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Abstract 

Children born very preterm (< 32 weeks gestational age) are known to be at increased risk of 

neurocognitive impairments, in domains including executive functioning, processing speed, 

and fluid and crystallised intelligence. Given the close association between these constructs, 

the current study investigated a specific model, namely whether executive functioning and/or 

processing speed mediates the relationship between preterm birth and intelligence. 

Participants were 204 children born very preterm and 98 full-term children, who completed a 

battery of tasks measuring executive functioning, processing speed, and fluid and crystallised 

intelligence. Independent-samples t-tests found significantly poorer performance by children 

born preterm on all measures, and a confirmatory factor analysis found preterm birth to be 

significantly related to each of the cognitive domains. A latent-variable mediation model 

found that executive functioning fully mediated the associations between preterm birth and 

both fluid and crystallised intelligence. Processing speed fully mediated the preterm birth-

fluid intelligence association, but only partially mediated the preterm birth-crystallised 

intelligence association. Future research should consider a longitudinal study design to test 

whether these deficits and mediating effects remain throughout childhood and adolescence. 

 

Keywords: Executive function; Processing speed; Intelligence; Preterm birth. 

 

Highlights 

 Children born very preterm are at risk of cognitive deficits 

 We examined executive function, processing speed and intelligence in this sample 

 Executive functioning fully mediated intelligence deficits in preterm-born children 

 Processing speed partially mediated intelligence deficits in preterm-born children 
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Executive functioning (fully) and processing speed (mostly) mediate intelligence deficits 

in children born very preterm 

 Children born very preterm (VP; less than 32 weeks gestation) have increased risks of 

brain injury (Cooke & Abernethy, 1999; Maalouf et al., 1999; Stewart et al., 1999), 

potentially resulting in neurocognitive deficits, academic underachievement and behavioural 

problems (Aarnoudse-Moens, Weisglas-Kuperus, van Goudoever, & Oosterlaan, 2009; 

Bhutta, Cleves, Casey, Craddock, & Anand, 2002). For example, there is an increased risk of 

poorer executive function, intelligence and speed of processing following very preterm birth 

(Brydges et al., 2017).  Given that these three cognitive domains – executive functioning 

(EF), processing speed, and intelligence – are commonly considered to be related to each 

other in both adults (e.g., Friedman et al., 2006; Redick, Unsworth, Kelly, & Engle, 2012) 

and children (e.g., M. Anderson, 1992, 2001; Brydges, Reid, Fox, & M. Anderson, 2012), it 

is possible that lower intelligence associated with preterm birth is at least partially mediated 

by EF and/or processing speed.  It is this hypothesis that we will test in this study. 

 Executive functioning is a broad umbrella term associated with higher-order cognitive 

functioning and goal-directed behaviour (Miller & Cohen, 2001). Successful executive 

functioning is associated with performance on complex tasks (Miyake et al., 2000) and 

academic outcomes (St. Clair-Thompson & Gathercole, 2006). Conversely, deficits in EFs, 

which are commonly observed in children born VP (P. Anderson & Doyle, 2003), are 

associated with academic underperformance and behavioural problems (Aarnoudse-Moens et 

al., 2009).  One commonly accepted model of executive functions is the ‘unity and diversity’ 

model proposed by Miyake et al. (2000). Miyake et al. tested 137 young adults on multiple 

measures of three commonly theorised executive functions (prepotent response inhibition, 

updating of working memory, and task shifting), and extracted latent variables of these three 
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constructs by using confirmatory factor analysis (CFA). The resultant model displayed 

moderately strong inter-factor correlations (range r = .42 to r = .63), implying that these 

constructs are related yet distinct from each other. As such, this model proposes that there is a 

general, domain-free ability underlying all executive processes, as well as several 

independent abilities specific to each single executive function (Friedman & Miyake, 2017; 

Miyake & Friedman, 2012). The general, common ability causes each single executive 

function to correlate with each other, whereas the specific abilities cause each function to be 

separable from each other. Attempts to replicate this model in children, however, have been 

mixed. A growing body of research has suggested that that structure of executive functions 

though early to mid-childhood, up to around the age of 9 years, appears to be unitary (i.e. a 

one-factor model of executive functioning is the best fit of the data; Brydges, Fox, Reid, & 

M. Anderson, 2014a; Brydges et al., 2012; Wiebe, Espy, & Charak, 2008; Wiebe et al., 2011; 

Willoughby, Wirth, Blair, & Greenberg, 2012). However, from around the age of 10 years the 

individual executive functions differentiate themselves from each other, so that the Miyake et 

al. (2000) model of executive functions is observed (i.e. children display ‘unity and 

diversity’; Brydges, Fox, Reid, & Anderson, 2014b; Duan, Wei, Wang, & Shi, 2010; Lehto, 

Juujärvi, Kooistra, & Pulkkinen, 2003; Shing, Lindenberger, Diamond, Li, & Davidson, 

2010; Wu et al., 2011). 

Processing speed usually refers to the speed at which individuals can perform single 

cognitive operations such as mentally rotating an object, encoding stimuli and rehearsing 

items in working memory (Sheppard & Vernon, 2008, Vernon, 1983). Processing speed has 

been a central explanatory construct for explaining individual differences in intelligence, or g, 

with this research reaching its apogee in the 1980s where numerous studies reported that 

simple measures of both reaction time and inspection time have moderate to strong 

correlations with measures of IQ (Jensen, 1982; Kranzler & Jensen, 1989; Nettelbeck 1987).   
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Processing speed is usually found to improve with age in children (Fry & Hale, 1996, 2000; 

Hale, 1990; Kail, 1986, 1991a, 1991b, 1992; Kail & Hall, 1994; Kail & Park, 1992, 1994; 

Kail & Salthouse, 1994; Nettlebeck, 1987; Nettlebeck & Wilson, 1985), though this is not 

uncontested (M. Anderson, 2017; M. Anderson, Nettlebeck, & Barlow, 1997; Davis & M. 

Anderson, 1999, 2001).  Part of the difficulty in interpreting the developmental research, in 

particular, is the acknowledgement that most speed measures are derived from tasks that 

probably include processes other than speed of processing that are related to both intelligence 

and development.  This is the case for even relatively simple measures of reaction time  

(Rabbitt & Goward, 1994) and inspection time (M. Anderson, 1989, 1995; M. Anderson, 

Nettlebeck, & Barlow, 1997;  M. Anderson, 1989, 1985 M. Anderson, Reid, & Nelson, 

2001).  Because of task impurity some researchers argue for a structural equation modelling 

approach where constructs such as processing speed and executive functioning can be 

extracted as independent latent traits (the approach taken in this paper).  For example, 

Demetriou and colleagues have attempted to tease apart the influence of processing speed, 

working memory and other executive functions at different points of development 

(Demetriou et al., 2013). Their developmental model proposes shifts and cycles in 

development where processes of representational change interact with the development of 

some basic information processing capacities.  While it must be acknowledged that 

differentiating these processes is not without difficulty (see M. Anderson, 2017, for a recent 

review and a theoretical analysis of the relationship between processing speed, executive 

functioning and intelligence in development) there is a consensus in the literature that the 

development of these processes appears to be relatively linear throughout childhood (e.g., 

Hale, 1990; Kail, 1991a), and, in particular, there is evidence that age-related improvements 

in intelligence are partially mediated by developmental improvements in processing speed 

(Fry & Hale, 1996, 2000). Furthermore, Fry and Hale (1996) found that age-related 
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improvements in processing speed also accounted for most of the age-related improvements 

in working memory, and even when age-related differences in speed, working memory and 

intelligence were controlled for, individual differences in speed were predictive of working 

memory capacity, which was in turn predictive of fluid intelligence.  

It is well established that both EF and processing speed are associated with 

intelligence in children (e.g., M. Anderson, 1992; 2001; 2017; Demetriou et al., 2014). M. 

Anderson’s theory of the minimal cognitive architecture underlying intelligence and 

cognitive development (M. Anderson, 1992, 2001; 2017), posits that processing speed and EF 

are two separate dimensions of general intelligence. Speed is related to individual differences 

(IQ) and EFs are related to developmental change (mental age). While in theory these are 

independent dimensions of general intelligence (being grounded in quite different brain 

systems) in practice these dimensions work in concert to produce changing levels of fluid 

intelligence (Cattell, 1963) in the developing child which has a cascading effect on the 

development of crystallised intelligence (Cattell, 1963). For example, Brydges et al. (2012) 

conducted CFA and structural equation modelling (SEM) on a sample of 215 7- and 9-year 

old children, and found that a unitary EF factor was highly predictive of both fluid 

intelligence (gF; the ability to solve unfamiliar problems) and crystallised intelligence (gC; 

the repository of previously acquired knowledge; Cattell, 1963). Hence, it is clear that EF and 

processing speed are associated with intelligence. In this paper we focus on the 

developmental dimension and ask the central question, again using a structural equation 

modelling methodology: if processing speed and EF are related to both fluid and crystallised 

intelligence in typically developing children, to what extent is the relationship the same for 

children born preterm?  Our hypothesis is that the relationship may differ because preterm 

children show significant differences in brain volume across a broad frontoparietal network 

(Peterson et al., 2000), the activation of which is associated with successful executive 



 INTELLIGENCE IN CHILDREN BORN VERY PRETERM 7 

 

functioning (Niendam et al., 2012) and hence the effects of prematurity on intelligence might 

be more mediated by EF than processing speed.     

The current study aimed to examine the effects of preterm birth on neurocognition. A 

recent meta-analysis conducted by Brydges et al. (2018) examined the effects of very preterm 

birth on EF, processing speed, and intelligence. It was found that preterm birth has medium 

effect sizes on EF and processing speed, and a large effect on intelligence (0.51 SDs, 0.49 

SDs, and 0.82 SDs, respectively). Given the plethora of research reporting deficits in these 

cognitive domains (e.g., Aarnoudse-Moens et al., 2009; P. Anderson & Doyle, 2003; Bhutta 

et al., 2002; Kerr-Wilson, Mackay, Smith, & Pell, 2012) a mediation model using latent 

variables was created to test whether EF and/or processing speed mediated associations 

between preterm birth and intelligence (split into gF and gC). Based on Brydges et al. (2018), 

it was hypothesised that children born VP suffer from neurocognitive deficits. As such, it was 

predicted that these children would perform significantly worse on all measures of EF, 

processing speed, and intelligence. Secondly, it was hypothesised that EF and processing 

speed would both be related to, and predictive of, both gF and gC in our sample. Lastly, as a 

result of the effects of preterm birth on EF, processing speed, and intelligence observed in 

previous meta-analyses (Aarnoudse-Moens et al., 2009; Bhutta et al., 2002; Brydges et al., 

2018; Kerr-Wilson et al., 2012) and the close relations between these constructs (M. 

Anderson, 1992, 2001; 2017) it was hypothesised that that EF and/or processing speed would 

mediate both the preterm birth-gF and preterm birth-gC associations. 

Method 

Participants 

 A total of 302 children participated in the study. This sample comprised 204 children 

born VP at less than 32 weeks gestation (M = 27.21 weeks, SD = 2.53 weeks) recruited from 
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King Edward Memorial Hospital (KEMH). This group had a mean birthweight of 999.80 g 

(SD = 368.87 g, range = 455 g – 2360 g).  The KEMH Neonatal Intensive Care Unit is within 

the only level 3 perinatal service in the state of Western Australia and the largest unit in the 

Asia-Pacific region. Children (106 male, 98 female) had a mean chronological age of 7 years 

2 months (SD = 3 months; range = 6 years 7 months – 8 years 0 months) at the time of the 

current study. Ninety-eight typically developing children (44 male, 54 female; M = 7 years 3 

months, SD = 5 months, range = 6 years 2 months – 8 years 0 months) were also included and 

recruited from local primary schools. The preterm group was significantly younger in terms 

of both chronological age (t(300) = 2.29, p = .023) and corrected age (M = 6 years 11 months, 

SD = 3 months, range = 6 years 4 months – 7 years 9 months; t(300) = 8.33, p < .001)1. 

Materials 

Executive Functioning. 

Fruit Stroop: The Fruit Stroop task was used to measure age-related differentiation of 

inhibition, and was selected for this study as it does not require competent literacy. The task 

is comprised of four trials of speeded colour naming of six rows of seven fruit stimuli. In 

condition one, children are required to name coloured boxes as quickly as possible. In 

condition two, children are required to name the colour of seven fruits as quickly as possible. 

In the third condition, children are asked to recall the colour of the seven fruit that have been 

shaded grey as quickly as possible. In the final Stroop inhibition condition, children are 

required to name the colour of the seven fruits when the pictured fruit are shaded in 

incongruent colours. All trials are preceded by practice trials, presented on a separate sheet 

from stimulus materials. All trials are given a time limit of 45 seconds. The number of correct 

items in condition four was used as the dependent variable. 
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Letter-Number Sequencing: Letter-Number Sequencing (LNS) is part of the 

Working Memory Index of the WISC-IV (Wechsler, 2003). Children were required to 

mentally sort series of letters and numbers into alphabetical and ascending order, and state 

this transformed sequence to the administrator. The dependent variable was the raw score 

from this measure, which is the total number of correct trials. 

Digit Span: Digit Span is also a part of the Working Memory Index of the WISC-IV 

(Wechsler, 2003). Children were required to recall lists of numbers of increasing length in the 

order they were presented, then in reverse order. The indicator of working memory was the 

raw score from this measure, which is the total number of correct trials. 

Creature Counting: Creature Counting is a subtest of the Test of Everyday Attention 

of Children (TEA-Ch; Manly, Robertson, V. Anderson, & Nimmo-Smith, 1999) that 

measures attentional control when switching.  Children are required to switch between two 

relatively simple activities of counting creatures in their burrows either forwards and 

backwards, which is cued with arrows of corresponding direction intermittently appearing in 

each sequence of pictures. The raw score of trials correct was submitted for analysis. 

Processing Speed. 

Coding: Coding is part of the Processing Speed Index of the WISC-IV (Wechsler, 

2003). Children were required to write the symbol associated with a number using a provided 

chart with digit-symbol pairings, and complete as many items as possible within the allowed 

timeframe. The number of correct items was the raw score used in analyses. 

Symbol Search:  Symbol Search is also part of the Processing Speed Index of the 

WISC-IV (Wechsler, 2003). Children were required to search for and decide whether a target 
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symbol appeared among distractors, and again complete as many items as possible within the 

allowed timeframe. The number of correct items was the raw score used in analyses. 

Intelligence. 

 Cattell Culture Fair Intelligence Test (Scale 2, Cattell, 1973): The Cattell Culture 

Fair Intelligence Test (CCFIT) is a commonly used, nonverbal measure of gF.  The task 

requires inductive reasoning about perceptual patterns, and consists of four timed subtests 

(series completion, odd-one-out, matrices, and topology), with items increasing in difficulty 

within each subtest. The indicator for gF was the raw score of this measure, which is the total 

number of correct items across all subtests. 

Block Design: Block Design is a subtest from the Perceptual Reasoning Index of the 

WISC-IV (Wechsler, 2003). This task requires children to reconstruct patterns using blocks, 

with more points awarded in each trial for more accurate replications of the patterns. The 

indicator for gF was the raw score for this measure, which is the total number of points across 

trials. 

 Vocabulary: The Vocabulary subtest from the Verbal Comprehension Index of the 

WISC-IV (Wechsler, 2003) was used as a measure of gC as it assesses previously acquired 

knowledge. For this task, participants are required to name pictures or provide definitions for 

words, with more points in each trial awarded for correct and clear definitions. The indicator 

of gC was the raw score of this measure, which is the total number of points across trials. 

 Information: Information is also a subtest from the Verbal Comprehension Index of 

the WISC-IV (Wechsler, 2003) that was used as a measure of gC. This task also assesses 

previously acquired knowledge, by requiring participants to answer questions about general 
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factual knowledge, with more points awarded for correctness and clarity. The indicator of gC 

was the raw score of this measure, which is the total number of points across trials. 

Procedure 

Children participated in a school-holiday activity program called Project K.I.D.S. 

(M. Anderson & Reid, 2015; Reid & M. Anderson, 2012) at Murdoch University, in 

collaboration with the Neurocognitive Development Unit at the School of Psychology of the 

University of Western Australia and the UWA Centre for Neonatal Research and Education 

(KEMH). Psychometric, chronometric and physiological measures were administered as part 

of a broader study enquiring about the cognitive, social and emotional development of 

children born VP as well as the typical development of school-aged children. Data reported 

here was derived from this larger database and includes selected subtests from measures of 

intelligence as well as executive functioning and processing speed tasks. All selected subtests 

were administered under standardized conditions. A maximum of 24 children at a time 

attended Project K.I.D.S. for two consecutive days over a two week period. This two-week 

testing session occurred in the school holidays. All testing was presented in a child-friendly 

manner, and each testing session lasted 25 minutes. When not in testing sessions, meals and 

activities (such as games and arts) were scheduled to ensure the participants enjoyed 

themselves and did not become fatigued. At the conclusion of each two day testing period, all 

participants were given a Project K.I.D.S. t-shirt as a memento of their participation. 

Statistical Procedures and Analysis 

 All measures displayed a satisfactory level of normality without any trimming or 

transformation procedures. As CFA and SEM are very sensitive to outliers, univariate and 

multivariate outlier analyses were conducted on the ten dependent variables. Specifically, a 

test score was considered a univariate outlier if it was greater than 3 SDs from the between-
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subjects variable mean, and was replaced with a value that was 3 SDs from the mean. This 

affected no more than two of the observations on any measure. No multivariate outliers were 

identified when using a Cook’s D value of > 1 (Cook & Weisberg, 1982). Although Little’s 

(1988) MCAR test was significant [χ2(483) = 652.60; p < .001], this is most likely due to the 

large number of degrees of freedom. The χ²/df value is less than 2 (χ²/df = 1.43), arguing that 

the missing data is missing completely at random. These scores were estimated using the full 

information maximum likelihood method. 

As the preterm group was significantly younger than the full-term group, analyses 

were conducted twice – once using raw scores on the measures described previously, and 

again using corrected-age-standardised scores (Doyle & P. Anderson, 2016). As Fruit Stroop 

and CCFIT do not have norms for children as young as 6 years, the sample was divided into 

three corrected-age groups (less than 7 years, between 7 and 7.5 years, and 7.5 to 8 years 

corrected age), and z-scores were calculated within each group. All other measures had 

WISC-IV age standardised scores. 

 Amos 20 (Arbuckle, 2011) was used to estimate latent variable models with missing 

data. In both CFA and SEM, several fit indices were used to evaluate the fit of each model to 

the data. The χ²/df statistic was used, because models with larger sample sizes and/or more 

degrees of freedom often show significant χ² values, despite having only marginal differences 

between the model and the data. χ²/df being less than two is considered an indication of good 

model fit. Three other fit indices recommended by Hu and Bentler (1998) were also used: 

Bentler’s comparative fit index (CFI), and the root-mean-square error of approximation 

(RMSEA). The criteria for excellent model fit based on these indices is greater than .95 and 

less than .05 respectively. However, models are acceptable with respective values of .90 and 

.10 (Blunch, 2008). Significance of correlation and path coefficients was determined by 

conducting χ² difference tests when removing an individual regression parameter. If the 
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difference in model fit was significant, it indicated that the regression path makes a 

significant contribution to model fit. This method is more reliable than using test statistics 

that are based upon comparing standard errors of parameters (Gonzalez & Griffin, 2001). 

Results 

Descriptive Statistics 

 Descriptive statistics of the raw and standardised scores of the ten measures are 

presented in Tables 1 and 2 respectively, and the correlations between the measures being 

studied after outlier analysis are presented in Tables 3 and 4. As predicted, the VP group 

performed significantly worse on all measures regardless of whether raw or age-standardised 

variables were analysed, with medium to large effects of preterm birth evident, though these 

effect sizes were generally a little lower in the standardised measures (see Tables 1 and 2).  

Latent Variable Analyses 

 Using standardised scores to account for between-groups age differences, a CFA was 

conducted to determine whether birth group and the four cognitive constructs were related to 

each other. The correlations between constructs ranged from r = -.32 to r = .87 (all p < .001; 

see Table 5 for CFA factor correlations). Despite some very high correlations, alternative 

model testing found that the full five-construct model was the best fit for the data (i.e. 

attempting to combine, say, EF and gF into a single factor resulted in significantly worse 

model fit). The model fit statistics for this model were excellent [χ2(35) = 59.57, p = .006, 

χ2/df = 1.70, CFI = .97, RMSEA = .048]. 

 Given the high degree of relatedness between birth group and the four cognitive 

factors, a mediation model was tested using structural equation modelling. In this model, 

birth group predicted both gF and gC, whilst EF and processing speed acted as mediators 
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between birth group and the intelligence factors. Additionally, the residual variances of EF 

and processing speed were allowed to correlate with each other in case there was common 

variance between the two constructs that birth group did not account for. This was also done 

for the residual variances of gF and gC.  

 Figure 1 shows the final SEM mediation model. To test whether the relationship 

between birth group and intelligence is mediated by EF and/or processing speed, the birth 

group-gF and birth group-gC regression paths were removed from the model, one at a time, 

given that the birth group-gF and birth group-gC correlations were both statistically 

significant in the CFA model. Removal of these paths did not significantly worsen model fit 

(birth group-gF Δχ2 = 0.93, Δdf = 1, p = .33; birth group-gC Δχ2 = 2.57, Δdf = 1, p = .11), 

therefore, any association between birth group and the two intelligence factors is completely 

accounted for by EF and/or processing speed. That is, the relationship between preterm birth 

and intelligence was fully mediated by EF and/or processing speed.  

 To determine which of EF and processing speed (or both) mediated the birth group-

intelligence relationship, further testing was conducted. Removal of the birth group-EF (Δχ2 

= 34.41, Δdf = 1, p < .001), EF-gF (Δχ2 = 41.63, Δdf = 1, p < .001), and EF-gC paths (Δχ2 = 

65.15, Δdf = 1, p < .001) all significantly worsened model fit, indicating that these paths are 

significant and that EF mediates the birth group-intelligence relationship. Of note, when the 

EF-gF and EF-gC paths were removed, the birth group-gF path remained nonsignificant, but 

the birth group-gC path increased to statistical significance, implying that processing speed is 

fully mediating the birth group-gF relationship, but only partially mediating the birth group-

gC relationship. The same procedure was then conducted with the processing speed factor. 

Removal of the birth group-speed (Δχ2 = 30.45, Δdf = 1, p < .001) and speed-gF (Δχ2 = 8.39, 

Δdf = 1, p = .004) paths both significantly worsened model fit, indicating that these paths are 
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also significant and that processing speed mediates the birth group-gF relationship. However, 

removal of the speed-gC path did not significantly worsen model fit (Δχ2 = 1.65, Δdf = 1, p = 

.20), implying that processing speed does not mediate the birth group-gC relationship. 

Additionally, when the speed-gF and speed-gC paths were removed, the birth group-gF and 

birth group-gC paths remained nonsignificant, implying that EF fully mediates the birth 

group-intelligence relationship. 

 Lastly, the correlations between residual variances were tested for significance. The 

EF-speed residual correlation was significant (Δχ2 = 36.80, Δdf = 1, p < .001), but the gF-gC 

residual correlation was not (Δχ2 = 0.67, Δdf = 1, p = .41). The final model fit statistics were 

excellent [χ2(39) = 65.40, p = .005, χ2/df = 1.68, CFI = .97, RMSEA = .047; Figure 1]. 

 These results were almost all replicated with the raw data. The correlations between 

constructs ranged from r = -.40 to r = .93 (all p < .001; see Table 6). Again, despite some 

very high correlations, alternative model testing found that the full five-construct model was 

the best fit for the data. Furthermore, in the mediation analyses, removal of the birth group-

intelligence paths did not significantly worsen model fit (birth group-gF Δχ2 = 0.00, Δdf = 1, 

p = 1.00; birth group-gC Δχ2 = 0.68, Δdf = 1, p = .41), therefore, any association between 

birth group and the two intelligence factors is completely accounted for by EF and/or 

processing speed.  Removal of the birth group-EF (Δχ2 = 66.52, Δdf = 1, p < .001), EF-gF 

(Δχ2 = 33.33, Δdf = 1, p < .001), and EF-gC paths (Δχ2 = 61.49, Δdf = 1, p < .001) all 

significantly worsened model fit, indicating that these paths are significant and that EF 

mediates the birth group-intelligence relationship. When the EF-gF and EF-gC paths were 

removed, the birth group-gF and birth group-gC paths remained nonsignificant, implying that 

processing speed is fully mediating the birth group-intelligence relationship before 

accounting for age. Removal of the birth group-speed (Δχ2 = 45.48, Δdf = 1, p < .001) and 
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speed-gF (Δχ2 = 5.19, Δdf = 1, p = .023) paths both significantly worsened model fit, 

indicating that these paths are also significant and that processing speed mediates the birth 

group-gF relationship. In contrast to the age-corrected analyses, however, removal of the 

speed-gC path also significantly worsened model fit (Δχ2 = 4.81, Δdf = 1, p = .028), implying 

that processing speed mediates the birth group-gC relationship when age is not accounted for. 

Additionally, when the speed-gF and speed-gC paths were removed, the birth group-gF and 

birth group-gC paths remained nonsignificant, implying that EF fully mediates the birth 

group-intelligence relationship. The EF-speed residual correlation was significant (Δχ2 = 

69.21, Δdf = 1, p < .001), but the gF-gC residual correlation was not (Δχ2 = 0.01, Δdf = 1, p = 

.91). The final model fit statistics were excellent [χ2(38) = 65.12, p = .004, χ2/df = 1.72, CFI = 

.97, RMSEA = .049]. 

Discussion 

 The current study aimed to examine the direct and indirect effects of preterm birth on 

neurocognition. Independent-samples t-tests found that children born VP performed 

significantly worse than their term-born peers on all tasks, and a CFA found that preterm 

birth was associated with EF, processing speed, gF, and gC. However, an SEM found that EF 

fully mediated the associations between preterm birth and the two intelligence constructs. 

Processing speed also fully mediated the relationship between preterm birth and gF, but only 

partially mediated the relationship between preterm birth and gC.  

 It was hypothesised that children born VP would have test outcomes consistent with a 

neurocognitive deficit (P. Anderson & Doyle, 2003). Independent-samples t-tests found that 

the VP group performed significantly worse than their term-born peers on all measures of EF, 

processing speed, and intelligence, regardless of whether raw scores or age-standardised 

scores were examined. Additionally, a CFA found significant correlations between birth 
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group and all four of EF, processing speed, gF, and gC. These results are supported by a 

recent meta-analysis conducted by Brydges et al. (2018), who found medium to large effect 

sizes – comparable to those reported in the current study – of preterm birth on EF, processing 

speed, and intelligence2. Given that Brydges et al. (2018) found no association between effect 

size and age at assessment (a proxy measure of development), they concluded that children 

born VP have a specific deficit in cognition, rather than this being a consequence of a 

developmental delay. That is, these children, on average, suffer from impaired EF, processing 

speed, and intelligence, and may not catch up later in childhood /adolescence. Future research 

should consider examining a cohort of children born VP longitudinally through childhood 

and adolescence for further evidence of this, and to possibly determine if this applies to all 

EFs, or just to specific EFs, such as inhibition or working memory, seeing as previous 

research has suggested that EFs become differentiated from each other around the age of 10 

years (Brydges et al., 2014b). 

 It was also predicted that EF and/or processing speed would mediate the associations 

between preterm birth and intelligence. A latent variable mediation model found that EF fully 

mediated the relationships between birth group and gF, and between birth group and gC. It 

was also found that processing speed fully mediated the birth group-gF relationship, but only 

partially mediated the birth group-gC relationship after age has been accounted for (before 

accounting for between-groups age differences, processing speed also fully mediated the birth 

group-gC relationship). This result is also supported by previous research, given the strong 

relationships between EF, processing speed, and intelligence in typically developing children 

(e.g., M. Anderson, 1988, 1992, 2001; 2017; Brydges et al., 2012), and the deficits in 

children born VP reported by Aarnoudse-Moens et al. (2009), Bhutta et al. (2002), and 

Brydges et al. (2018). As an aside, it was of interest that the EF-processing speed correlation 

in the CFA was very similar to the correlation between the residual variances of EF and 
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processing speed in the SEM. This implies that what is common between these two 

constructs is unaffected by impairments due to preterm birth. What this commonality is – 

some domain-free general ability, perhaps – remains open to conjecture, and would be of 

great interest to cognitive and developmental psychologists. 

 One limitation of the current study is that the neurological sequelae of VP birth were 

not accounted for. That is, the neurocognitive effects of VP birth may stem from a variety of 

potential causes. For instance, it might be the case that prematurity (i.e. being born early) 

halts the typical prenatal development of the brain, or may cause other problems such as brain 

bleeding, which in turn results in impaired brain function. Additionally, problems may 

potentially arise from medical procedures (e.g., surgery or medication required to deal with 

breathing problems may have negative consequences on brain development; Short et al., 

2003). Accounting for these causal factors may begin to shed some light on a potential 

cascade effect of preterm birth – preterm birth may lead to certain neurological differences, 

which in turn may affect cognitive processes (e.g., EF and/or processing speed), which impair 

intelligence. 

 The results of the current study have implications for the development and possible 

training of intelligence. Given the close associations between EF, processing speed, and 

intelligence (M. Anderson, 1992, 2001; 2017), recent research has examined the possibility of 

training EFs, particularly working memory, in an attempt to increase gF (e.g., Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008). Alternatively, investigating the effectiveness of 

neurofeedback training in this group could be of benefit (Landes et al, 2017). Although 

processing speed is likely to be a biological constraint that is ‘untrainable’, EFs are likely to 

be subject to training a developmental change. It is possible that these training programs 

could be modified to be child-friendly in order to help minimise differences in EF and 
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intelligence in children born VP, though it should be noted that results of these training 

programs are mixed (see Au et al., 2015, and Melby-Lervåg & Hulme, 2013, for contrasting 

meta-analyses).  

 In conclusion, the current study has provided evidence of neurocognitive deficits in 

EF, processing speed, and intelligence in children born VP, and of the direct and indirect 

effects of preterm birth on these neurocognitive domains. Performance on all tasks was 

impaired in the preterm group, and EF and processing speed both displayed mediating effects 

on the relationships between preterm birth and intelligence. Given the recent proliferation of 

research into cognitive training programs (e.g., Au et al., 2015; Melby-Lervåg & Hulme, 

2013), future research should consider the possibility of developing child-friendly cognitive 

training programs in an attempt to improve EFs, and hopefully intelligence, in children born 

very preterm. 
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Footnotes 

1 Although the mean ages are very close, the standard error of the difference is very small due 

to the very large sample size in the study. Hence, even though there was a mean age 

difference of 0.09231 years (for chronological age), the standard error of the difference was 

0.04034 years, corresponding to a t value of 2.288. 

2 It should be noted that the effect sizes for the intelligence measures were slightly lower than 

what was reported in the Brydges et al. (2018) meta-analysis, possibly because the meta-

analysis was almost entirely based upon IQ scores, rather than gF or gC measures.  
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Table 1 

Descriptive statistics of raw scores of the cognitive tasks for the VP group (N = 204), control 

group (N = 98), and all participants (N = 302) used in the analyses. 

Task 
VP Group  Control Group  

All 

participants 
p 

Cohen’s 

d 

 M SD M SD M SD 

Fruit Stroopa 16.37 6.94 20.23 7.49 17.56 7.33 < .001 0.53 

Digit Spanb 10.87 2.66 12.60 2.68 11.42 2.78 < .001 0.65 

Letter-

Number 

Sequencingb 

9.44 3.53 11.96 3.80 10.23 3.80 < .001 0.69 

Creature 

Countingb 

2.16 2.10 3.70 2.26 2.66 2.27 < .001 0.71 

Codingb 37.81 13.12 43.21 12.96 39.51 13.29 .002 0.41 

Symbol 

Searchb 

20.20 8.51 27.07 6.03 22.38 8.43 < .001 0.93 

CCFITa 19.80 6.27 25.30 5.82 21.63 6.64 < .001 0.91 

Block 

Designb 

15.06 8.37 20.39 7.84 17.28 8.55 < .001 0.66 

Vocabularyb 18.54 5.63 22.31 5.65 20.11 5.93 < .001 0.67 

Informationb 10.49 2.67 12.64 2.68 11.17 2.85 < .001 0.80 

Note. aTotal items correct. bTotal trials correct. p values were obtained from independent-

samples t-tests conducted on each measure between groups (two-tailed), and Cohen’s d 

values are the effect sizes from these t-tests.  
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Table 2 

Descriptive statistics of standardised scores of the cognitive tasks for the VP group (N = 

204), control group (N = 98), and all participants (N = 302) used in the analyses. 

Task 
VP Group  Control Group  

All 

participants 
p 

Cohen’s 

d 

 M SD M SD M SD 

Fruit Stroop -0.09 0.98 0.21 0.98 0.00 0.99 .023 0.31 

Digit Span 8.69 2.81 10.19 2.80 9.17 2.88 < .001 0.54 

Letter-

Number 

Sequencing 

8.31 2.57 9.69 2.79 8.74 2.71 < .001 0.52 

Creature 

Counting 

2.98 7.50 8.82 3.45 7.93 3.19 .001 1.00 

Coding 9.00 3.39 10.21 3.81 9.38 3.57 .009 0.34 

Symbol 

Search 

9.24 3.18 11.45 2.42 9.95 3.13 < .001 0.78 

CCFIT -0.18 0.98 0.36 0.92 0.00 0.99 < .001 0.57 

Block 

Design 

9.26 2.93 10.39 2.57 9.63 2.86 .002 0.41 

Vocabulary 9.34 2.98 10.88 2.70 9.84 2.98 < .001 0.54 

Information 8.80 3.00 10.61 2.81 9.37 3.06 < .001 0.62 

Note. p values were obtained from independent-samples t-tests conducted on each measure 

between groups (two-tailed), and Cohen’s d values are the effect sizes from these t-tests.  
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Table 3 

Correlations between birth group, raw measures of executive functioning, processing speed, and intelligence, and age (N=302) 

  1 2 3 4 5 6 7 8. 9. 10. 11. 

1. Birth Group -           

2. Fruit Stroop -.25*** -          

3. Digit Span -.29*** .38*** -         

4. Letter-Number 

Sequencing -.31*** .28*** .41*** -    

 

 

  

5. Creature Counting -.32*** .32*** .45*** .33*** -       

6. Coding -.19** .36*** .27*** .26*** .20** -      

7. Symbol Search -.38*** .41*** .39*** .40*** .45*** .58*** -     

8. CCFIT  -.39*** .38*** .49*** .40*** .57*** .37*** .61*** -    

9. Block Design -.31*** .31*** .40*** .39*** .46*** .33*** .51*** .55*** -   

10. Vocabulary -.32*** .21** .42*** .39*** .43*** .13 .31*** .51*** .43*** -  

11. Information -.35*** .23*** .51*** .45*** .47*** .25*** .39*** .49*** .40*** .68*** - 

12. Chronological Age - .25*** .11 .20** .26*** .23*** .27*** .16** .17* .19** .24*** 

13. Corrected Age - .32*** .20** .29*** .36*** .29*** .40*** .29*** .26*** .29*** .33*** 

Note. *p < .05; **p < .01; **p < .001. Birth group was coded as 0 = full-term and 1 = very preterm. 

  



 INTELLIGENCE IN CHILDREN BORN VERY PRETERM 33 
 

Table 4 

Correlations between birth group, standardised measures of executive functioning, processing speed, and intelligence, and age (N=302) 

  1 2 3 4 5 6 7 8. 9. 10. 11. 

1. Birth Group -           

2. Fruit Stroop -.14* -          

3. Digit Span -.24*** .35*** -         

4. Letter-Number 

Sequencing -.24*** .18** .37*** -    

 

 

  

5. Creature Counting -.20** .27*** .38*** .24*** -       

6. Coding -.16** .31*** .24*** .20** .15* -      

7. Symbol Search -.33*** .34*** .31*** .31*** .29*** .57*** -     

8. CCFIT  -.26*** .35*** .43*** .32*** .49*** .32*** .52*** -    

9. Block Design -.19** .30*** .35*** .27*** .37*** .28*** .44*** .52*** -   

10. Vocabulary -.24*** .18** .35*** .31*** .34*** .06 .22*** .45*** .35*** -  

11. Information -.28*** .17** .49*** .40*** .35*** .19*** .31*** .42*** .33*** .59*** - 

12. Chronological Age - .00 -.02 .00 .00 .12 .10 -.08 -.04 -.07 .01 

13. Corrected Age - .05 .06 .07 .08 .17** .22*** .04 .04 .01 .09 

Note. *p < .05; **p < .01; ***p < .001. Birth group was coded as 0 = full-term and 1 = very preterm. 
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Table 5 

Correlations between birth group and latent variables of standardised scores of executive 

functioning, processing speed, gF, and gC (N=302) 

 1. 2. 3. 4. 5. 

1. Birth Group -     
2. EF -.37 -    

3. Processing Speed -.35 .56 -   
4. gF -.32 .87 .68 -  
5. gC -.34 .79 .36 .70 - 

Note. All p < .001. Birth group was coded as 0 = full-term and 1 = very preterm. 
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Table 6 

Correlations between birth group and latent variables of raw scores of executive functioning, 

processing speed, gF, and gC (N=302) 

 1. 2. 3. 4. 5. 

1. Birth Group -     
2. EF -.47 -    

3. Processing Speed -.40 .68 -   
4. gF -.46 .93 .77 -  
5. gC -.42 .80 .45 .73 - 

Note. All p < .001. Birth group was coded as 0 = full-term and 1 = very preterm. 
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Figure 1. The final mediation model, using age-standardised measures. Straight lines indicate 

regression weights. Curved lines indicate correlations. Lines and values in bold indicate 

statistical significance (p < .05).  


