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1. Introduction

1.1. Overview

This trio of PubChem (PC), UniChem (UC), and ChemSpider
(CS) are the largest public data sources for bioactive chemistry
and drug discovery.[1–3] Crucially, their funding has allowed
each of them to maintain a steady rate of content expansion
from the subsumation of new sources. This review cannot
cover all the features of this impressive triad, but the focus will
be on providing insight into differential content, the complexi-
ties thereof, and how this translates to complementarity. Be-
cause content is the principal value proposition for any data-
base, it is important for users to appreciate differences when
deciding relative utility. In addition, knowledge of the contribu-
ting sources can indicate where there are advantages to query
these directly, via their standalone instantiations, rather than
what may be stripped-down records subsumed into integrated
resources.

It is assumed that readers of this article are not only aware
of PC and CS but have had at least some experience using one
or the other. The community familiarity with the youngest of
the three, UC, is likely to be lower (although ChEMBL and Sure-
ChEMBL users may have noticed the UC cross-references
nested in each compound record). It should also be noted that
most researchers assessing the use of integrated sources
would include SciFinder (SF) as the fourth major source.[4] This
currently declares 134 million organic and inorganic chemical
substances (although at 105 million, the Reaxys commercial of-

fering is not that far behind). Via academic departments and
pharmaceutical company licensing, many cheminformaticians
are thus likely to have access to the “big four”.

This review focuses on the three public resources, as their
details are largely open. However, the approaches outlined for
content dissection and comparison (a.k.a. slicing and dicing)
can also be applied to commercial databases (depending, of
course, on what their internal query functionality allows). In
context, it is important to note that, despite the adjective of
“proprietary” being often applied to describe licensed databas-
es, their content is drawn entirely from public primary sources.
Notwithstanding, selective capture means they may still con-
tain a proportion of unique structures.[5] The challenges associ-
ated with divergent expansion of commercial and public sour-
ces were reviewed in 2015 (this includes discussions and refer-
ences to quality aspects that cannot be covered here).[6] How-
ever, this new analysis includes more comparative detail and
covers recent changes in the public “big three” (n.b. , all num-
bers reported herein were initially harvested in November
2017 with some post-refereeing updates in January 2018).

2. PubChem

2.1. Growth

Despite being in the middle in terms of size ranking, we can
begin with the description of PC as an archetype against
which to compare the other two databases. Growth since 2005
shows an approximately linear increase in just over a decade,
now approaching 95 million distinct chemical structures
(Figure 1).

Those cheminformatics practitioners who remember LBC
(life-before-PubChem) may be more appreciative than their
younger colleagues of what an achievement this represents for
an open public resource, funded by the US National Institutes
of Health (NIH). The obvious feature is that the increase is ap-
proximately linear, in contrast to the exponential growth of se-
quence data for the sister discipline of bioinformatics. So why
is this? The minimum parsimonious assumption is that global
output over this period was related to the number of chemists
making compounds. The chart of Figure 1 indicates that long-

The three databases of PubChem, ChemSpider, and UniChem
capture the majority of open chemical structure records with
February 2018 totals of 95, 63, and 154 million, respectively.
Collectively, they constitute a massively enabling resource for
cheminformatics, chemical biology, and drug discovery. As
meta-portals, they subsume and link out to the major propor-
tion of public bioactivity data extracted from the literature and
screening center assay results. Therefore, they not only present
three different entry points, but the many subsumed inde-
pendent resources present a fourth entry point in the form of
standalone databases. Because this creates a complex picture
it is important for users to have at least some appreciation of
differential content to enable utility judgments for the tasks at

hand. This turns out to be challenging. By comparing the three
resources in detail, this review assesses their differences, some
of which are not obvious. This includes the fact that coverage
is significantly different between the 587, 282, and 38 contribu-
ting sources, respectively. This not only presents the “who-has-
what” question, but also the reason “why” any particular inclu-
sion is considered valuable is rarely made explicit. Also confus-
ing is that sources nominally in common (i.e. , having the same
submitter name) can have significantly different structure
counts, not only in each of the three but also from their stand-
alone instantiations. Assessing a series of examples indicates
that differences in loading dates and structural standardization
are the main causes of this inter-portal discordance.
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term growth has been sustained (although there has been dis-
tinct slowdown during 2017), despite the shrinking of medici-
nal chemistry resources in the pharmaceutical sector over the
same decade (i.e. , fewer people in companies making com-
pounds).[7] Concomitantly, there is no clear sign of automated
chemical synthesis accelerating output (but this could change).
While the subject will be expanded on later, a proportion of
this total is certainly derived from enumerated virtual struc-
tures that have never been made. Notwithstanding, there is no
evidence these are making a significant contribution to the
overall growth rate.

As for all three databases, PC is submitter-based. This means
that chemical structures conforming to standardization rules
are accepted as primary database records assigned to each dis-
crete submitter by means of Substance Identifiers (SIDs). These
are then merged, according to PubChem chemistry rules, into
non-redundant Chemical Identifiers (CIDs). Consequently, the
236 million SIDs, from different PC submitters, merge to 94
million CIDs, representing an average of just over 2.5 SIDs per
CID. However, this is a heavily skewed distribution because 48

million CIDs in PC are unique as defined by being derived
from a single source (i.e. , have only one SID). As we can see
from a breakdown of the top-ten submitters (Table 1) these al-

ready cover substantial amounts of single-source structures.
These contrast with more “popular” subsets, for example, ap-
proved drugs, where this is reflected in having many submit-
ters. Using a selection query from the SID side we can establish
that the source IUPHAR/BPS Guide to PHARMACOLOGY
(GtoPdb) includes 1180 approved drugs as CIDs (as of release
2017.5).[8] Transforming these across to their contributing SIDs
indicates a CID/SID ratio of 1:110. However, this average also
covers a skewed distribution where newer approved drugs
generally have fewer submitters than old drugs. We can thus
take aspirin as one of the most “popular” examples to discern
the extent of multiplexing (the same structure in different
sources). The PC source mappings are indicated in Figure 2.

Thus, acetylsalicylic acid (aspirin) has 282 single structures,
plus 1602 mixtures, as SIDs. But these collapse to 648 distinct
CIDs, inferring that some different sources are submitting iden-
tical mixtures. The “same connectivity records” (as distinct
CIDs) turn out to be 13 isotopically labeled derivatives.

2.2. PubChem major sources

PC has 548 data sources, but only 488 of these have live (i.e. ,
not on-hold) substance counts. This is because some contrib-
ute annotation links but not structures (e.g. , ClinicalTrials.gov
contributes 7788 annotations). The distribution has a long tail,
where 282 have more than 1000 SIDs but over 90 sources
have 10 or fewer SIDs (including the author’s own submitted
set of 10 as “TW2Informatics”[SourceName]). The top ten are
listed in Table 1.

We will return to the Table 1 features when comparing the
other sources, but some aspects can immediately be picked
out. The first is the dominance of vendor aggregators. Another
feature is that automated patent extraction comes in as
second (sources 3 and 4).[9] However, 5, 7, and 8 are not
straightforward to classify; indeed 7 and 8 have neither source
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Figure 1. Cumulative PubChem content by year. Y-axis values represent the
numbers of Compound Identifiers (CIDs).

Table 1. Largest submitting sources in PubChem selected at 92 058 388
CIDs and 230 507 344 SIDs.

Source Count[a] Unique[b] Last update

1. Aurora (v) 34.3 13.0 2016/02/15
2. AKos (v) 32.2 8.8 2017/09/19
3. SureChEMBL 17.4 8.3 2017/08/04
4. IBM 15.2 2.7 2017/01/26
5. ChemSpider 14.6 1.1 2011/10/24
6. ZINC (v) 13.8 7.0 2017/08/26
7. DiscoveryGate 11.4 0.70 2011/05/05
8. NextBio 10.2 0.02 2009/06/13
9. ABI Chem* (v) 7.9 0.07 2011/04/01
10. MolPort (v) 6.6 0.06 2017/06/19

[a] Counts refer to SIDs in millions. [b] Unique content is counted as
single-source CIDs, also in millions. *: Indicates a legacy submission. (v):
Aggregators of vendor catalogues. Data were extracted from https://pub-
chem.ncbi.nlm.nih.gov/sources/, which includes links for each individual
source.
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outlinks nor metadata in the SIDs. Thus, along with 9, these
are arguably legacy submissions, as neither has updated in
recent years. Uniqueness is a key aspect of databases, but it is
not always clear what this means for users. The numbers in
Table 1 are defined by the chemistry rules for the formation of
CIDs, although the details of these are not completely exposed
in PC. However, the relationship computation and query navi-
gation allows a level of exploration to divine what these rules
actually are by observing the consequences they have in map-
ping results. Arguably, these can be considered stringent in
the sense that differences in isotopes, stereochemistry, tauto-
mers and mixtures all lead to the formation of distinct CIDs
and InChIKeys (i.e. , a philosophy of splitting rather than merg-
ing).

2.3. PubChem features

The other two databases solve the necessary redundancy col-
lapse of submissions in a similar way to the SID/CID splits, but
where the InChI system plays a more central role.[10] However,
there are unique aspects of PC that should be mentioned. The
first of these is that the substance submissions include entries
that cannot form CIDs, since they have not been transformed
into SMILES or SD files by the submitters. To become a CID,
the SIDs have to be within the current upper limit of 1000
atoms, approximating to �70 residues for a peptide. Those ex-
cluded from CID merging are thus larger peptides, polynucleo-
tides, or siRNA reagents but also include biological therapeu-
tics such as antibodies that have a designated INN or a clinical
candidate designation. For example, a substance search with
the INN “natalizumab” includes the SIDs shown in Figure 3.

Thus PC indexes biologics of various kinds from different
sources but cannot merge them. Because in UC and SC every-

thing has to conform to chemistry rules, they do not currently
have this category of submission. The second key difference is
the surfacing of biological activity data in PubChem BioAssay
(this can also include SIDs without CIDs). The many aspects of
this third dimension of PC data cannot be detailed here, but
they are crucial for PC’s value to chemical biology and drug
discovery.[11] The top-level statistics are that 2.4 million CIDs
have been tested in 1.2 million assays (i.e. , with distinct assay
identifiers as AIDs) and 1.1 million of these have at least one
SID recorded as “active”. Compared to a typical HTS assay,
where hit rates are usually threshold filtered to around 1 %,
there are clearly caveats with the definition of “active” when
this is as high as 45 %. However, given that ChEMBL submis-
sions dominate BioAssay (with 1.24 million entries compared
with only �1000 each for the next four screening centers,
ranked by AID counts) there is a clear bias toward positive re-
sults extracted from 67 722 papers into ChEMBL 23 (but note
these include inactives from the same papers). BioAssay con-
tains a small proportion of alternative uses of this as a submis-
sion category. For example, the 1216 SIDs in AID 1195 are ap-
proved drugs with US Food and Drug Administration (FDA)
Maximum Daily Dose assignments (i.e. , not assay results). Bio-
Assay also has what appear to be false negatives in the infor-
mation capture sense. For example, a simple INN query (which,
from a limited number of record checks, seemed to be sub-
stantially true positives) retrieves 8949 CIDs, but only 4399 of
these have BioAssays scored as “active”. Because INNs are spe-
cific for advanced development compounds (mostly reaching
at least Phase 1 clinical trials) accrued over many decades, we

Figure 3. Selected SIDs retrieved with the approved clinical monoclonal anti-
body natalizumab. “Structure not available” indicates that neither a CID
could be formed nor a rendered chemistry image. Note the spread of sub-
mission dates from these particular sources over four years.

Figure 2. Snapshot of the related CID and SID records for aspirin in PC
(https://pubchem.ncbi.nlm.nih.gov/compound/2244, InChIKey BSYNRY-
MUTXBXSQ-UHFFFAOYSA-N) on the right and the structural relationship in-
dexing on the left.
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would expect the majority to have published bioactivity. We
can test possible explanations directly from the PC source in-
tersects. For example, only 3926 are in the NIH Molecular Libra-
ries screening collection (and these have not all been screened
against probable molecular targets anyway). We can also de-
termine that ChEMBL has captured 7053 of the same structures
but only recoded “actives” for 4321 of those. Thus, nearly half
the INNs have neither explicit activity data against human pro-
tein targets reported in publications that ChEMBL has extract-
ed, nor have accumulated such data from the screening cen-
ters. Looking at examples indicated at least three causes: firstly
new INNs, secondly old INNs, and thirdly the BioAssay data
had been assigned to a different stereoisomer. An analogous
inference of significant false negatives also applies to the
15 514 CIDs that Medical Subject Headings (MeSH) annotators
have classified as having pharmacological action by curation
from PubMed. While these are implied to be active in vivo,
only 7016 have positive BioAssay results.

Another key difference is the integration of PC into Network
Entrez.[12] This is a powerful and extensive system for the cross-
referencing of information about biological and chemical enti-
ties from the 136 databases within the NCBI. This includes the
direct connectivity between Compound, Substance, BioAssay,
protein sequences, protein structures, and BioSystems (path-
ways). Another feature that presents an advantage for PC is
the ability to upload, immediately visualize and then down-
load, Entrez result sets from bulk queries. This can be accom-
plished either via the Structure Search file upload or the Pub-
Chem Identifier Mapping Service web page (capacity may vary,
but can be in the thousands). For inter-database comparisons
this means smaller sources from other databases with appro-
priate download options (e.g. , SDF, SMILES, and InChI) can be
mapped “into” PC to determine exact intersects and differen-
ces.

3. UniChem

3.1. UniChem features

UC is very different from PC in being a large-scale database of
pointers between chemical structures. This means, unlike PC
and CS, it does not store the actual structures (e.g. , as SD files
or SMILES), but these can be accessed via the source URLs. Ini-
tially conceived to integrate chemistry across the internal EBI
databases (ChEBI, ChEMBL, SureChEMBL, PDBe, and most re-
cently Metabolites) it now extends to 32 external sources. It is
also designed to enable “on-the-fly” linking via REST web serv-
ices. It is also designated with a CC-0 license as specified on
the website. The different automated downloading procedures
and loading dates are summarized for each of the 37 sources:
These are compiled into the weekly release, regardless of indi-
vidual source update cycles. The InChIKey (IK) centric cross-
pointing and source redundancy reduction is conceptually sim-
ilar to the SID merging rules in PC. It also uses features of the
Standard InChI to enable mappings between molecules that
share common atom connectivity via the inner Key layer. Im-
portantly, this extends across isotopes, stereo forms, mixtures,

and salts. This is analogous (but again, not exactly equivalent)
to the PC “same connectivity” relationships between CIDs iden-
tifier mapping service.

3.2. UniChem major sources

The top-ten source counts are shown in Table 2. We can return
to Table 2 when discussing comparative content, but some

unique characteristics of UC can be introduced. As an approxi-
mate (but not exact) equivalence to PC CID:SID ratios, the UC
structure:assignment ratio is 1.37. This is not unexpected, as
there are fewer sources. Unsurprisingly, PubChem becomes the
major source contributor, corresponding to 30 % of all unique
structures. However, as UC point out, because many sources
are loaded into both PC and UC independently (i.e. , twice) this
confounds the intra-database statistics. Comparative insights
can be gleaned from the entry for aspirin in Figure 4.

We can see that, as IK matches, aspirin is indexed in 27 of
the 37 sources. In addition, there are some multiple records on
the source side for identical structures (e.g. , Atlas, NMRShift,
ACToR, and BRENDA). Another unique aspect of UC is the com-
putation of different forms of equivalence between sources, as
no less than seven 37 � 37 overlap matrices at different com-
parison stringencies. This is explained in detail on the site and
the publications. A small section of the results based on the
full IK is shown in Figure 5.

The matrix can be read as follows for GtoPdb (the IUPHAR/
BPS Guide to PHARMACOLOGY): The total (i.e. , row and
column four) is 6575. The overlap with ChEMBL (as IKs in
common) is 5079, DrugBank 1823, and PDB (i.e. , the heteroa-
tom small-molecule entries) is 1246.

4. ChemSpider

4.1. Basic features

CS is owned by the Royal Society of Chemistry (RSC). While
searches and extraction of limited result sets are free, it is not

Table 2. Largest sources in UniChem selected at 151 231 603 structures
and 207 117 159 assignments, release 153, 2017/09/10.

Source Count[a] Unique[b] Last update[c]

1. PubChem 91.5 35.8 2017/09/06
2. Mcule (v) 32.9 23.8 2016/02/29
3. Molport (v) 22.4 0.14 2014/12/08
4. SureChEMBL 18.6 2.2 2017/09/05
5. ZINC (v) 16.9 1.1 2017/08/21
6. IBM 7.9 0.31 2015/02/11
7. Emolecules (v) 5.2 0.07 2012/03/15
8. tpharma 3.8 0.1 2009/06/13
9. nikkaji 3.2 0.3 2011/04/01
10. ChEMBL 1.7 0.06 2017/05/24

[a] Source counts for src_id refer to full InChIKeys in millions. [b] Unique
content for that source are also full InChIKeys. [c] Last update date is
taken from the source descriptions (not the release date). (v): Vendor.
Data were extracted from https://www.ebi.ac.uk/unichem/analysis/
unique, where source links are included.
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open data, so download of the entire database is only avail-
able under license. One of the important consequences of this
is that it is not subsumed into UC (as is PC). It offers services to
improve submitted data by user corrections (e.g. , of names to
structures), added annotations, and integration with user appli-
cations. This extends to ChemSpider SyntheticPages, which
covers reactions with citable URLs, peer review, and semantic
enhancement. Another unique feature is direct links to struc-
tures in RSC journals. Like the other two databases it has merg-
ing rules for structure and records point to multiple submitting
sources. The CS example for aspirin is shown in Figure 6.

By executing a search with the InChIKey inner layer (also
sometimes termed a skeleton match), 160 data sources are in-
dicated, but some of these are multiplexed by one-to-many
entries. For example, the 10 ChemIDplus entries include nine
mixtures and the nine Crystallography Open Database entries
are each from distinct 3D structure determination references.
While this multiplexing would expand to well over 160 individ-
ual links, these are still substantially less than the analogous
1884 PC SID entries in Figure 2. As outlined below, both CS
and PC contain a similar number of large sources, indicating
that the disparity is due to organizational and chemistry rule
differences between the two. These are complex in both cases
arising from the challenges of integrating many different sour-
ces.

4.2. ChemSpider major sources

The top-ten sources for CS are listed in Table 3. Compared with
PC and UC there is a notable absence of the large automated
patent sources of SureChEMBL and IBM (Discovery Gate did

Figure 4. The UC source listings associated with the full InChIKey for aspirin
BSYNRYMUTXBXSQ-UHFFFAOYSA-N (lower-case abbreviations are corrected
where referred to in the text).

Figure 5. A snapshot from a section of the source comparison matrix.

Figure 6. The ChemSpider entry for aspirin http://www.chemspider.com/
Chemical-Structure.2157.html.
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have a feed from Derwent manual patent extractions, but this
source is no longer active). Comparing Tables 2 and 3 indicates
a reciprocal cross-pointing anomaly, where CS points to 12.9
million PC entries but only pre-2015. PC points to 14.6 million
CS entries, but these are pre-2011 (the last-update dates repre-
sent revocations, not structure change, as the bulk of the re-
ciprocal cross-referencing was added between 2007 and 2008).
Because both databases have expanded extensively in the in-
tervening years, as has been pointed out, the value of such
legacy partial cross-pointing is questionable.[13]

5. Comparative Content

5.1. Sources in common

Differences between the major sources are listed in Tables 1–3.
However, we can take a more detailed look at the distributions
of the top 50 (Figure 7). As expected, because it contains only
34 sources, Figure 7 shows a steep fall-off in UC. While the
other two both show a long tail, it is clear that CS is dominat-
ed by more smaller sources than PC. We could get more in-
sight by comparing these by name. However, it is already clear
from Tables 1–3 that some names are different but probably
related. For example, “Aurora Fine Chemicals LLC” in PC corre-
sponds to “Aurora Feinchemie” in CS (i.e. , both the US and
German links connect through to the same website, but UC
does not include their feed). Similarly, “Thomson Pharma” has
the same name in both CS and PC, but in UC it is named “pub-
chem_tpharma”. Yet another example was the pointers to dif-
ferent Singapore or Chinese web addresses for Angene in CS
and PC. By standardizing names, at least for the larger sources,
it was possible to get an outline of divergence. The result is
shown in Figure 8.

We can see from Figure 8 divergence between PC and CS
but some degree of convergence with UC in that over 70 % of
its sources are shared with either of the other two. We can
pick out a selection of unique sources to get an idea of differ-
ential value (even if there are overlaps between most sources).
Comparing Figures 7 and 8 indicates that CS has on the order
of 200 unique smaller sources, at least as judged by having a

different name (n.b. , it was not feasible to check all the web-
sites to rule out if some had the same origins). One challenge
here is discrimination of primary vendors versus aggregators.
The former, by implication, are assumed be the primary manu-
facturers of the compounds or at least holding them as local
stock. The majority of the “long-tail” sources in CS and PC are
probably in this category. Aggregator (or secondary) vendors
are brokers of many merged primary vendors and thus appear
as some of the largest sources in the top-ten of all three data-
bases. While some may self-declare as one or the other, with-

Table 3. Largest sources in ChemSpider (November 2017).

Source Count[a] Last update[b]

1. Aurora (v) 25.2 2016/06/12
2. PubChem 12.9 2015/06/25
3. AKos (v) 10.4 2017/09/26
4. Mcule (v) 5.6 2010/10/30
5. Molport (v) 5.3 2014/09/02
6. eMolecules (v) 4.8 2009/06/08
7. ZINC (v) 3.8 n/a
8. Otava Chemicals (v) 3.2 2017/09/22
9. LabNetwork (v) 2.8 2017/10/11
10. Discovery Gate 2.5 n/a

[a] Counts refer to compounds in millions. [b] n/a: Last update date was
not available on the website. (v): Vendor aggregator. Data were extracted
from http://www.chemspider.com/DataSources.aspx.

Figure 7. Distribution of source sizes in PC (blue) CS (red) and UC (grey).
These are plotted for the top-50 of PC and CS, where the cutoffs were
280 000 and 207 000 respectively. For UC, 36 of the 37 sources are plotted
with the exception of PC (within UC) that would be off scale at 92 million.

Figure 8. Normalized name intersects for sources with greater than 1000
structures between the three databases. Total source counts are given next
to each name.
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out effecting some kind of due diligence it is difficult to cleanly
discriminate secondary from primary (so use of the term
“vendor” from this point on will not be qualified with such a
distinction).

5.2. Unique sources

This refers to sources that appear in only one of the three da-
tabases (but note, this does not imply unique content). For CS
the largest unique vendors, ranking at eighth and ninth, are
Otava Chemicals and LabNetwork with 3.5 and 2.8 million
compounds, respectively. Sources of more chemical and bio-
logical interest include: Journal of Heterocyclic Chemistry
184579, FooDB with 16744 food ingredient compounds, Royal
Society of Chemistry (abstracts) 149831, The National Com-
pound Collection with 42 779 structures from UK Chemistry
PhD theses, StreptomeDB with 3780 Streptomyces metabolites,
and the Toxin-Target Database with 3192 entries. Another in-
teresting aspect of CS is that three named individuals exceed
the 1000 cutoff, with SE at 7033 and two CS team members,
DS with 2244 and SR with 1055.

As we can see from Figure 8 PC also has many unique sour-
ces (while one of these is PubChem BioAssay, this can be clas-
sified as a collection of sub-sources), but space limitations pre-
clude more than a few to be noted here. It is useful to be able
to read off the explicit uniqueness within PC internally by
simply adding “1[DepositorCount]” to source selects. For exam-
ple, the automated patent extraction source SCRIPDB has 4.0
million CIDs, of which 0.48 million are only from that source. In
the case of Collaborative Drug Discovery, 0.87 million of their
1.40 million are unique. As one of the smaller sources, Wiki-
Pathways indexes 1997 structures with only 23 unique. Some
larger PC-only sources have low levels of uniqueness, as we
can see for the figure of 0.2 % within the 10.2 million from
NextBio. These turn out to be re-submission errors that have
connectivity to other existing CIDs, confirming that this source
has simply performed a one-off extraction and resubmission of
pre-existing content labelled as their own SIDs in June of 2009.

One recent new source (October 2017) is from Springer
Nature for their journal connectivity initiative.[14] This is current-
ly at 0.61 million CIDs, of which 0.25 million are unique. A cru-
cial advantage for internal comparisons of sources within PC is
the facility to perform Boolean intersects between queries. This
can not only reveal the exact overlap and difference between
sources A and B, but can be extended to many combinations
and the use of filters (e.g. , mixtures can be counted as two or
more noncovalent units).

From the data in Figure 8, we can ascertain that UC has six
large sources not in CS or PC. Intra-database overlaps between
sources can be calculated in a variety of ways depending on
the definition of structural identity. As explained in the UC doc-
umentation this is reported at three levels, as: 1) identity of
the full IK, 2) the connectivity layer of the IK, and 3) the con-
nectivity layers of multiple molecular components (e.g. , salt
splitting). However, it should be noted that intra-source com-
parisons within UC will reflect circularity from the co-integra-
tion of PC into UC. The largest unique source is the US Envi-

ronmental Protection Agency (EPA)’s Aggregated Computa-
tional Toxicology Online Resource (ACToR) at 411229 (4.7 %
unique). This is followed by the BRENDA Enzyme information
system with 119395 (37 % unique), Lincs (Library of Integrated
Network-based Cellular Signatures) 41802 (0.2 % unique), Me-
taboLights (sic) 19789 (no unique structures), PharmGKB (Phar-
macogenomics Knowledgebase) 1633 (no unique structures),
and the Recon knowledge base of human metabolism, 1529
(18 % unique).

5.3. Source differentials and dates

This section describes comparing counts for nominally same
sources across the databases as well as their standalone instan-
tiations. In some cases, these can have occupancy in all four
categories (i.e. , three databases and In situ), but we can also
consider three-way and two-way cases. A selection of these is
listed in Table 4.

This matrix of discrepancies from nominally identical sources
is surprising from a cheminformatics standpoint. Indeed, not
even one single pair agree exactly. Relatively minor differences,
on the order of a few percent, are not unexpected. These can
be attributed to differences in chemistry standardization rules,
loading filtration stringencies and, in the UC case, generation
of Standard InChIs. However, as can be seen in Table 4, many
showed bigger differences in numbers, some of which could
be plausibly explained, others would need additional investiga-
tion. The most common reason seems to be loading dates.
This issue is always problematic for large integration efforts, es-
pecially where sources frequently update. This is inherently a

Table 4. Counts for sources with the same name between two or more
options.[a]

Source CS PC UC In situ

HMDB 81 950 9947 79 362 114 101
BindingDB 410 612 645 152 538 351 631 854
DrugBank 7082 7399 8684 9041
ChEMBL 1 733 993 1 729 327 1 726 364 1 735 442
Mcule (v) 5 649 580 6 040 174 32 919 693 <35 mill
ChEBI 84 434 90 370 88 199 52 939
EPA 671 300 756 943 719 884 758 000
PDB 24 001 35 457 24 423 25 057
GtoPdb 6632 6822 6572 6702
Thomson Pharma 2 048 770 4 338 420 3 858 588 n/a
MolPort (v) 5 292 001 6 530 473 22 381196 45 230 189
ZINC (v) 3 769 618 13 751 641 16 886 865 <100 mill
Aurora (v) 25 290 243 33 345 947 n/a 18.1 mill
SureChEMBL n/a 17 618 128 18 782 006 n/a
FDA/SPL/UNII 61 801 91 364 n/a 93 363
DrugCentral n/a 4007 3959 4509
IBM n/a 10 714 534 7 930 403 n/a
eMolecules (v) 4 840 249 n/a 5 168 336 5.9 mill
Carotinoids DB 1067 n/a 1138 1169

[a] The inclusion of n/a means either that particular source was absent, or
the local website did not provide an explicit total ; these should be dis-
tinct compound counts in the three portals, but may be substance re-
cords In situ. (v): Vendor. Approximate figures from vendor websites are
in millions. Note this matrix was compiled in November 2017 and repre-
sents just a selected sampling of differences.
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good thing, but leaves the meta sources with two challenges:
The first is their internal synchronization and submission proc-
essing times. The second is the balance between “pulling” and
“pushing”. These terms refer to the host portal either actively
picking up (pulling) the source data, for example, as ftp and/or
an automatic extract, transform and load procedure (ETL), or
the submitter sends (pushes) their update manually. In regard
to ascertaining dates as possible causes of differences, PC
makes these query-selectable for all submissions (i.e. , as SID
dates). CS does not surface record dates in the interface, but
does indicate first and latest upload dates for most sources.
UC operates a weekly rebuild and automatically assigns that
date to each source for the computed statistics. However, this
is slightly misleading in that it is the source descriptions that
include both the first and the latest actual load dates, regard-
less of the weekly release date.

We can look at selected rows in Table 4 to pick out both
concordances and discordances. As an example of the former,
we can see a less than 1 % difference between the highest and
lowest of the four ChEMBL counts. We can check that ChEMBL
22 from September 2016 In situ updated to version 23 in May
of 2017. With this long release cycle the different loads would
not affect the October 2017 numbers. We can check this by es-
tablishing that the UC load date was the 24th of May (but the
data are within the same EBI infrastructure anyway). This was
closely followed by CS on the 25th of May and processed
within PC on the 6th of June according to the SID dates. In
this case, the 6115 difference between PC CIDs and In situ can
be explained by those peptide and protein substances that do
not have CIDs. While this is supported by the SID count of
1735576, it exceeds the In situ count by 134, but this is a
minor discrepancy. Other sources also show small differences
such as the IUPHAR/BPS Guide to PHARMACOLOGY. However,
this has a relatively rapid release schedule of six per year.

The discrepancies recorded for Thomson Pharma are far
from minor, in that the PC count is more than twice that for
CS. Establishing the reason for this major difference is con-
founded by Clavariate (previously Thomson Reuters) having
ceased their PC cumulative feed at 4.3 million CIDs in January
2016 (the last SID date) for reasons that remain unclear and
not declaring an in situ count. However, inspecting CS source
dates indicates the 2.04 million was probably an early load
from 2008 (possibly direct). The UC source page records that
their set was selected from PC (i.e. , as a secondary source) at
the end of July 2013. This explains why their 3.8 million lies
midway between the CS and PC counts. This means that users
wanting to search against this large, high-quality compilation
of manually curated structures from patents and papers would
need to query PC for complete (even if now lapsed) coverage.

The ligands in PDB are a crucial small-molecule set for drug
discovery, but come with particular challenges. Firstly, because
bioactive chemicals specifically bound in protein pockets are
difficult to define and filter cleanly (but are in the order of
�8000), sources submit all the heteroatom structures
(HETATM). These encompass resolved small molecules includ-
ing salts and reagents. Secondly, there are four different sour-
ces within wwPDB and the NCBI. While PDBe and PDBj counts

are more or less concordant at 25 057 and 25 252, respectively,
RCSB PDB drops slightly to 24 140. It is not clear which of
these sets was loaded into CS on the 25th of May, but UC re-
freshed their internal (EBI) PDBe on the 6th of November 2017.
However, we are left with the anomaly of the new PC source
of ligand extraction as NCBI Structure, which, at 35 457 CIDs
implies over 10 000 more ligand structures than are indexed by
PDB, for reasons that are not yet clear.

There seems to be no pattern to the discordances because
each of the three has at least one example source where they
are significantly the lowest. For the Human Metabolite Data-
base (HMDB) it happens to be PC that is only 9 % of the In situ
figures. In this case, dates indicate the last SID load into PC
was November 2011, but CS has a more recent load from June
2017. For some reason the UC count from September 2017 is
2585 less. However, users need to know that HMDB underwent
a major expansion in situ in October and so should search
against this externally as the latest version.[15] With comprehen-
sive coverage in mind, users would thus need to check Wiki-
Pathways (unique to PC) as well as MetaboLights (unique to
UC).[16, 17] However, they would also need to check the first
Recon set as loaded (also unique to UC) in October 2014. How-
ever, this has not been updated to the latest published Recon
2.3 set of 5324 metabolites.[18] Thus, the important domain of
metabolomics presents not only a mosaic of partial availability
in different databases, but also needs the (hopefully pending)
update of Recon (n.b. , since Figure 3 was compiled, both
HMBD and DrugBank have been updated in PC to 9765 and
114 297, respectively).

5.4. Vendors and virtuals

The major contributors to these databases by far are vendors.
These offer the key advantage of enabling bioactivity research
by the purchasing of structural analogous as an alternative, or
complement, to de novo synthesis. The 293 vendor sources in
CS cover 41.8 million compounds, reaching 67 % of total com-
pounds. For PC the corresponding numbers are 284 sources
merging to 63.0 million, coincidently also covering 67 %. We
can determine that 29.5 million of the latter are unique struc-
tures. For UC there are also four vendors in the top-ten sources
(Table 2), but assessing the overall proportion is confounded
by subsuming some of the same sources from PC. Notwith-
standing the convenience of procurement, the opportunistic
vendor “push” to nearly 70 % in both PC and CS (with �50 %
of these as unique structures in the former), while commercial-
ly understandable, can be seen as a mixed blessing from sever-
al viewpoints. Firstly, content overlap between vendors be-
comes higher than users probably want (e.g. , PC indexes 92
vendors for aspirin, including 12 Sigma catalogue SIDs for
identical structures). Secondly, high novelty levels have to be
caveated with doubts over structural quality because many of
these turn out to be related to known CIDs via “same connec-
tivity” matches in PC (e.g. , where the vendor may not resolve
the stereoisomers).

These issues can be inferred from inspecting Table 4 which
shows a confusing pattern for just five vendor examples, in-
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cluding some websites not declaring exact totals. Loading
dates are problematic, as can be seen in the case of eMole-
cules not updating since 2009 in CS or 2012 in UC but further
confounded by deciding not to submit to PC at all. To add to
the non-obvious, it turns out that users can, in fact, find some
eMolecules links within ZINC entries. The most striking numeri-
cal discordance is for Mcule with 5.6 million records in CS com-
pared to 34 million in UC. While the former is an older load
from October 2015 compared with the latter in February 2016,
we can assume that the former are probably extant stock com-
pounds (i.e. , in pots) with the latter being predominantly virtu-
al representations that have never been made. These are
sometimes termed “make on demand” (MODs), where they
have been enumerated with synthetic tractability in mind and
the consequent likelihood of order fulfilment.

The statistics computed within UC support the inference of
virtuals by showing that no less than 28 million of the Mcule
submissions are unique (i.e. , not in PC either) ; indeed, this is
the single largest contributor to the increased size of UC over
PC. The chequered history of some vendors was made mani-
fest when PubChem removed Angene as a source in 2015. This
was because they had reached 40 million CIDs by a combina-
tion of piggy-backing (i.e. , re-submitting existing structures as
their own SIDs, as in the NextBio case) and virtual enumera-
tions (as evidenced when PubChem shrank by 8 million after
their removal).

6. Utility Tips

So far this review has been more about problems than solu-
tions (hence the title “Caveat Usor”). However, it is hoped that
by unpicking at least some of the associated details (but by no
means all), users can become more aware of potential pitfalls.
They can then apply these insights to make comparable judg-
ments for these or other resources. This section adds a few
tips, some of which include caveats, to aid users in utility judg-
ments. The first important point to note is that these databas-
es are dynamic and consequently the snapshot of the four sets
of numbers presented here may change fairly quickly (e.g. , on
the order of months). Consequently, checking current loading
dates for sources of particular interest thus becomes impor-
tant.

The decision of which of the three to search first (and the
need to move on to either of the other two or not) clearly de-
pends on the question being addressed. However, in the con-
text of drug discovery (as the theme of this issue) the unequiv-
ocal first choice is PC. This is not only because of the unparal-
leled connectivity between Compound, Substance, BioAssay,
PubMed, and Entrez but also the combination of filtering,
mining, and analysis features. Selecting and intersecting are
particularly powerful features of PC; for example, the search
(“IUPHAR/BPS Guide to PHARMACOLOGY”[SourceName]) AND
(“DrugCentral”[SourceName]) AND (“Therapeutic Target Data-
base (TTD)”[SourceName]) AND (“DrugBank”[SourceName])
AND (“ChEMBL”[SourceName]) produced the result of 1110
CIDs in common between all five curated databases as a use-
fully cross-corroborated drug set, where we can directly select

the 374 that are in PDB (n.b. , this takes only minutes on the
advanced menu using the “Add to history” option, but is much
slower executing the searches in the interface). In this way
users can isolate essentially any subset. Another feature of PC
that may be less well known is the ability to perform quality
assessment in situ. The appropriate selection options are in the
limits drop-down menu under “Stereochemistry”. There are six
settings in each case that enable the counting (and filtration)
of both chiral and E/Z centers at different stringencies. This
does not fix quality issues in various sources (as discussed by
Lipinski et al.[6]), but does enable some extent of amelioration.
Note also the ability to salt-strip via the “Chemical Properties”
menu with the “CovalentUnitCount” is another useful clean up
step for inter-source analysis or filtering sets for download.

Another tip that users may be less aware of is more of a
caveat but is important to appreciate for interpretation of anal-
ysis results. This can be termed circularity as identical content
between sources, for legitimate reasons (as opposed to piggy-
backing by straight copying). The issue has already been raised
in the context of UC content, where several sources come in
twice as independent loads and via PubChem subsumation.
For PC it can be illustrated for the two important activity data
submitters of ChEMBL and BindingDB. From the 1.7 million
compound records in the former, 0.35 million are imported
from PubChem confirmed BioAssays as well as 69 000 from
BindingDB including 11 000 with curated patent activity data.
Having introduced this reciprocity for content enhancement,
BindingDB also import compounds with protein target
mapped activity data from ChEMBL. Now both these sources
submit to PC which means not only that some BioAssay data
are therefore going in twice via ChEMBL, but the valuable
BindingDB patent curation data also enter twice from both
sources. These reciprocity arrangements are not hidden, but
can easily confound users who might assume their respective
content is independently acquired.

If users are designing new chemical structures they need to
address the basic question “is there anything out there similar
to what I am working on” not only as a basic cheminformatics
question, but also for freedom to operate checks against
patent sources. In such cases it would be prudent to check the
other two databases. While UC is out in font for raw numbers,
we can still only approach the question with exact match
rather than similarity searches (although this may change). As
the smallest member of the triumvirate, CS nonetheless also
has unique content, possibly running into millions, but this re-
mains undeclared.

For novelty checking there already exists a crude approxima-
tion to the merging of all three databases in the form of
searchable IKs as indexed in Google.[21] This can demonstrated
by a simple search with the connectivity layer inner Key for as-
pirin (since Ref. [21] was published in 2013, it turns out that
full IK searches have become more susceptible to various kinds
of false positives). The results are shown in Figure 9.

In this case, we see that each of the three databases have in
fact emerged as the top matches, but many other database
links are in the hit list, which is remarkably clean in including
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very few false positives (note also the searches execute faster
than internal searches within the sources).

7. Conclusions

The resources reviewed herein indicate that, on the one hand,
researchers exploring bioactivity space and the wider chemical
neighborhood for drug discovery have never had it so good.
On the other, they are confronted with complex differences, in-
cluding non-obvious ones, between these resources that have
a direct bearing on utility. In this regard, a key issue needs to
be highlighted in an attempt to understand the “why” of diver-
gence. While the “who-has-what” questions can be laboriously
addressed by comparisons of the type done in this work, such
results do not explain the causes of this divergence, even
where resources are described in detailed publications as well
as internal documentation.

Notwithstanding, implicit divergence trends emerge from
this work. For PC this includes the unique breadth of connec-
tivity and the embracing of patent extraction sources to the
level of 22 million CIDs.[9] For CS the alternative choice has
been made of eschewing patent chemistry in the interests of
overall structural quality (mainly due to the tendency of auto-
mated extraction to convert fragmented IUPAC names). The
crowd sourcing element is also designed to enhance quality in
CS (although the statistics of entry names and/or structure cor-
rections as a consequence of this have not been declared). For
UC the focus on EBI databases is clear, but in addition, by sub-
suming structures from external sources, they have managed
to not only overtake PC by nearly 60 million but also SciFinder
by 20 million.

However, both from discussions with individuals and observ-
ing changes over the years, an undeclared diverging influence
emerges. This is that, understandably, database teams have
their work cut out simply to maintain the status quo while also
pursuing both content and feature expansion. This leaves little
reserve capacity for longer-term strategic changes in direction
necessary to significantly shift balances of content. This could
include, for example, encouraging submissions of novel chemi-
cal space, expanded activity data sets, deprecating sources
where value has declined, filtering patent extractions at higher
stringencies, and resisting vendor pushes of highly overlapping

or virtual content. We therefore need to accept (but not see as
a criticism) a certain ad hoc element to resource divergence,
while noting at the same time the positive consequence of
complementarity.

In terms of cumulative coverage of all three databases there
is also an important caveat in the increasing numbers of “bou-
tique” standalone databases with valuable internal small-mole-
cule indexing related to different types of bioactive chemistry.
Some of these are either not subsumed into the sources above
(i.e. , have decided not to submit) or have been languishing
many years out of date. Inspection of the 2018 Nucleic Acids
Research Database issue indicates examples of both the
former (e.g. , SuperDrug2) and the latter (e.g. , Therapeutic
Target Database had not updated in PC since 2012 but eventu-
ally refreshed in December 2017 with a major expansion to
22 134).[19, 20] So wouldn’t it be great if there was just a one-
stop portal where: a) all standalone databases with significant
value committed to submit to, b) they ensured their pulls or
pushes were synchronized with their internal releases, and
c) they agreed to harmonize their different structure standardi-
zation processes? This would certainly be high on everyone’s
wish list looking at these major databases from the outside.
However, given the different funding models, chemistry rules,
and stakeholder interests on the inside, this does not seem so
likely in the near future, but we can always hope.

Note added in proof : in the months elapsed between submis-
sion and proofing there have been changes in specific numbers
(e.g. , CS reducing their sources). It was not possible to pick up all
of these instances, but they do not alter the general points.
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Caveat Usor: Assessing Differences
between Major Chemistry Databases

The three databases of PubChem,
ChemSpider, and UniChem capture the
majority of open chemical structure re-
cords. Collectively, they constitute a
massively enabling resource for chemin-
formatics, chemical biology, and drug
discovery. It is important for users to
have at least some appreciation of dif-
ferential content to enable utility judg-
ments for the tasks at hand. This turns
out to be challenging. By comparing
the three resources in detail, this review
assesses their differences, some of
which are not obvious.
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