

both these and more conventional locomotor activity systems require the use of 

single-housing (Redfern et al., 2017).  In contrast, modern laboratory practices have 

moved away from single-housing rats as it affects their behavior and welfare 

(Balcombe, 2006).   Moreover, automated methods such as continuous temperature 

monitoring requires invasive surgical implantation of radiotelemetry transmitters 

(Ansah et al., 1996; Bishop et al., 2001; Deveney et al., 1998; Harkin et al., 2002; 

Ossenkopp et al., 1994).  A recent approach that mitigates these concerns is the 

ActualHCA™ system (Actual Analytics, UK), which was developed as part of the 

“Rodent Big Brother project” funded by the National Centre for the Replacement, 

Refinement and Reduction of Animals in Research (NC3Rs), UK, to continuously 

monitor the activity and temperature of individual rats simultaneously when group-

housed in their home cage environment on a cage rack, without the need for 

invasive surgery (Redfern et al., 2017).   

 

The present study was conducted to validate the ActualHCA™ system by assessing 

its ability to detect changes in activity, temperature and behaviours in response to 

stimulant and sedative test agents, and to compare the results to the conventional 

manual approach: the modified Irwin test.  The Irwin test is a comprehensive, 

systematic qualitative observational assessment that was introduced to evaluate the 

neurobehavioural effects of drugs on mice (Irwin, 1968).  It has since been modified 

for use in rats and is currently used in safety pharmacology studies recommended by 

the International Conference on Harmonisation (ICH) S7A guideline for assessing 
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the effects of new chemical entities, to help protect clinical trials participants and 

patients from potential adverse effects ("International Council for Harmonisation of 

Technical Requirements for Pharmaceuticals for Human Use (ICH)," ; Redfern & 

Wakefield, 2006).  It is also used as a general observational test on rodents for 

assessing the neurobehavioural effects in disease models (Blokland et al., 1995; 

Hunter et al., 2000; Roux et al., 2004).   

 

Pharmacological validation of the system was conducted using well-characterised 

sedatives (chlorpromazine and clonidine), and a stimulant (amphetamine).  

Chlorpromazine was originally introduced as a neuroleptic agent in humans, and 

causes reduced activity, ataxia and lowered body temperature in rats (Mattsson et 

al., 1996; Moscardo et al., 2007).  Clonidine is a centrally-acting α2-adrenoreceptor 

agonist, which results in reduced activity and lowered body temperature in rodents 

(Drew et al., 1979; Drew et al., 1977; Ewart et al., 2013; Moscardo et al., 2007; Van 

der Laan & De Groot, 1988).  Amphetamine is a CNS stimulant first synthesised in 

1927 for the treatment of narcolepsy and mild depression (Heal et al., 2013).  Since 

then it has been useful for the treatment of attention deficit hyperactivity disorder 

(Heal et al., 2013).  Amphetamine works predominantly by increasing and sustaining 

the level of extracellular dopamine (Calipari & Ferris, 2013), and causes increase in 

locomotion, rearing and temperature in rats (Fog, 1970; Mattsson et al., 1996; 

Moscardo et al., 2007).   

 

The objective of this study was to explore how the capability of this new technology 

compares to that of the conventional modified Irwin test as a means in detecting 

functional effects of test agents with known pharmacological effects on the CNS 

(Table 1).  We also propose how the ActualHCA™ system could be integrated into 

the modified Irwin test to augment it.    
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2. Materials and methods 

 

2.1. Drugs 

Chlorpromazine hydrochloride was purchased from Sigma Aldrich, UK and was 

formulated with sterile water.  The formulated chlorpromazine was stored in the dark 

at 4oC.  Clonidine hydrochloride was purchased from Sigma Aldrich, UK and was 

formulated with sterile water.  The formulated clonidine was stored in the dark at 

room temperature.  D-Amphetamine sulfate salt was purchased from Tocris, UK and 

was formulated with sterile water.  The formulated amphetamine was stored in the 

dark at room temperature. 

 

2.2. Ethical statement 

The sample size of n=6 per treatment group was selected to have sufficient power to 

detect the effects reported  on the modified Irwin test (Ewart et al., 2013).  The Irwin 

test is designed to identify rare event symptoms as such we infrequently observe 

these within the control data and therefore seeing multiple symptoms within the 

treatment is a significant effect.  This design also gives a good sensitivity on 

subcutaneous temperature measured using ActualHCA™, which was achievable 

with n=6 because of the low variability of the data.  Two tailed Student’s T-test for 

temperature gives a power = 0.9 to detect a 1oC change with a variability of 0.48oC 

(Lenth, 2009).  The activity measure using ActualHCA™ has lower sensitivity when 

time points are considered in isolation due to high variation, this means the screen 

can detect median to large-sized activity effects that are sustained over multiple time 

points.  A total of 72 rats were used for the work described in this paper.  All 

procedures were conducted in accordance with the United Kingdom Animal 

(Scientific Procedures) Act 1986 and associated guidelines, approved by institutional 

ethical review committees (Alderley Park Animal Welfare and Ethical Review Board; 

Babraham Institute Animal Welfare and Ethical Review Board) and conducted under 

the authority of the Project Licences (40/3368 and 70/8307, respectively).  All animal 

facilities have been approved by the United Kingdom Home Office Licensing 

Authority and meet all current regulations and standards of the United Kingdom.  
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This manuscript has been prepared to meet the ARRIVE reporting guidelines 

(Kilkenny et al., 2010). 

 

2.3. Animals 

Twelve male Han Wistar (Crl:W1 (Han)) rats were used for the assessment of each 

drug and assessment methodology: with 6 animals in the control and 6 in the 

treatment group.  Rats (weight range 200-275g; age range 7-13 weeks at the start of 

data acquisition) were purchased from Charles River Laboratories, Margate, UK with 

vendor-supplied health reports indicated that the rats were free of known viral, 

bacterial and parasitic pathogens.  All rats were allocated to cages in 3s by body 

weight to balance the distribution of body weights between cages after arrival.  Rats 

remained housed in their social group throughout the duration of the study.  All rats 

were habituated for 7 days to the semi-barrier facility with temperature and relative 

humidity of +19oC to 23oC and 40% to 70%, respectively, prior to the start of any 

procedures.  Welfare of each rat was assessed throughout by daily monitoring of 

appearance, behavior and cage environment.  All rats had free access to food 

(RM1E, IRR 0.25 pelleted diet, Special Diet Services, UK) and water from the site 

drinking water supply.  Standard cages (Tecniplast model number 2000P, Italy) 

measured approximately 61.2 x 43.5 cm of floor space, and individually-ventilated 

cages (Tecniplast model number 1500IU, Italy) measured approximately 59 × 38 cm 

of floor space.  Both types of cages had 1-1.5 cm layer of 4 mm3 bedding material 

consisted of aspen wooden chips (Eco-Pure™ Aspen Chips 4), soft nesting material, 

ENVIRO-dri sizzle nest and Aspen chew blocks (Datesand, UK).   

 

Naïve rats were used for the Irwin experiments prior to the start of dosing.  Rats 

tested with the ActualHCA™ system were implanted in-house with a temperature-

sensitive passive radiofrequency identification (RFID) transponder (BioTherm13, 

Biomark, USA) subcutaneously in the ventral abdominal midline at least 7 days prior 

to the start of dosing.  For the Irwin experiments, the holding and experimental room 

light cycle were in the darkness from 18:00h to 06:00h, and lit from 06:00h to 18:00h.  

For the ActualHCA™ experiments, the holding and experimental room light cycle in 

the facility were in darkness from 19:00h to 07:00h, and lit from 07:00h to 19:00h.  
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For the Irwin experiments, each cage contained a cardboard tunnel as environmental 

enrichment.  For the ActualHCA™ experiments, each cage contained a red 

translucent play tunnel in order for the camera to see through the tunnel, which 

appears clear under infrared light (Redfern et al., 2017).  For each experiment, six 

rats were used per treatment group and a vehicle counterpart (sterile water) was 

used as control per test agent.  A single oral gavage dose of 30 mg/kg 

chlorpromazine, or 0.3 mg/kg clonidine, or 10 mg/kg amphetamine, or their vehicle 

counterparts (10 mL/kg) was administered to the rats.  The dose levels for 

chlorpromazine, clonidine and amphetamine were selected based on information 

derived from the literature, which showed extensive sedative and stimulant effects in 

neurobehavioural assessments (Ewart et al., 2013; Strang, 2005). 

 

2.4. Modified Irwin tests 

On the day of the experiments, rats were weighed and administered the appropriate 

drug treatment, and observed at 15, 30 minutes, 1, 2, 4 and 24 hours post-dose in 

sequential order based on the order of dosing.  The observer was not blind to 

treatment regimes to prevent dosing errors.  Blinding was not practically possible 

within our animal facility because the treatment groups are currently used as a point 

of identification on the cage cards, and there was only one operator.  This operator, 

who undertakes Irwin assessments routinely, has no investment in the outcome of 

the experiment and did not analyse the data.  Furthermore, the effects of the drugs 

were pronounced and readily identifiable.  The Irwin parameters (Ewart et al., 2013; 

Irwin, 1968) were assessed systematically, starting with the home cage observation 

followed by the handling observation.  The incidence of rats exhibiting symptoms 

was recorded.  The observed symptoms for each rat were scored from 1 to 3 based 

on severity of the symptom, where ‘1’ indicates mild, ‘2’ indicates moderate and ‘3’ 

indicates pronounced (see Supplementary Table S1).  The observed symptoms for 

each treatment group at each observed time point were then presented as the dose 

group mean of the percentage of the maximal possible score (%MPS) [score/max 

score*100].  Rectal temperature was measured at 1, 4 and 24h post-dose for 

chlorpromazine and amphetamine; and at 1h post-dose for clonidine, using a 
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thermometer with a flexible temperature-sensitive probe (Physitemp thermalert 

model TH-8) inserted approximately 2 cm past the anal sphincter.  

 

2.5. ActualHCA™ monitoring: microchip implantation 

The transponders were purchased in pre-sterilised and pre-loaded single-use needle 

form.  All rats were anaesthetised with isoflurane (induced at 4.5%, maintained at 3-

4% with 2L oxygen) prior to the implantation.  The ventral abdominal region was 

shaved and swabbed using antiseptic pre-surgical scrub.  A small (<5mm) 

transverse incision was made through the skin using sterile scissors, to allow 

insertion of sterile blunt scissors to create a subcutaneous pocket using blunt 

dissection.  A pre-sterilised trocar needle (pre-loaded with the transponder) was 

used to introduce the transponder using the plunger, in a rostrocaudal orientation.  

The wound was then sealed using topical tissue adhesive (GLUture®, Abbott 

Laboratories, UK).  The rat remained under anaesthesia until the adhesive had dried.  

Rats were left to recover from 3-10 days post-implantation to ensure the transponder 

did not fall out before experimentation.  Of 36 rats implanted in this study, the RFID 

transponder extruded externally from the implantation site in 1 rat, and was replaced.  

There were no other welfare issues associated with the implantation. 

2.6. ActualHCA™ monitoring 

The system can record temperature and horizontal (ambulatory) activity via the 

implanted RFID transponder, and the behavior from the side-on high definition infra-

red video camera (Redfern et al., 2017).  For each test agent, 2 days’ baseline data 

were collected prior to agent administration and data collection continued for 24 

hours post-administration. An additional 3 days were allowed between treatments to 

ensure wash-out of the test agents (Table 2).  For each test agent, a concurrent 

randomised design was used with  6 animals treated with vehicle and 6 animals 

treated with test agent.  Through the continuous monitoring, all rats were assessed 

in 3 different experimental conditions: ‘light phase’ - dosed during the light phase (at 

approximately 09:00h); ‘ dark phase’ - dosed during the dark phase (at 

approximately 20:00h); ‘cage change’ - dosed during the light phase followed by a 

cage change at the maximal effect of the drug determined from the Irwin test 

(chlorpromazine: 2h post-dose; clonidine: 1h post-dose; amphetamine: 2h post-
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dose).  Two cages (each containing 3 rats) were randomly allocated per treatment 

group based on the pre-dose mean ambulatory activity per cage (expressed as the 

number of transitions for that cage) measured over 24 h period, in order to balance 

the baseline activity levels for the vehicle and the drug-treated groups as much as 

possible.  All rats were weighed on the day of dosing and dosed with the appropriate 

drug treatment.   

 

Raw data of movement and subcutaneous temperature for individual rats were 

recorded via the transponder.  Vertical activity was determined using the video 

footage and processed using ActualHCA™.  Vertical activity is defined as any 

movement above a vertical threshold, set at 8 cm above the cage floor at the far wall 

of the cage (Redfern et al., 2017).  Raw activity, temperature data and the video files 

were filtered to remove any artefactual noise (Redfern et al., 2017) and binned into 

30-minute bins using ActualHCA™ (version 2.2.4.).  Manual ‘Irwin-style’ behavioural 

assessment using the video footage recorded during the ‘light phase’ was performed 

post hoc at the same pre-determined time points as the conventional modified Irwin 

test that was conducted live in the laboratory in a separate group of animals.  The 

‘light phase’ was chosen for dosing regimen as this approach was most comparable 

to the conventional Irwin experiment.  Additional delayed time points for the manual 

‘Irwin-style’ behavioural assessments were also performed using the ActualHCA™ 

video, based on the activity profile detected by ActualHCA™.  All home cage 

observed elements of the modified Irwin test were manually assessed using the 

video (see Supplementary Table S1), and only effects with abnormal findings were 

reported.  The purpose was to confirm the delayed effects detected from the RFID 

transponder with behavioural assessment.  The additional time points for 

chlorpromazine were at 01:00h, 02:00h and 03:00h (16, 17 and 18 hours post-dose, 

respectively); clonidine at 21:00h and 23:30h (12 and 14.5 hours post-dose); and 

amphetamine at 17:00h, 21:00h and 23:00h (8, 12 and 14 hours post-dose, 

respectively).  The manual video assessment took place using the first 5 minutes of 

the 30-minute-binned video footage. 

 

2.7. Statistical analysis 
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The data analysis treated each animal as the experimental unit.  Effects in the Irwin 

test were considered significant if half or more of the rats in a given treatment group 

exhibited the symptom (e.g. ≥n=3 out of 6)(Ewart et al., 2013).  This is appropriate 

for these symptoms because they are rare symptoms in the control data.  In effect, 

the operator is comparing the treated group to the baseline historic data and the 

local controls are contributing to this data.  For example, a power greater than 0.854 

is obtained with a one sample test of proportions when the abnormality rate of 

interest is greater than 50% and the baseline abnormality rate is less than 7.5% 

(Lenth, 2009).  Body temperature was analysed using a two-tailed student’s t-test 

adjusted to control the false discovery rate to 5% for datasets for a variable and drug 

using the Benjamini and Hochberg methodology (Benjamini & Hochberg, 1995).  For 

filtered activity, temperature, and vertical activity data, statistically significant 

differences were identified by comparing drug-treated groups with their time-matched 

vehicle counterparts using a two-tailed student’s t-test.  The multiple testing problem 

was managed by adjusting the p values to control the false discovery rate to 5% in 

each dataset which comprised of all the tests for a variable and drug using the 

Benjamini and Hochberg methodology (Benjamini & Hochberg, 1995).  Area under 

the curve (AUC) was calculated for activity, temperature and vertical activity of all 

animals using the composite trapezoid rule for 0-24h post-dose.  The AUC for drug-

treated groups was then compared with their vehicle counterparts using a two-tailed 

student’s t-test.  P-values were adjusted to control the false discovery rate to 5% 

using the Benjamini and Hochberg methodology and those of less than 0.05 was 

considered significant (Benjamini & Hochberg, 1995).   

 

2.8. Data availability 

Data are freely available at the Zenodo repository 

(https://doi.org/10.5281/zenodo.1012739) 

  



12 
 

3. Results 

 

3.1. Modified Irwin test 

In our study, the effects of chlorpromazine, clonidine and amphetamine were 

consistent with their known pharmacology (Ewart et al., 2013; Fog, 1970; Holman et 

al., 1971; Mattsson et al., 1996; Moscardo et al., 2007).  The duration of effects for 

all 3 drugs were observed to be from 15 mins to 4 hours post-dose (Table 3).  For 

chlorpromazine, the majority of and most pronounced behavioural effects were 

observed at 2 hours post-dose, with 7 significant findings and spontaneous activity 

decreased reaching up to 100% severity score (Table 3), and the mean maximum 

decrease in body temperature of 1.3oC occurred at 1 hour post-dose (Table 4).  For 

clonidine, the majority of and most pronounced effects were observed at 1 hour post-

dose, with 6 significant findings and spontaneous activity decreased reaching up to 

83% severity score (Table 3), where the mean maximum decrease in body 

temperature of 2.1oC also occurred (Table 5).  For amphetamine, the majority of and 

most pronounced effects were observed at 2 hours post-dose, with 5 significant 

findings and touch response increased reaching up to 83% severity score (Table 3), 

and the mean maximum increase in body temperature of 1oC occurred at 4 hours 

post-dose (Table 6). 

 

3.2. Effects on activity detected by ActualHCA™  

 

3.2.1. Chlorpromazine 

The activity profile of chlorpromazine differed between the 3 experimental conditions.  

When dosed during the light phase, chlorpromazine caused a statistically significant 

reduction in ambulatory and vertical activities immediately post-dose compared to its 

time-matched vehicle group (P<0.05; Figure 1A and B).  However, a delayed 

reduction in ambulatory activity was more prominent at 01:00h and 02:00h overnight 

(16 and 17 hours post-dose, respectively)(Figure 1A and B).  The AUC0-24h overview 

measure highlighted statistically significant reduction in ambulatory activity 

(P=0.000047) and in time spent in vertical activity (P=0.00014) when chlorpromazine 
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was dosed during the light phase.  When dosed in the dark phase, chlorpromazine 

caused a statistically significant delayed reduction in ambulatory and vertical 

activities at 10:00h the following morning (14 hours post-dose)(Figure 1C and D).  

The AUC0-24h overview measure highlighted significant reduction in ambulatory 

activity (P=0.013) and in time spent in vertical activity (P=0.012) when 

chlorpromazine was dosed during the dark phase.  When dosed during the light 

phase with a scheduled cage change at 2 hours post-dose, chlorpromazine caused a 

statistically significant reduction in stimulated ambulatory activity from 2 to 2.5 hours 

post-dose and in vertical activity at 1 and 2 hours post-dose (Figure 1E and F).  The 

AUC0-24h overview measure highlighted a statistically significant reduction in 

ambulatory activity (P=0.00075) but no significant effects on time spent in vertical 

activity (P=0.60) when chlorpromazine was dosed in the light phase with a scheduled 

cage change.  In conclusion, the transient stimulation of activity caused by a cage 

change in the vehicle animals was prevented by chlorpromazine treatment, which is 

in agreement with the effects of chlorpromazine causing reduced activity (Moscardo 

et al., 2007). 

 

3.2.2. Clonidine 

The activity profile of clonidine also differed between the 3 experimental conditions.  

When dosed in the light phase, clonidine caused a statistically significant delayed 

increase in ambulatory activity at 06:00h and 07:00h the next day (21 and 22 hours 

post-dose) and delayed increase in vertical activity from 04:00h to 07:30h the next 

day (19 to 22.5 hours post-dose)(P<0.05; Figure 2A and B).  The AUC0-24h measure 

highlighted no significant reduction in ambulatory activity (P=0.97), but the reduction 

was statistically significant on time spent in vertical activity (P=0.003) when clonidine 

was dosed during the light phase.  This effect in the light phase was inconsistent with 

the pharmacology of clonidine from the literature as clonidine was shown to reduce 

activity in rats (Drew et al., 1979; Drew et al., 1977; Ewart et al., 2013).  When dosed 

in the dark phase, clonidine caused no changes in ambulatory activity up to 24 hours 

post-dose (Figure 2C).  However, clonidine caused a statistically significant reduction 

in time spent in vertical activity from 02:30h to 06:30h overnight (6.5 to 10.5 hours 

post-dose, respectively)(P<0.05; Figure 2D).  The AUC0-24h measure highlighted no 
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significant reduction in ambulatory activity (P=0.13) but the reduction was statistically 

significant on time spent in vertical activity (P=0.0017) when clonidine was dosed in 

the dark phase.  When dosed in the light phase with a scheduled cage change at 1 

hour post-dose, clonidine caused a significant reduction in stimulated ambulatory 

activity from 1 to 1.5 hours post-dose, a delayed significant reduction in activity at 

22:30h (13.5 hours post-dose) and a significant delayed increase in activity at 07:00h 

(22 hours post-dose) hours post-dose (P<0.05; Figure 2E). Clonidine also caused a 

significant reduction in stimulated time spent in vertical activity from immediately 

post-dose to 1.5 hours post-dose (P<0.05; Figure 2F).  The AUC0-24h measure 

highlighted significant reduction in ambulatory activity (P=0.040) and in time spent in 

vertical activity (P=0.0016) when clonidine was dosed during the light phase with a 

scheduled cage change.  In summary, the transient stimulation of activity caused by 

a cage change in the vehicle animals was obliterated by clonidine treatment, which 

was in agreement with the effects of clonidine causing reduced activity in rats (Drew 

et al., 1979; Drew et al., 1977; Ewart et al., 2013). 

 

3.2.3. Amphetamine 

The effects of amphetamine in all 3 experimental conditions were consistent with its 

pharmacology from the literature (Fog, 1970; Mattsson et al., 1996; Moscardo et al., 

2007).  When dosed in the light phase, amphetamine caused a significant increase 

in ambulatory and vertical activities from immediately post-dose to 6.5 hours post-

dose (P<0.05; Figure 3A and B).  The AUC0-24h measure highlighted a significant 

increase in ambulatory activity (P=0.012) and in time spent in vertical activity 

(P=0.0015) when amphetamine was dosed during the light phase.  When dosed in 

the dark phase at 20:00h, amphetamine caused a significant increase in ambulatory 

and vertical activities from 0.5 to 8 hours post-dose (P<0.05; Figure 3C and D).  The 

AUC0-24h measure highlighted a significant increase in ambulatory activity (P=0.0078) 

but effects were not significant on time spent in vertical activity (P=0.065) when 

amphetamine was dosed in the dark phase.  When dosed in the light phase with a 

scheduled cage change at 2 hours post-dose, amphetamine caused significantly 

increased stimulated ambulatory and vertical activities from 0.5 to 6.5 hours post-

dose (P<0.05; Figure 3E and F).  The AUC0-24h measure highlighted significant 

increase in ambulatory activity (P=0.00092) and in time spent in vertical activity 
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(P=0.00069) when amphetamine was dosed during the light phase with a scheduled 

cage change.   

 

3.3. Effects on subcutaneous temperature detected by ActualHCA™  

 

3.3.1. Chlorpromazine 

The effects of chlorpromazine on subcutaneous temperature were consistent in all 3 

experimental conditions and in concordance with its known pharmacology (Mattsson 

et al., 1996; Moscardo et al., 2007). The maximum decrease in temperature of 1.5oC 

when dosed during the light phase occurred 3.5 hours post-dose (Figure 4A), when 

dosed during the dark phase, a maximum decrease of 1.4oC  occurred at 3 hours 

post-dose (Figure 4B), and when dosed during the light phase with scheduled cage 

change, a maximum decrease of 1.7oC  occurred 2.5 hours post-dose (Figure 4C).  

The AUC0-24h measure highlighted statistically significant effects when dosed in the 

light phase (P=0.016), however, effects were not statistically significant when dosed 

in the dark phase (P=0.14) or dosed in the light phase with a scheduled cage change 

(P=0.16).   

 

3.3.2. Clonidine 

The effects of clonidine on subcutaneous temperature were consistent in all 3 

experimental conditions and in concordance with its known pharmacology (Drew et 

al., 1979; Drew et al., 1977; Ewart et al., 2013; Moscardo et al., 2007).  The 

maximum decrease in body temperature of 1.5oC when dosed during the light phase 

occurred at 2.5 hours post-dose (Figure 4D), when dosed during the dark phase, a 

maximum decrease of 2.7oC  occurred at 4.5 hours post-dose (Figure 4E), and when 

dosed during the light phase with scheduled cage change, a maximum decrease of 

2.9oC  occurred at 1.5 hours post-dose (Figure 4F).  The AUC0-24h measure was not 

statistically significant when dosed in the light phase (P=0.46), however, effects were 

statistically significant both when dosed in the dark phase (P=0.0043) and when 

dosed in the light phase with a scheduled cage change (P=0.0017).   
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3.3.3. Amphetamine 

The effects of amphetamine on subcutaneous temperature were consistent in all 3 

experimental conditions and in concordance with its known pharmacology (Fog, 

1970; Mattsson et al., 1996; Moscardo et al., 2007).  The maximum increase in 

temperature of 1.5oC when dosed during the light phase occurred at 2 hour post-

dose (Figure 4G), when dosed during the dark phase, a maximum increase of 1.8oC 

occurred at 2 hours post-dose (Figure 4H), and when dosed during the light phase 

with a scheduled cage change, a maximum increase of 1.9oC occurred at 1.5 hours 

post-dose (Figure 4I).  However, the AUC0-24h measure was not statistically 

significant when dosed in the light phase (P=0.99), dosed in the dark phase (P=0.48) 

nor when dosed in the light phase with a scheduled cage change (P=0.10). 

 

3.4. Manual behavioural assessment from ActualHCA™ video vs. conventional 

modified Irwin test 

To validate the manual behavioural assessment collected from ActualHCA™ videos, 

an independent experiment undertaking the conventional home cage observation 

component of the modified Irwin test data was performed on control and treated 

animals.  The effects of chlorpromazine and clonidine on decreased spontaneous 

activity were consistent between both methods.  The effects of amphetamine on 

increased spontaneous activity, rearing and sniffing were also consistent between 

both methods (Tables 3, 4 and 5).  An effect of chlorpromazine on abnormal gait was 

observed from the video footage, but not from the live test (Table 4).  An effect of 

chlorpromazine on piloerection was observed in the live test, but not from the video 

footage (Table 4).  Piloerection caused by amphetamine in the live test were 

observed on several time points, which were also more pronounced than what was 

seen with chlorpromazine.  However, significant piloerection from the video footage 

was only observed at one time point, and was seen as less pronounced (Table 6).  

Since piloerection as a phenotype does not affect all animals exposed to 

chlorpromazine then the difference between the two studies could arise from a 

sampling effect or it could be due to level of resolution of the ActualHCA™ video. 
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3.5. Delayed behavioural findings from the ActualHCA™ monitoring 

Three additional time points of ‘Irwin-style’ post hoc assessment for each test agent 

were performed using the video footage captured with ActualHCA™ during the ‘light 

phase’ dosing protocol.  These time points were selected after evaluating the test 

agents on the 24h post-dose activity profile detected from the RFID transponder.  At 

these additional time points, chlorpromazine was observed to cause significantly 

decreased spontaneous activity at 16 and 17 hours post-dose, in the video (Table 7), 

where the automated ambulatory activity was significant decreased compared to 

vehicle (Figure 1).  Clonidine was observed to cause significantly increased 

spontaneous activity at 14.5 and 21 hours post-dose, in the video (Table 7), where 

the automated ambulatory activity showed decreasing trends at 12 and 14.5 hours 

post-dose, and significant increased activity at 21 hours post-dose (Figure 2). 

Amphetamine significantly decreased spontaneous activity at 12 and 14 hours post-

dose, in the video (Table 7), where the automated ambulatory activity was significant 

decreased at 8, 12 and 14 hours post-dose (Figure 3).   
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4. Discussion 

 

4.1. The added value of the ActualHCA™ system 

The ActualHCA™ system improves automated detection compared to other systems 

through the ability to monitor group housed animals without the need for specialised 

housing or invasive surgery.  The objective of this study was to validate the 

ActualHCA™ system pharmacologically with test agents and to compare the results 

with a manual qualitative observational assessment (modified Irwin test) that is 

widely used for assessing the neurobehavioural effects of new chemical entities.  

The pharmacological validation study showed that the ActualHCA™ system was 

able to detect effects on ambulatory and vertical activities, and subcutaneous 

temperature for the test agents chlorpromazine, clonidine and amphetamine.  The 

observed findings were consistent with the known pharmacology of these test agents 

in rats (Fog, 1970; Heal et al., 2013; Mattsson et al., 1996; Moscardo et al., 2007; 

Van der Laan & De Groot, 1988).  Their effects on activity and temperature, as 

detected using the modified Irwin test and ActualHCA™ were in agreement, despite 

using different cohorts of animals in independent experiments.  These results show 

that the automated monitoring of the ActualHCA™ system can be used as an 

alternative method for assessing locomotor activity and temperature effects of new 

chemical entities.  

 

Compared to an automated continuous monitoring method, a disadvantage of the 

conventional modified Irwin test is the use of pre-determined time points which can 

miss the maximum effect.  For example, the effect of chlorpromazine on 

subcutaneous temperature using ActualHCA™ was consistent in all 3 experimental 

conditions, with maximum effects observed within 2.5 to 3.5 hours post-dose.  

However, from the live modified Irwin test, where body temperature measurements 

were set at 1, 4 and 24 hours post-dose, the maximum effect on temperature was 

observed at 1 hour post-dose.  A further benefit of automated continuous monitoring 

is the ability to detect delayed effects.  Any functional effects that do not directly 

correlate with the pharmacokinetics of a test agent (e.g. delayed effects) can be 

missed when using manual pre-determined time points.  In 2 of the 3 drugs studied, 
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delayed effects were observed.  For example with chlorpromazine, an effect on 

ambulatory activity was observed at 16 and 17 hours post-dose, whereas, based on 

the neurobehavioural profile of chlorpromazine using conventional manual 

observations, the effects on behavior would have been expected to have subsided 

by 8 hours post-dose (Moscardo et al., 2007).  Any compensatory or rebound effects 

following the initial response to test agents may also be missed with pre-determined 

time points for manual observation based on the pharmacokinetic profile.  This was 

demonstrated with clonidine and amphetamine, where delayed reverse effects of 

their pharmacology were observed.  The rebound effect of clonidine has previously 

been demonstrated following 3 daily doses on locomotor activity (Van der Laan & De 

Groot, 1988).   

 

Most routine behavioural observations and measurements in rodents are conducted 

during the light phase for practical reasons. However, as rats are nocturnal, sedative 

effects may not be detected during the light phase.  A scheduled cage change was 

included within the experiment to introduce a novel environment which would 

transiently increase exploratory activity.  The rationale for doing this was that this 

might provide a brief window to detect sedative effects during the light phase.  This 

strategy was successful, as demonstrated with 2 sedative agents used in this study.  

The ActualHCA™ system can acquire data during the dark phase where animals are 

naturally active. however, dosing prior to a transient stimulation has benefits.  This is 

analogous to a conventional assessment of locomotor activity in a novel arena, 

except that rats are group-housed with their cagemates.  The data from the 

scheduled cage change will be comparable with other studies, which are frequently 

performed during the light phase.  Furthermore, drug metabolism has been shown to 

differ depending on the time of day (Gachon & Firsov, 2011; Radzialowski & 

Bousquet, 1968), therefore dosing during the dark phase can potentially alter the 

pharmacokinetic profile of the test agent.   

 

Another advantage of continuous measurements of body temperature is the 

reduction of stress leading to a more representative measure.  Body temperature 

measurements for the modified Irwin test require handling the animals and inserting 
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a rectal probe at each pre-determined time point.  This method limits the number of 

body temperature measurements performed each day.  The body temperature of 

animals also increases due to the stress of the handling procedure (Balcombe et al., 

2004; Clement et al., 1989; Dilsaver et al., 1992; Eikelboom, 1986; Moe & Bakken, 

1997).  Although, the ActualHCA™ measures subcutaneous temperature rather than 

core temperature, the rectal temperture used at the modified Irwin test is also not 

equivalent to core temperature (Dilsaver et al., 1992).  Mean rectal temperature in 

the rat ranges from 30-38oC with higher temperatures detected the further the probe 

pasts the anal sphincter (Lomax, 1966).  Mean core temperature from the rat ranges 

from 36.5 to 38oC, depending on the time of day (Gordon et al., 2002).  

Subcutaneous temperature measured using the ActualHCA™ in the rat ranges from 

35.1 to 37.2oC, with a mean subcutaneous temperature of 36.0oC ± 0.05 (mean ± 

95% confidence interval) during the light phase, and 36.2oC ± 0.07 (mean ± 95% 

confidence interval) during the dark phase (Redfern et al., 2017).  Rectal 

temperature can reach the range of core temperature when the probe reaches 

beyond 4 cm past the anal sphincter (Lomax, 1966).  However, the temperature 

probe for modified Irwin test was inserted 2 cm past the anal sphincter, therefore the 

temperature measured would be lower than core temperature.  To measure core 

temperature continuously would require invasive surgical implantation of an 

intraperitoneal telemetry device (Gordon et al., 2002).  

 

Maximum benefit from the system can be obtained by combining the continuous 

home cage monitoring with the modified Irwin test.  The video footage enables post 

hoc assessments of the observational ‘non-interactive’ elements of the modified Irwin 

test.  The elements that require handling e.g. traction response, touch response, or 

those that require close observations e.g. pupil size cannot be assessed.  The post 

hoc assessment can be implemented wherever the user feels is most appropriate, 

for example at the compound’s Tmax (see Supplementary Figure S1).  The use of an 

automated behavioural system does not directly replace the need for conventional 

approaches, but can work in synergy to provide non-subjective, additional 

measurements that are not achievable through manual observations, including 

measurements and observations during the dark phase in undisturbed animals.  

Therefore, the ActualHCA™ system could be combined both with post hoc Irwin 
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home cage observations on demand and a planned conventional modified Irwin test 

at the Tmax.  From our observations on the benefits of a cage change to present a 

transient novel environment, a conventional modified Irwin test could be combined 

with this event in the light phase as our data clearly demonstrated that this would 

reveal the effects of sedative agents without obscuring the effect of a stimulant. 

 

Obviously the technology has numerous other potential applications besides 

integration into the modified Irwin test.  Various authors have encouraged the 

inclusion of behavioural endpoints in rodent repeat-dose toxicology studies over the 

last three decades (Evans, 1989; Luft & Bode, 2002; Redfern, 2015; Redfern et al., 

2013; Zbinden, 1984).  Deployment of ActualHCA™ in early repeat-dose toxicology 

studies in rats would provide valuable additional data on adverse effects of new 

molecular entities on activity, behavior and temperature, as we have demonstrated 

with these three reference drugs after a single dose. Such effects can increase, 

diminish or remain the same on repeated dosing (Redfern et al., 2013).  Another 

obvious application in the field of CNS safety assessment is in the detection of drug 

dependence.  Typically, these studies involve repeat dosing of rodents daily for (say) 

3 weeks, followed by cessation of dosing. The animals are then monitored using a 

combination of manual and automated approaches to look for signs of physiological 

and behavioural withdrawal phenomena (Anon, 2006, 2017; Balster, 1991; Porsolt et 

al., 2002; Swedberg, 2013).  Depending on the pharmacological class, these 

withdrawal syndromes commonly involve changes in horizontal and vertical activity, 

and temperature (Ohmura et al., 2011).  Furthermore, ActualHCA™ has potential 

applications across the entire spectrum of behavioural neuroscience and drug 

discovery: activity/behavioural phenotyping of different rat strains and transgenic 

animals (e.g.(McDermott & Kelly, 2008)); circadian biology (e.g., (De La Iglesia et al., 

2008); fever studies (e.g. (de Melo Soares et al., 2017)); neurological and other 

disease models (e.g. (Percie du Sert et al., 2017).  In the field of animal husbandry 

and welfare it would provide the opportunity for stringent, objective, undisturbed 

evaluation of preference for different bedding, caging and environmental enrichment 

etc. (Balcombe, 2006). It would also enable early identification of individual animals 

at risk in repeat-dose toxicity studies, disease models, etc., as they would be 
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expected to exhibit hypoactivity and hypothermia (Gordon, 1991; Percie du Sert et 

al., 2017).  

 

4.2. Considering clinical translation 

The purpose of an Irwin test prior to clinical trials (Phase I) is to protect healthy 

volunteers and patients from harmful effects of candidate drugs on the nervous 

system.  A recent analysis of the predictive value of the Irwin test was undertaken on 

141 candidate drugs that had proceeded to be tested in Phase I single ascending 

dose studies (Mead et al., 2016).  This translational analysis was limited to common 

adverse effects, and found that these were poorly predicted from the Irwin 

parameters, included amongst these were somnolence and fatigue.  A possible 

impediment to translation is the observation that there are inter-laboratory 

differences in outcomes from the Irwin test (Ewart et al., 2013).  These can arise 

from strain, age or batch differences between rats, inter-observer differences in 

interpretation/assessment/scoring of behaviours, or from operational differences 

affecting baseline activity of the rats (Moscardo et al., 2007).  Operational differences 

include the level of prior handling of the animals, lighting levels and background 

noise, the time allowed from moving animal racks to the area where the Irwin test will 

be conducted before commencing the procedures, the time from removal of a cage 

from the rack to commencement of the observations – and even the time from 

opening the cage lid to the observations (Ewart et al., 2013).  Automated detection of 

effects on activity (which are plausibly associated with somnolence or fatigue), and 

extension of manual Irwin observations beyond the conventional working day and 

into the animal’s active dark phase, could contribute to improving the translation 

between preclinical assessment of CNS effects in rodents and CNS safety outcomes 

in Phase I.  Using ActualHCA™, this could be achieved without additional ‘observer 

resources’. 

 

4.3. Summary 

This study has demonstrated that ActualHCA™ can detect pharmacological changes 

in activity, temperature and behavior from two sedatives and a stimulant.  Compared 
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with the modified Irwin test, ActualHCA™ can consistently detect changes as seen in 

the modified Irwin test, albeit those limited to ‘non-interactive’ elements of this test.  

Furthermore, ActualHCA™ can provide advantages from the longer duration of 

continuous automated measurements which can highlight additional behavioural 

effects of the test agents to those achievable using conventional approaches.  Using 

automated home cage behavioural monitoring of group-housed rats can help 

improve our understanding of the pharmacological effects of test agents on the CNS. 
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Figures and Tables for “Pharmacological validation of individual 

animal locomotion, temperature and behavioural analysis in 

group-housesd rats using a novel automated home cage 

analysis system: a comparison with the modified Irwin test”
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Test agent Animal 

cohort 

ActualHCA™ system Animal 

cohort 

Modified Irwin test 

Chlorpromazine 1 Dosed and assessed 

on 3 different 

experimental 

conditions: ‘Light 

phase’, ‘dark phase’ 

& ‘cage change’ 

4 Dosed and assessed 

conventionally 

Clonidine 2 Dosed and assessed 

on 3 different 

experimental 

conditions: ‘Light 

phase’, ‘dark phase’ 

& ‘cage change’ 

5 Dosed and assessed 

conventionally 

Amphetamine 3 Dosed and assessed 

on 3 different 

experimental 

conditions: ‘Light 

phase’, ‘dark phase’ 

& ‘cage change’ 

6 Dosed and assessed 

conventionally 

 

Table 1. A study design table, illustrating the different experimental objectives, 

tested by ActualHCA™ and the conventional modified Irwin test 

A table illustrating the study design and the cohort of animals used for each 

experiment and each test agent.  The objective was to compare the capability of 

ActualHCA™ vs. the conventional modified Irwin test, in detecting functional effects 

of test agents with known pharmacological effects on the CNS in group-housed rats. 
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 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Week -3   Arrival Habituate Habituate Habituate Habituate 

Week -2 Habituate Habituate Transponder 
implantation:  

Recovery Recovery Recovery Recovery 

Week -1* Recovery Recovery Recovery Recovery Recovery Recovery Recovery 

Week 1 Pre-dose 
(Day -2) 

Pre-dose 
randomisati
on (Day -1) 

Day 1 
dosing – 
condition 1 
(light phase) 

Day 2  Washout  Washout Washout 

Week 2 Pre-dose 
(Day -2) 

Pre-dose 
Randomisa
tion (Day -
1) dosing 
after lights 
off (dark 
phase) 

Day 1 
condition 2 
(dark phase) 

Day 2  Washout  Washout Washout 

Week 3 Pre-dose 
(Day -2) 

Pre-dose 
Randomisa
tion (Day -
1) 

Day 1 
dosing – 
condition 3 
(Tmax cage 
change) 

Day 2  Washout  Washout Washout 

Table 2.  A study timing table, illustrating the timelines of the different 

experimental conditions tested using ActualHCA™ per test agent.A table 

illustrating the timelines from animals arrival to radiofrequency identification (RFID) 

transponder implantation, and dosing of the test agent for each experimental 

condition.  *Additional week for recovery was only required when the RFID 

transponder extruded externally from the implantation site and required replacement. 
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Group Symptoms observed 15 min 30 min 1h 2h 4h 24h 

Vehicle for 

chlorpromazine 

No symptoms 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 

Chlorpromazine 

(30 mg/kg 

orally) 

Spontaneous activity decreased 17% (3) 56% (6) 78% (6) 100% (6) 56% (5) 0% (0) 

Piloerection 0% (0) 0% (0) 17% (2) 33% (6) 39% (5) 0% (0) 

Touch response decreased 0% (0) 17% (2) 72% (6) 50% (4) 83% (6) 0% (0) 

Body tonus decreased 0% (0) 50% (5) 50% (5) 22% (3) 33% (5) 0% (0) 

Traction response decreased 0% (0) 6% (1) 28% (3) 6% (1) 11% (1) 6% (1) 

Sedation 0% (0) 11% (1) 56% (6) 56% (6) 56% (6) 0% (0) 

Pinna reflex decreased 0% (0) 11% (1) 11% (1) 33% (3) 11% (1) 11% (1) 

Ptosis 0% (0) 17% (2) 56% (6) 50% (5) 44% (6) 0% (0) 

Abnormal urination (increased) 0% (0) 0% (0) 0% (0) 0% (0) 22% (4) 0% (0) 

Vehicle for 

clonidine 

Traction response decreased 22% (2) 22% (2) 44% (4) 39% (4) 33% (3) 11% (1) 

Clonidine  

(0.3 mg/kg 

orally) 

Spontaneous activity decreased 50% (6) 61% (6) 83% (6) 83% (6) 67% (6) 0% (0) 

Flat body posture 22% (1) 33% (3) 33% (3) 11% (1) 0% (0) 0% (0) 

Piloerection 17% (2) 17% (3) 28% (3) 56% (5) 22% (3) 0% (0) 

Touch response decreased 0% (0) 39% (4) 6% (1) 11% (1) 22% (3) 0% (0) 

Traction response decreased 44% (3) 22% (2) 28% (3) 50% (4) 44% (3) 6% (1) 

Body tonus decreased 17% (2) 17% (3) 6% (1) 6% (1) 11% (1) 0% (0) 
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Ptosis 0% (0) 22% (1) 28% (3) 33% (3) 44% (4) 0% (0) 

Absence of blink reflex 67% (6) 56% (5) 56% (5) 11% (1) 33% (3) 0% (0) 

Abnormal respiration 67% (6) 67% (6) 56% (5) 67% (6) 61% (6) 0% (0) 

Vehicle for 

amphetamine 

No symptoms 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 

Amphetamine 

(10 mg/kg 

orally) 

Spontaneous activity increased 50% (6) 83% (6) 67% (6) 67% (6) 67% (6) 0% (0) 

Rearing increased 17% (3) 33% (3) 67% (6) 67% (6) 67% (6) 0% (0) 

Sniffing increased 17% (3) 17% (3) 17% (3) 17% (3) 50% (6) 0% (0) 

Piloerection 33% (3) 50% (6) 33% (3) 50% (6) 22% (4) 0% (0) 

Touch response increased 0% (0) 50% (6) 72% (6) 83% (6) 44% (4) 0% (0) 

Traction response decreased 22% (3) 17% (1) 0% (0) 17% (1) 6% (1) 6% (1) 

Pinna reflex decreased 11% (1) 0% (0) 44% (4) 22% (2) 33% (3) 0% (0) 

 
Table 3: The neurobehavioural effects from the modified Irwin test for chlorpromazine, clonidine and amphetamine 
exposure in rats.      

The table shows the percentage of maximum possible score (%MPS) and the number of animals with the observation in brackets 
for symptoms where 1 or more animals after oral administration of the respective compounds (n=6 per group per compound) exhibit 
the symptom.  No effect is scored as 0.  Data in bold are considered to be a significant effect in the modified Irwin test observation, 
whereby they have been observed in animals in the test agent groups with ≥n=3 of the same symptom observed in their respective 
vehicle groups.  The observed symptoms for each rat were scored from 1 to 3 based on severity of the symptom.  The observed 
symptoms for each treatment group at each observed time point were then presented as the dose group mean of the %MPS 
[score/max score*100].  The clonidine data presented were also published in Ewart et al. 2013.
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Observed 

time 

point 

Abnormal 

gait 

Abnormal 

respiration 

Pilo-

erection 

Spontaneous 

activity 

decreased 

Temperature: 

Mean difference (95%CI) 

Modified Irwin Test data Rectal probe 

15 min 0% (0) 0% (0) 0% (0) 17% (3) 
 

30 min 0% (0) 0% (0) 0% (0) 56% (6) 
 

1h 0% (0) 0% (0) 17% (2) 78% (6) -1.3°C (-1.04 to -1.53) 

2h 0% (0) 0% (0) 33% (6) 100% (6) 
 

4h  0% (0) 0% (0) 39% (5) 56% (5) -1.0°C (-0.43 to -1.54) 

24h 0% (0) 0% (0) 0% (0) 0% (0) +0.7°C (0.23 to 1.17) 

Home Cage observation from ActualHCA™  RFID transponder 

15 min 11% (2) 0% (0) 0% (0) 0% (0) 
 

30 min 28% (5) 6% (1) 0% (0) 56% (5) -0.7°C (-0.15 to -1.20) 

1h  22% (4) 0% (0) 0% (0) 67% (6) -0.6°C (-0.001 to -1.23) 

2h  0% (0) 6% (1) 0% (0) 67% (6) -0.6°C (-0.17 to -1.38) 

4h  0% (0) 0% (0) 0% (0) 56% (5) -1.1°C (-0.34 to -1.92) 

24h  0% (0) 0% (0) 0% (0) 0% (0) +0.3°C (-0.07 to 0.70) 

 

Table 4: Comparison of the parameters observed in the home cage using both 
the modified Irwin test and from ActualHCA™, following the administration of 
chlorpromazine or vehicle in rats.   

The observed behavioural effects for each rat were scored from 1 to 3 based on 
severity of the symptom (n=6/group).  No effect is scored as 0.  The observed 
behavioural effects for each method at each observed timepoint are presented as 
the dose group mean of the percentage of maximum possible severity score 
[score/max score*100], and the number of rats exhibited the behavioural effect in 
brackets.  Behavioural effects are considered significant and highlighted in bold, in 
the modified Irwin test or ActualHCA™, whereby they have been observed in the 
animals in the test agent groups with ≥n=3 with the same symptoms observed in 
their respective vehicle groups.  None of the symptoms listed were observed with the 
vehicle groups.  The effect of the drug on temperature is presented as the mean 
difference between vehicle and chlorpromazine groups, with the 95% confidence 
interval (CI) in brackets.  Effects on temperature were analysed using a student’s t-
test with multiple testing adjustment to control the false discovery rate to 5% within 
each datasets for a variable and drug using the Benjamini and Hochberg 
methodology.  Blank cells indicate the assessment was not performed at that 
timepoint, therefore data are not available.     
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Observed 

time point 

Abnormal gait Spontaneous 

activity decreased 

Temperature: 

Mean difference (95%CI) 

Modified Irwin Test data Rectal probe 

15 min 0% (0) 50% (6) 
 

30 min 0% (0) 61% (6) 
 

1h  0% (0) 83% (6) -2.1oC (-1.44 to -2.82) 

2h  0% (0) 83% (6)  

4h  0% (0) 67% (6)  

24h  0% (0) 0% (0)  

Home Cage observation from ActualHCA™ RFID transponder 

15 min 11% (2) 44% (6) 
 

30 min 0% (0) 67% (6) -0.7oC (-0.08 to -1.30) 

1h  0% (0) 50% (6) -0.9oC (-0.21 to -1.68) 

2h  0% (0) 0% (0) -1.0oC (-0.53 to -1.49) 

4h  0% (0) 50% (6) -0.5oC (-1.07 to 0.11) 

24h  0% (0) 0% (0) -0.1oC (-0.73 to 0.60) 

 

Table 5: Comparison of the parameters observed in the home cage using both 
the modified Irwin test and from ActualHCA™, following the administration of 
clonidine or vehicle in rats.   

The observed behavioural effects for each rat were scored from 1 to 3 based on 
severity of the symptom (n=6/group).  No effect is scored as 0.  The observed 
behavioural effects for each method at each observed timepoint are presented as 
the dose group mean of the percentage of maximum possible severity score 
[score/max score*100], and the number of rats exhibited the behavioural effect in 
brackets.  Behavioural effects are considered significant and highlighted in bold, in 
the modified Irwin test or ActualHCA™, whereby they have been observed in the 
animals in the test agent groups with ≥n=3 with the same symptoms observed in 
their respective vehicle groups.  None of the symptoms listed were observed with the 
vehicle groups.  The effect on temperature is presented as the mean difference 
between vehicle and chlorpromazine groups, with the 95% confidence interval (CI) in 
brackets.  Effects on temperature were analysed using a student’s t-test with multiple 
testing adjustment to control the false discovery rate to 5% within each datasets for a 
variable and drug using the Benjamini and Hochberg methodology.  Blank cells 
indicate the assessment was not performed at that timepoint, therefore data are not 
available.    
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Observed 

time point 

Pilo-

erection 

Rearing 

increased 

Sniffing 

increased 

Spontaneous 

activity 

increased 

Temperature: 

Mean difference (95%CI) 

Modified Irwin Test data Rectal probe 

15 min 33% (3) 17% (3) 17% (3) 50% (6) 
 

30 min 50% (6) 33% (3) 17% (3) 83% (6) 
 

1h  33% (3) 67% (6) 17% (3) 67% (6) +0.7oC (0.23 to 1.17) 

2h  50% (6) 67% (6) 17% (3) 67% (6)  

4h  22% (4) 67% (6) 50% (6) 67% (6) +1.0oC (0.59 to 1.34) 

24h  0% (0) 0% (0) 0% (0) 0% (0) -0.3oC (-0.67 to 0.19) 

Home Cage observation from RBB video footage  RFID transponder 

15 min 0% (0) 33% (6) 67% (6) 67% (6) 
 

30 min 17% (3) 33% (6) 67% (6) 67% (6) +0.9oC (0.26 to 1.59) 

1h  6% (1) 22% (4) 67% (6) 67% (6) +1.4oC (0.74 to 2.10) 

2h  0% (0) 17% (3) 28% (5) 67% (6) +1.4oC (0.39 to 2.40) 

4h  0% (0) 11% (2) 28% (5) 61% (6) +0.7oC (-0.36 to 1.74) 

24h  0% (0) 0% (0) 0% (0) 0% (0) +0.1oC (-0.59 to 0.81) 

 

Table 6: Comparison of the parameters observed in the home cage using both 
the modified Irwin test and from ActualHCA™, following the administration of 
amphetamine or vehicle in rats.   

The observed behavioural effects for each rat were scored from 1 to 3 based on 
severity of the symptom (n=6/group).  No effect is scored as 0.  The observed 
behavioural effects for each method at each observed timepoint are presented as 
the dose group mean of the percentage of maximum possible severity score 
[score/max score*100], and the number of rats exhibited the behavioural effect in 
brackets.  Behavioural effects are considered significant and highlighted in bold, in 
the modified Irwin test or ActualHCA™, whereby they have been observed in the 
animals in the test agent groups with ≥n=3 with the same symptoms observed in 
their respective vehicle groups.  None of the symptoms listed were observed with the 
vehicle groups.  The effect of the drug on temperature is presented as the mean 
difference between vehicle and chlorpromazine groups, with the 95% confidence 
interval (CI) in brackets.  Effects on temperature were analysed using a student’s t-
test with multiple testing adjustment to control the false discovery rate to 5% within 
each datasets for a variable and drug using the Benjamini and Hochberg 
methodology.  Blank cells indicate the assessment was not performed at that 
timepoint, therefore data are not available.   
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Figure 1.  The effects of chlorpromazine compared with vehicle, on activity in 

rats. 

Male Han Wistar rats (n=6/group) were dosed orally with chlorpromazine at 30 

mg/kg, or vehicle (10 mL/kg).  Ambulatory activity, expressed as the number of 

transitions (left panel), and in time spent rearing, expressed in seconds (right panel) 

were recorded for 24h from immediately post-dose using ActualHCA™.  A) + B); 

dosing occurred during the light phase at approximately 09:00h.  C) + D); dosing 

occurred during the dark phase at approximately 20:00h.  E) + F); dosing occurred 

during the light phase at approximately 09:00h, with a scheduled cage-change at 

11:00h.  At each time point the treatment data were compared to vehicle using a 

student’s t-test with multiple testing adjustment to control the false discovery rate to 

5% within each datasets for a variable and drug using the Benjamini and Hochberg 

methodology. *P<0.05; **P<0.01; ***P<0.001.  

A) B) 

C) D) 

E) F) 

Time of day (hh:mm) Time of day (hh:mm) 

Time of day (hh:mm) Time of day (hh:mm) 

Time of day (hh:mm) Time of day (hh:mm) 
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Figure 2.  The effects of clonidine compared with vehicle, on activity in rats. 

Male Han Wistar rats (n=6/group) were dosed orally with clonidine at 0.3 mg/kg, or 

vehicle (10 mL/kg).  Ambulatory activity, expressed as the number of transitions (left 

panel), and in time spent rearing, expressed in seconds (right panel) were recorded 

for 24h from immediately post-dose using ActualHCA™.  A) + B); dosing occurred 

during the light phase at approximately 09:00h.  C) + D); dosing occurred during the 

dark phase at approximately 20:00h.  E) + F); dosing occurred during the light phase 

at approximately 09:00h, with a scheduled cage-change at 10:00h.  At each time 

point the treatment data were compared to vehicle using a student’s t-test with 

multiple testing adjusted to control the false discovery rate to 5% within each 

datasets for a variable and drug using the Benjamini and Hochberg methodology. 

*P<0.05; **P<0.01.  

A) B) 

C) D) 

E) F) 
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Figure 3.  The effects of amphetamine compared with vehicle, on activity in 

rats. 

Male Han Wistar rats (n=6/group) were dosed orally with amphetamine at 10 mg/kg, 

or vehicle (10 mL/kg).  Ambulatory activity, expressed as the number of transitions 

(left panel), and in time spent rearing, expressed in seconds (right panel) were 

recorded for 24h from immediately post-dose using ActualHCA™.  A) + B); dosing 

occurred during the light phase at approximately 09:00h.  C) + D); dosing occurred 

during the dark phase at approximately 20:00h.  E) + F); dosing occurred during the 

light phase at approximately 09:00h, with a scheduled cage-change at 11:00h.  At 

each timepoint the treatment data were compared to vehicle using a student’s t-test 

with multiple testing adjustment to control the false discovery rate to 5% within each 

datasets for a variable and drug using the Benjamini and Hochberg methodology. 

*P<0.05; **P<0.01; ***P<0.001. 

  

A) B) 

C) D) 

E) F) 
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Figure 4.  The effects of chlorpromazine, clonidine and amphetamine 

compared with vehicle, on temperature in rats. 

Male Han Wistar rats (n=6/group) were dosed orally with chlorpromazine at 30 mg/kg 

(A, B, C), clonidine at 0.3 mg/kg (D, E, F), amphetamine at 10 mg/kg (G, H, I), or 

vehicle (10 mL/kg) and the subcutaneous temperature monitored.  The left panel (A, 

D, G): dosing during the light phase at approximately 09:00h.  The middle panel (B, 

E, H): dosing during the dark phase at approximately 20:00h.  The right panel (C, F, 

I): dosing during the light phase at approximately 09:00h, with a scheduled cage-

change at 10:00h for clonidine, and 11:00h for chlorpromazine and amphetamine.  At 

each timepoint the treatment data were compared to vehicle using a student’s t-test 

with multiple testing adjustment to control the false discovery rate to 5% within each 

datasets for a variable and drug using the Benjamini and Hochberg methodology. 

*P<0.05; **P<0.01; ***P<0.001.  

A) B) C) 

D) E) F) 

G) H) I) 
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Chlorpromazine Timepoints (post-dose) 

16h 17h 18h 

Spontaneous 
activity decreased 

56% (5) 28% (3) 6% (1) 

Spontaneous 
activity increased 

0% (0) 0% (0) 0% (0) 

Clonidine Timepoints (post-dose) 

12h 14.5h 21h 

Spontaneous 
activity decreased 

0% (0) 0% (0) 0% (0) 

Spontaneous 
activity increased 

0% (0) 17% (3) 50% (6) 

Amphetamine Timepoints (post-dose) 

8h 12h 14h 

Spontaneous 
activity decreased 

11% (2) 17% (3) 22% (3) 

Spontaneous 
activity increased 

0% (0) 0% (0) 0% (0) 

 

Table 7.  Results from the additional modified Irwin test conducted from 

ActualHCA™ video at 3 delayed time points for chlorpromazine, clonidine and 

amphetamine in rats.   

The observed behavioural effects for each rat were scored from 1 to 3 based on 

severity of the symptom (n=6/group).  No effect is scored as 0.  The observed 

behavioural effects for each method at each observed timepoint are presented as 

the dose group mean of the percentage of maximum possible severity score 

[score/max score*100], and the number of rats exhibited the behavioural effect in 

brackets.  Behavioural effects are considered significant and highlighted in bold, 

whereby they have been observed in the animals in the test agent groups with ≥n=3 

with the same symptoms observed in their respective vehicle groups.  None of the 

symptoms listed were observed with the vehicle groups.   
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