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SUMMARY

It has been suggested that the evolution of protein
complexes is significantly influenced by stochastic,
non-adaptive processes. Using ligand binding as
a proxy of function, we show that the structure of
ligand-binding sites significantly influences the evo-
lution of protein complexes. We show that homo-
mers with multi-chain binding sites (MBSs) evolve
new functions slower thanmonomers or other homo-
mers, and those binding cofactors and metals have
more conserved quaternary structure than other ho-
momers. Moreover, the ligands and ligand-binding
pockets of homologous MBS homomers are more
similar than monomers and other homomers. Our
results suggest strong evolutionary selection for
quaternary structure in cofactor-binding MBS homo-
mers, whereas neutral processes aremore important
in complexes with single-chain binding sites. They
also have pharmacological implications, suggesting
that complexes with single-chain binding sites are
better targets for selective drugs, whereas MBS ho-
momers are good candidates for broad-spectrum
antibiotic and multitarget drug design.

INTRODUCTION

The majority of genomic traits show dramatic changes with

organismal complexity and genome size (Lynch, 2007). Due to

their high effective population size, prokaryotes are character-

ized by small, dense genomes, where the amount of coding

sequence typically takes up more than 90% of the genome. In

contrast, in higher eukaryotes, the fraction of coding sequence

takes up only a small fraction (1%–2%) of the genome, and its

fraction changes gradually with genome size. A similar trend is

present for many other traits: intron size, intron number, number

of genomic parasites, codon bias, and recombination rate all

show clear correlations with the size of the genome (Lynch and

Conery, 2003), which is caused by the very different effective

population sizes and, in consequence, strength of selection in

species with large and small genomes (see Lynch, 2007 for an

overview).
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There is, however, a notable exception to this pattern: protein

complexes. The majority of proteins do not function in isolation

but form complexes, which can be either homomeric, i.e., are

formed by several units of the same protein, or heteromeric,

which are formed by several different proteins (see recent re-

views by Levy and Teichmann, 2013 and Marsh and Teichmann,

2015). Whereas it is known that, during crystallization, non-phys-

iological complexes are formed frequently, an implicit assump-

tion of most studies on complex evolution is that the structure

of protein complexes is adaptive and is a result of selection

(Ali and Imperiali, 2005; Marianayagam et al., 2004; Nishi et al.,

2013). This assumption is highly intuitive and is supported by

numerous observations. For example, pathogenic mutations

are highly enriched in protein interfaces (Sahni et al., 2015;

Yates and Sternberg, 2013), quaternary structure is frequently

conserved (Levy et al., 2008), protein complex assembly path-

ways tend to be evolutionarily optimized and conserved (Marsh

et al., 2013; Wells et al., 2016), and different biological functions

are strongly associated with different types of quaternary struc-

ture (Bergendahl and Marsh, 2017). However, Lynch (2013) has

recently pointed out that, unlike most genomic traits, the fre-

quency of protein complexes in different taxa, and their quater-

nary structure, do not show the same dramatic changes with

the complexity of organisms (and in consequence, their effective

population size) as most genomic traits and thus do not scale

with the strength of selection. This suggests that stochastic

processes may play a fundamental role in the evolution of com-

plexes, particularly in the case of homomers (Lynch, 2013).

Further support for this hypothesis comes from the observation

that the global distribution of quaternary structure topologies in

complexes with experimentally determined structures is largely

consistent with the distribution expected from random combina-

tions of evolutionary steps (Ahnert et al., 2015).

In this paper, using ligand binding characteristics of proteins

present in the PDB, we test whether the acquisition of novel

functions/ligands depends on protein quaternary structure and

whether it depends on the structure of the ligand binding pocket.

We hypothesized that changes in the assembly and organization

of protein complexes can result in a rapid emergence of novel

functions without dramatic changes in the tertiary structure if

the functional sites are formed by more than one protein in the

complex (thus changes in assembly might be a source of evolu-

tionary innovations). Whereas protein-ligand interactions have

been studied for decades and are of fundamental importance
eports 22, 3265–3276, March 20, 2018 ª 2018 The Author(s). 3265
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in drug discovery (where it is generally assumed that similar

binding sites bind similar ligands; Klabunde, 2007), large, PDB-

scale analyses of protein-ligand interactions have so far charac-

terized such interactions only at a protein domain or fold level

(Furnham et al., 2016; Ji et al., 2007; Kinjo and Nakamura,

2009; Nath et al., 2014), and we are not aware of any study

that tested whether there are general relationships between

complex formation, complex evolution, and ligand binding. We

find that the structure of the ligand binding pocket has a pro-

found influence on the evolution of protein function. In the

case of complexes where the residues of a binding site are

restricted to a single protein chain, the characteristics of ligand

binding in protein complexes and monomers do not differ qual-

itatively, suggesting that, in the case of these complexes, the

‘‘Lynch conjecture’’ is likely to be correct and neutral processes

are very important in the evolution of quaternary structure of

such complexes. In contrast, in homomers with small-molecule

binding sites involving residues from several protein chains, we

observe clear differences that contradict our initial hypothesis:

they acquire novel ligands/functions much slower than mono-

mers and bind chemically more similar ligands. In addition, in

the case of homomers with multi-chain binding metals or cofac-

tors, we observe a markedly lower variability in quaternary struc-

ture (unit number) than in homomers with single-chain binding

sites (SBSs). We also find that the ligands of homomers

with multi-chain binding sites (MBSs) show significantly lower

structural variability than monomers or other homomers, are

significantly enriched in nucleobase-containing ligands, and

frequently perform metabolic functions.

RESULTS

The Structure of Ligand Binding Site Influences the
Evolution of Function of Complexes
We use ligand binding and the presence of binding pockets as a

proxy of protein function because it allows comparisons on a

PDB-wide scale and is based on experimental data; thus, one

can compare homologs without the assumption of functional

similarity. To test whether the evolution of protein function is

significantly influenced by quaternary structure, we used the

BioLiP database (Yang et al., 2013), a semi-manually curated

database of protein-ligand interactions. BioLiP contains only li-

gands that are likely to be biologically relevant (and thus are

not artifacts of crystallization, such as solvents used in structure

determination) and also provides an annotation of the ligand

binding residues. We classified homomer and heteromer binding

sites into two groups: sites where the binding residues are

located on only one chain of the complex (SBSs) and sites where

the binding residues of a particular ligand are located on more

than one chain (MBSs; Figures 1A and 1B). We grouped ligands

into three categories: cofactors; metals and small molecules;

and excluded nucleic acids and peptide ligands from the anal-

ysis. The distribution of the three ligand types is not identical in

the five protein groups. Whereas small molecules dominate the

ligands in all groups, MBS complexes are characterized with a

higher frequency of cofactors and fewer metals (Figure 1C) and

have somewhat fewer ligands per protein than SBS complexes

and monomers (Figure 1D).
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We examined the evolution of protein function by testing how

the ability of binding the ligands of homologous structures

changes with their sequence similarity. We used ProBiS (Konc

and Jane�zi�c, 2010, 2017) to search for the presence of ligand

binding sites in homologous proteins (Experimental Procedures

and Figure 1E) and ordered the frequency of different binding

sites (i.e., the frequency of sites not having a significant hit in a

homolog) according to the sequence similarity of homologous

sequence pairs (Figure 2). The comparison of homomers and

heteromerswithmonomers indicates that the binding sites of ho-

momers with MBSs are much more likely to be found in homo-

logs than in SBSs or monomers (Figures 2A and 2B), particularly

in the case of distant homologs. In contrast, heteromers with

multi-chain binding pockets do not show the same pattern (Fig-

ures 2C and 2D).

The higher conservation of MBSs of homomers (Figure 2A) is

caused by two independent processes: the significantly slower

divergence of small-molecule binding pockets and the some-

what different frequencies of cofactors and metals in this protein

group. The three ligand categories show different evolutionary

patterns: the binding pockets of small molecules show much

higher conservation in MBS homomers than in monomers or

SBS homomers (Figures 2E and 2F), whereas, in case of hetero-

mers, their binding sites appear to diverge faster than in mono-

mers (Figures S1A and S1B). The binding pockets of cofactors

are much more conserved: almost no differences are present

above 40% sequence similarity (Figures 2G, 2H, S1C, and

S1D), which is caused by their ancient evolutionary origins,

possibly dating back to the RNA world (reviewed in Smith and

Morowitz, 2016) but also by the very low structural diversity of

this group, i.e., the fact that many distantly related homologs

share the same cofactor. In contrast, the binding pockets of

metal ions are the less conserved and show no clear differences

between the five protein groups (Figures 2I, 2J, S1E, and S1F),

which may be partly caused by the small size of these pockets,

resulting in lower efficiency of detection in homologous proteins.

Cofactors and Metals Binding Multiple Protein Chains
Influence the Evolution of Quaternary Structure
Next, we tested whether the observed differences in binding

result in differences in the variability of quaternary structure, as

defined by the number of subunits in a complex. We found

that, in the case of proteins with MBS cofactors or metals, qua-

ternary structure evolves differently in MBS and SBS complexes

(Figures 2K, 2L, S2E, and S2F), but surprisingly, in MBS com-

plexes binding only small molecules, there is no such effect

(Figures S2K and S2L). In homomers with codactors/metals,

MBS complexes show a much higher conservation of unit

number than in SBS complexes (Figures 2K and S2), whereas

in heteromers, the pattern is the opposite: the structure of

suchMBS heteromers appear to change faster than SBS hetero-

mers (Figures 2L and S2F). Besides contributing to catalysis

(Fischer et al., 2010), certain cofactors and metals are known

to stabilize the tertiary structure of proteins; classic examples

include the heme of myoglobin and cytochrome-c. Our results

strongly suggest that MBS cofactors and metals also influence

the formation and evolution of protein complexes. InMBS homo-

mers, their effect is most likely stabilizing, resulting in slower



A

B

C D

E

Figure 1. Examples of SBSs and MBSs in

Homomers and Ligand Distributions

(A) Human ketohexokinase complexed with pyr-

imidopyrimidine (PDB ID: 3Q92). The protein forms

a dimer, and each subunit has an independent

binding pocket, containing a ligand (red). Residues

binding the ligand are highlighted in yellow.

(B) Anemone STING (stimulator of interferon [IFN]

genes) protein, complexed with cyclic diguano-

sine monophosphate (PDB ID: 5CFL). The homo-

dimer has only one binding site, which is formed

by both protein chains. Residues binding the

ligand are highlighted in yellow.

(C) The composition of biologically relevant li-

gands in monomers, SBS homomers, MBS ho-

momers, SBS heteromers, and MBS heteromers.

In all cases, the majority of ligands are small

organic molecules, but MBS complexes are

characterized with higher fraction of cofactors and

fewer metal ions. Nucleic acids and peptides were

not used in the analyses.

(D) Boxplots of the number of ligands in the

five protein categories, excluding outlayers. The

number of different ligands per protein follows an

exponential-like distribution, with the majority of

proteins having one or two different ligands.

(E) Outline of the ligand binding pocket searches:

for each pair of homologous proteins, we per-

formed an exhaustive search, i.e., we searched all

structures of the target protein with all ligand

binding pockets of all structures of the query

protein, using both proteins as target and query.
evolution of quaternary structure, and selection is likely to influ-

ence the assembly and composition of such homomers more

than of SBS homomers. In contrast, in MBS heteromers, they

seem to contribute to evolutionary innovations (Figure 2L).

In the case of complexes without cofactors or metals, the evo-

lution of quaternary structure does not seem to evolve differently

in SBS andMBS complexes, despite the clear differences in their

ligand binding patterns (Figures S2G–S2L). However, in the case

of such heteromers, the lack of increasing trend with sequence

divergence (i.e., the fact the more distant sequences do not

have more different quaternary structure; Figure S2L) suggest

that, besides biological factors, the observed patterns are

also significantly influenced by biases in the PDB. This could

be caused by incomplete crystals or the recent availability of
Cell Rep
cryoelectron microscopy (cryoEM) struc-

tures, which are typically much larger

than the structures obtained with X-ray

crystallography.

Complexes with MBSs Have
Chemically Less Variable Ligands
and Binding Sites
What mechanism could be responsible

for the slower functional change seen

in MBS homomers? There are two funda-

mentally different possibilities. First,

MBSs may be more generic and flexible,
and in consequence, they may be able to process a broader

spectrum of ligands. Examples of this are certainmembrane pro-

teins, receptors, and regulatory proteins (Pabon and Camacho,

2017). It has been shown recently that, in the case of a multidrug

resistance protein, the conformational variability of its bipartite

binding site is the most likely cause of its very broad substrate

specificity (Johnson and Chen, 2017). However, flexible binding

sites and broad substrate specificity are also present in some

SBS homomers (Hvorecny et al., 2017) and even monomers

(Fong et al., 2017). Alternatively, the functions and ligands

of MBS homomers may be more conserved than of SBS

homomers.

We tested which of these hypotheses is true by comparing

the chemical characteristics of ligands and the structural
orts 22, 3265–3276, March 20, 2018 3267
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Figure 2. Evolution of Ligand Binding and QS
We use the ability to bind ligands of homologous proteins (scaled with sequence similarity) as the measure of their functional similarity.

(1) General relationships between ligand binding and QS in homomers, heteromers, and monomers.

(A) Homomers with MBSs show amuch slower functional divergence than monomers. This pattern is caused by two separate processes: (1) the binding pockets

of small-molecule ligands diverge significantly less rapidly than the pockets of monomers and (2) MBS homomers have a higher fraction of cofactors, which are

frequently identical and have highly conserved binding pockets plus fewer metal ions.

(B) In homomers with binding sites restricted to a single chain, the ability to bind the ligands of homologs changes qualitatively similarly to monomers.

(C) MBS heteromers do not show the same pattern as MBS homomers.

(legend continued on next page)

3268 Cell Reports 22, 3265–3276, March 20, 2018



variability of the binding sites. We tested the chemical similarity

of ligands of homologous structures using the ChEBI (Chemical

Entities of Biological Interest) ontology database (Degtyarenko

et al., 2008; Hastings et al., 2016). ChEBI provides a manually

curated hierarchical ontology, conceptually similar to gene

ontology (GO), that is based on chemical structure (Figure 3A).

We used the number of different terms between chemical com-

pounds in the ontology to quantify the chemical and structural

difference between organic ligands, excluding nucleic acids,

and peptides (Figure 3A). Our analysis shows that, in the

case of MBS homomers, the difference between ligands of ho-

mologs is smaller than between ligands of monomers, whereas

in the case of SBS complexes, the difference is somewhat

larger or not significant (Figures 3B–3E). Excluding cofactors

from the analyzed ligands does not change the pattern dramat-

ically (Figure S3), although it does influence the most diverged

homologs.

Ligand binding frequently results in conformational changes

of proteins, and we also tested the structural variability of the

binding site by comparing the root mean square deviation

(RMSD) of the significant hits (with Z score > 2) of homologs

with sequence similarity between 30% and 49%. Because

RMSD depends on the size of the superposed structures,

we used the size of the matching pocket as a covariate. We

expected that hits to binding sites in proteins with more

different ligands and binding sites will have higher RMSD. As

predicted, we found a significant difference between MBS

and SBS homomers (Figure 4A), but we found no consistent

difference in heteromers (Figure 4B), irrespectively whether

cofactors were included or excluded from the dataset. Addi-

tionally, using those proteins where ligand binding (holo) and

ligand-free (apo) structures are both present in the PDB, we

tested whether ligand binding results in a larger conforma-

tional change in MBS homomers than SBS homomers

(measured as the RMSD of the ligand binding pocket of the

holo structure in the apo structure). We did not find a clear dif-

ference between the two (Figure 4D). Our results based on

pocket comparison support the findings based on chemical

similarity: on average, the structural variability of the binding

sites in MBS homomers is lower than of SBS homomers,

and the cases where flexibility is assumed to result in ligand

promiscuity are most likely a minority.
(D) In SBS heteromers, similarly to SBS homomers, the ability to bind the ligands

complexes, stochastic processes (i.e., drift) are likely to play a significant role in

(2) Evolution of ligand binding of different ligand categories in homomers (see Fig

(E and F) The binding pockets of small molecules show much higher conservatio

(G and H) In the case of cofactors, the binding pockets are highly conserved

homomers).

(I and J) The metal binding pockets are the less conserved and show no qualitat

homomers; SBS homomers).

(3) Evolution of quaternary structure.

(K) In homomers that bind cofactors or metal ions, the structure of binding pockets

also Figure S2). Homomers withmulti-chain biding sites have significantly lower va

structure of the binding pocket is an important determinant of the evolution of th

(L) In the case of heteromers with cofactors andmetals, we see the opposite patter

than SBS heteromers.

On all panels, bars represent proportions, whiskers 95% confidence intervals. **p

multiple testing.
The PDB is not an unbiased database, as its composition is

significantly influenced by the priorities of the research com-

munity. Thus, the observed differences could also be caused

by biases in the PDB rather than real biological differences,

if MBS homomers have consistently more homologs in the

PDB having identical ligands or have been systematically crys-

tallized with fewer ligands. To rule this out, we determined the

ligand diversity of sequences in the PDB, measured as the to-

tal number of ligands of the homologs of a sequence divided

by the number of homologs it has (Figure S4). Note that,

because we ignored structural differences between ligands,

high diversity does not necessarily mean high structural vari-

ability (for example ATP and ADP are different ligands,

although are structurally very similar) but simply the high num-

ber of non-identical compounds, irrespectively whether they

are small modifications of each other or radically different;

thus, this measures research effort and not structural vari-

ability. The results show that proteins with MBSs have higher

number of ligands per sequence, indicating that the higher

similarity of ligands and lower structural variability of MBS ho-

momers are not caused by their lower ligand diversity in the

PDB (Figure S4).

Functional Analysis of MBS Homomers
To test whether MBS homomers have characteristic func-

tions, we performed a Gene Ontology enrichment analysis

and also an enrichment analysis of the ChEBI terms of their

ligands. We found that, whereas the molecular functions of

MBS homomers are diverse, several functions are signifi-

cantly enriched in comparison to all ligand binding homo-

mers, including acyl-coenzyme A (CoA) dehydrogenase activ-

ity, transaminase activity, thiamine pyrophosphate binding,

cofactor binding, transmembrane transport, ion binding,

transporter activity, and other functions frequently involving

cofactor binding (Figures 5A and S5; Table S1). Next, we

tested whether the chemical composition of the ligands of

MBS homomers is biased toward certain chemical groups

by a ChEBI structural term enrichment analysis (Experimental

Procedures). We found that the ligands that are present in

ChEBI (of the almost 20,000 ligands present in BioLiP at the

time of writing, only �3,100 are present in ChEBI) show clear

structural biases: the most enriched chemical structures are
of homologs changes qualitatively similarly to monomers. In the case of SBS

shaping the number of subunits or their topology.

ure S1 for heteromers).

n in (E) MBS homomers than in monomers or (F) SBS homomers.

and show little difference between QS types (G, MBS homomers; H, SBS

ive differences between the groups, most likely due to their small size (I, MBS

have fundamental consequences for the evolution of quaternary structure (see

riability in quaternary structure than complexes with SBSs, suggesting that the

eir quaternary structure.

n to homomers in the evolution of QS:MBS heteromers appear to change faster

< 0.005; *p < 0.05; tests of proportions, with Benjamini-Hochberg correction for
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D E

Figure 3. Homomers with MBSs Are Charac-

terizedwith ChemicallyMore Similar Ligands

(A) Example of ChEBI ontology similarity between

two different chemical compounds (dopamine and

guanine). Shared ontology terms are highlighted

with red; dopamine and guanine specific terms are

highlighted with blue and green, respectively.

The difference in their chemical composition was

measured as the proportion of the ligand specific

and all terms, i.e., (blue + green)/all terms: (15 + 17)/

49 = 65%.

(B and C) The chemical properties of ligands

of homomers with MBSs (B) change less with

sequence divergence than the properties of ligands

of monomers or other complexes, but not in het-

eromers (C).

(D and E) Ligands of homomers with SBSs (D) show

a weak but consistently higher variability in the

chemical properties of ligands than monomers,

while there is no clear difference between SBS

heteromers (E) and monomers.

Bars represent averages; whiskers 95%confidence

intervals; **p < 0.005; *p < 0.05; t tests, with Ben-

jamini-Hochberg correction for multiple testing.

See also Figure S3.
nucleobase-containing ligands, frequently containing ribonu-

cleotides (Figure 5B; Table S2). It has been long known that

many protein cofactors are derivatives of nucleotides (Petsko

and Ringe, 2008), and it has been suggested that this pattern

is ancient and might have originated in the RNA world (Ji

et al., 2007; White, 1976). However, excluding cofactors

from the analyzed ligands does not change the pattern qual-

itatively. To assess the biochemical role of these ligands, we

also performed an enrichment analysis of the ChEBI role

ontology terms, which indicates that the most significantly en-

riched terms are metabolites, including fundamental metabo-

lites (Figure 5C; Table S3), irrespectively whether cofactors

are included or not. This suggests that MBS homomers are
3270 Cell Reports 22, 3265–3276, March 20, 2018
performing central, mostly metabolic,

and probably ancient functions.

General Evolutionary and Structural
Characteristics of Complexes with
Single- and Multi-chain Binding
Complexes
The patterns described above could also

potentially emerge if MBS homomers are

significantly younger and faster evolving

than SBS monomers or homomers, which

could result in the observed lower chemi-

cal variability, as younger protein families

are expected to have less diverse func-

tions (Osadchy and Kolodny, 2011). To

test this, we compared the age of proteins

that are part of MBS and SBS complexes,

using the human protein age dataset pro-

vided by Capra et al. (2012, 2013; Exper-

imental Procedures). We found no signifi-
cant difference in the ages of MBS and SBS complexes

(Figure S6). In fact, MBS complexes are somewhat more en-

riched in the oldest age groups, which is in agreement with

the higher frequency of cofactor binding in these groups

(Figure 1).

Ligand binding frequently results in conformational changes

of both proteins and their ligands (Stockwell and Thornton,

2006), and flexibility has been shown to be essential for the

proper functioning of ligand-binding proteins (Petsko and

Ringe, 2008). Therefore, because differences in flexibility

could have significant consequences for ligand binding, we

compared the flexibilities of subunits from MBS and SBS com-

plexes using a simple method based upon relative solvent
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Figure 4. Homologs of MBS Homomers

Have More Similar Binding Site Structure

Than SBS Homomers or Monomers

(A–C) The comparison of binding sites of homol-

ogous proteins with 30%–50% sequence identity

indicates that the structural variability of binding

sites of (A) homomers (measured as the root mean

square deviation [RMSD], in angstrom) with multi-

chain binding pockets is significantly lower than

the variability of single-chain binding pockets,

whereas there is no such pattern in heteromers (B).

Monomers (C) show a pattern comparable to SBS

homomers.

(D) The comparison of apo and holo structures of

homomers indicates that the binding pockets

MBS homomers do not show a larger structural

variability than SBS homomers.

**p < 0.005; *p < 0.05; Wilcoxon tests with Benja-

mini-Hochberg correction.
accessible surface area (Arel). Essentially, Arel is the ratio of the

solvent accessible surface area observed for a polypeptide

chain (ignoring intermolecular interactions) to the value ex-

pected for a folded protein of the same molecular weight

(Marsh and Teichmann, 2011). Previously, Arel parameter has

been shown to correlate very well with several more complex

measures of protein flexibility as well as the magnitude of

conformational changes that occur upon binding. Thus, it pro-

vides a simple way to analyze the flexibilities of protein com-

plex subunits on a large scale. Interestingly, we observe that

MBS complexes are generally more flexible than SBS com-

plexes (Figure 6A). Previously, it was demonstrated that the

subunits of protein complexes, heteromers in particular, are

more flexible in their unbound states than monomers (Marsh

and Teichmann, 2014) and that subunits of complexes with

different symmetry types have different flexibilities (Marsh and

Teichmann, 2014), i.e., cyclic homomers are more flexible

than dihedral homomers. A comparison of symmetry types of

homomers nevertheless indicates that the higher flexibility of

MBS homomers is not a byproduct of biases in symmetry:

MBS homomers are not consistently enriched among com-

plexes with cyclic symmetry (Figure 6B). The biological function

of the higher flexibility of MBS complexes is unclear; one

possibility is that it is the consequence of the somewhat larger

ligands of MBS complexes, which may require larger confor-

mational changes upon binding.

Prokaryotes and eukaryotes are characterized with different

frequencies of homomers and heteromers, with homomers be-

ing much more frequent in prokaryotes (Lynch, 2012; Marsh

et al., 2015; Figure 6C). We hypothesized that, due to much

stronger selection in prokaryotes, complexes where the topol-

ogy is more influenced by stochastic processes, i.e., SBS com-
Cell Rep
plexes, will have a lower frequency in

prokaryotes. Our results show that the

frequency of SBS complexes is indeed

significantly (although not dramatically)

lower in prokaryotes than in eukaryotes

both in the case of homomers and hetero-
mers (Figure 5D), supporting the hypothesis that SBS complexes

are subject to weaker selective constraints.

Pathogenic Mutations Are Most Enriched in the Binding
Sites of Heteromers
Finally, we tested whether quaternary structure and the structure

of binding pockets influences the pathogenicity of mutations in

the binding sites. Proteins with different quaternary structure

have different baseline levels of pathogenic mutations, which in-

crease from monomers through homomers to heteromers, with

MBS complexes having higher frequencies of pathogenic muta-

tions than SBS complexes, both in homomers and heteromers

(Figure 7; baseline is indicated with a red horizontal line). Muta-

tions in binding sites are known to be more pathogenic than

other mutations, and our findings confirm this; in most complex

types, the frequency of pathogenic mutations is significantly

higher than the baseline level (*p < 0.05; **p < 0.005; tests of pro-

portions). The highest frequencies of pathogenic mutations are

in the binding sites of heteromers (Figure 7B), which in the

case of small-molecule binding MBS heteromers, is close to

30% of mutations. In the case of metal-binding MBS homomers,

the total number of pathogenic mutations is very low, altogether

5, which results in low statistical power (Table S4).

DISCUSSION

Our findings indicate that the structure of ligand binding site, i.e.,

whether it is formed by residues of a single chain or by multiple

chains, has profound consequences for the evolution of protein

function and, in the case of cofactor or metal-binding proteins,

also for quaternary structure. In the case of SBS complexes,

the change in ligand binding follows qualitatively the same
orts 22, 3265–3276, March 20, 2018 3271
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Figure 5. Functional Characteristics of MBS Homomers, in Relation to All Homomers included in the Analysis

(A) Scatterplot of significantly enriched GOmolecular function terms, summarized and visualized with REVIGO. Related terms form clusters that are labeled with

the most significant term of the cluster. The size of the circles corresponds to the number of proteins in the term; colors indicate significance. (See also Figure S5

and Table S1 for all enriched terms and exact significances.) MBS homomers have diverse functions, including acyl-CoA dehydrogenase activity, transaminase

activity, thiamine pyrophosphate binding, cofactor binding, transmembrane transport, ion binding, or transporter activity, which frequently involve binding of

cofactors.

(B) Graph of significantly enriched ChEBI structural ontology terms. White nodes are not significant; the intensity of red corresponds to significance (see Table S2

for exact p values). Most enriched structural terms are related to nucleobases/nucleotides.

(C) Graph of significantly enriched ChEBI role ontology terms. (See Table S3 for exact p values.) The enrichment shows that the ligands of MBS homomers are

typically involved in metabolism.
pattern as in monomers, indicating that, in the case of such com-

plexes, ligand binding is influenced little by quaternary structure

and the evolution of quaternary structure is likely to be more

influenced by stochastic processes, as it was suggested by

Lynch (2013; Figure 2). Additionally, among all complex types,

the baseline frequency of pathogenic mutations is the lowest in
3272 Cell Reports 22, 3265–3276, March 20, 2018
SBS complexes (Figure 7), further supporting this hypothesis.

In contrast, in complexes that bind metals and cofactors, the

quaternary structure of both MBS homomers and MBS hetero-

mers evolves at a significantly different rate than in SBS com-

plexes. Surprisingly, we found no evidence that changes in qua-

ternary structure are a source of evolutionary innovations in
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Figure 6. Structural and Evolutionary Char-

acteristics of Single- and Multi-chain Bind-

ing Complexes

(A) Subunits forming MBSs are significantly more

flexible than subunits with single-chain sites

(Wilcoxon tests).

(B) The frequency of single- andmulti-chain binding

sites in different symmetry groups of homomers.

The symmetry groups are A, asymmetric; C, cyclic;

C2, two-fold dimeric; C2h, two-fold symmetric with

>2 subunits; and D, dihedral (tests of proportions).

(C) The frequency of homomers is higher among

prokaryotes, whereas heteromers are more

frequent in eukaryotes (tests of proportions).

(D) The frequency of complexes with MBSs is

higher in prokaryotes than in eukaryotes, particu-

larly in the case of heteromers (tests of proportions).

On (B)–(D), whiskers represent 95% confidence

intervals. On all panels, **p < 0.005 and *p < 0.05.
homomers (at least when considering ligand binding): both

ligand binding and the ligands of MBS homomers change signif-

icantly less with sequence evolution than in monomers (Figures

2A and 3A). The higher variability of quaternary structure (i.e.,

unit number) in cofactor-binding SBS homomers (Figure 2K)

also suggests that purifying selection is more important in

shaping the quaternary structure of MBS homomers than of

SBS homomers.

In the case of cofactor-binding heteromers, we see the oppo-

site pattern: the unit number of MBS complexes changes faster

than the unit number of SBS complexes, indicating that, in such

complexes, changes in complex topology are a source of evolu-

tionary innovations (Figures 2L and S2). However, for heteromers

that do not bind cofactors or metals (Figure S2), it is currently

unclear to what degree the observed patterns are caused by

real changes in function or the incompleteness of heteromeric

structures in the PDB, and they probably require additional,

more complete structures and more fine-grained analyses to

be able to reach a conclusion.

The finding that the evolution and assembly of SBS complexes

may be significantly influenced by non-adaptive processes does

not mean that it is entirely stochastic—we observe a significantly

higher baseline level of pathogenic mutation in SBS homomers
Cell Rep
than monomers (Figure 7), and the qua-

ternary structure of such homomers is still

frequently conserved (Levy et al., 2008;

see also Figures 2 and S2). How-

ever, in addition to adaptive forces, the

nonlinear change of tertiary structure

with sequence similarity may contribute

to the pattern. Typically, above �40%

sequence identity, the tertiary structure

of homologous proteins differs little (see

Abrusán and Marsh, 2016 for examples),

and structural similarity declines signifi-

cantly only below �30% sequence iden-

tity. In fact, structure is so much more

conserved than sequence that homol-
ogy-based tools for tertiary structure prediction like Rosetta

(Kim et al., 2004) or I-TASSER (Yang et al., 2015) can frequently

build reliable predictions based on templates with as low as

15% sequence identity. Thus, similar quaternary structure of

homologs might be, to some degree, the byproduct of their

similar tertiary structure: similar building blocks result in similar

complexes.

The observation that ligand structure and ligand pocket struc-

ture changes much less with sequence in MBS than SBS homo-

mers is likely to have important consequences for drug design:

the development of broad-spectrum antibiotics and antiviral

drugs; for polypharmacology (Bolognesi and Cavalli, 2016);

and also drug repositioning. Our findings suggest that antibiotics

targeting MBS homomers are likely to be broader spectrum than

antibiotics that target SBS homomers. In addition, it is likely that

evolving resistance to drugs that target MBS homomers is more

difficult, at least where the evolution of resistance is due to the

accumulation of mutations, like in rapidly evolving retroviruses.

The traditional aim of drug design has been designing drugs

that bind specifically to one target protein (monopharmacology)

to achieve maximum specificity and minimize side effects.

However, it has become clear that many diseases, like cancers

and psychiatric diseases, have polygenic causes, and in such
orts 22, 3265–3276, March 20, 2018 3273



Figure 7. The Frequency of Pathogenic

Mutations Is Different in Different Com-

plexes

(A–D) Complexes with (A) small molecules, (B)

cofactors, (C) metal ions, and (D) all ligands.

The baseline level of pathogenic mutations is

highest in MBS heteromers and lowest in

monomers. In most complex types, the fre-

quency of pathogenic mutations of the binding

sites is higher than the baseline level, particu-

larly in the case of heteromers. **p < 0.005; *p <

0.05; tests of proportions; whiskers represent

95% confidence intervals.
diseases, drugs that target several proteins simultaneously

(multi-target or promiscuous drugs) can be much more efficient

than single-target drugs, despite their more complex and less

understood pharmacology (Peters, 2013; Roth et al., 2004).

Because similar binding pockets in general bind similar ligands

(Klabunde, 2007), protein families with many MBS homomers

are likely to be good candidates for the development of multi-

target drugs, particularly in cancers, due to the specific meta-

bolic characteristics of many cancers (Cairns et al., 2011).

Finally, our results may be also relevant for drug repositioning

(Li and Jones, 2012), because binding site similarity is a require-

ment for repositioned drugs. An example is the retroviral drug

nelfinavir, which binds HIV protease, a homomer with a MBS,

and is currently being repositioned as a (promiscuous) cancer

drug (Koltai, 2015).
EXPERIMENTAL PROCEDURES

Data Sources and Data Preprocessing

The sequences of proteins having a structure in the PDB were downloaded

from Uniprot, and we used the Uniprot mappings between sequences and

PDB structures. To identify homologous protein pairs, we performed an all

versus all BLAST search on these sequences, with an e-value cutoff 10�4;

the sequence pairs with significant BLAST hits were realigned with Muscle

(Edgar, 2004), and their global sequence similarity was determined. Chimeric

sequences were excluded from further analyses, and the sequences were

clustered at 100% sequence similarity to remove redundancies. For every pro-

tein sequence, we determined the PDB entries associated with it and filtered

out the PDB entries that are part of a virus, form protein fibrils, are helical, or

contain sequences from more than one species (this also removes most pep-

tide-binding antibodies). The quaternary structure of the proteins was deter-

mined using the biological units as follows: if a protein is part of at least one

heteromer PDB structure, it was classified as a heteromer; else, if it has at least

one homomeric PDB entry, it was classified as a homomer, and the remaining

sequences were classified as monomers. Heteromer PDB structures were

defined as structures with chains from minimum two different proteins,

irrespectively of the length of the chains.
3274 Cell Reports 22, 3265–3276, March 20, 2018
We used the BioLiP database (Yang et al., 2013)

of protein-ligand interactions to determine ligand

binding residues and whether a ligand is bound

to several protein chains or a single one. BioLiP

is a semi-manually curated database, which con-

tains only ligands that are assumed to be biologi-

cally relevant and are not byproducts of the

crystallization procedure or other structure-deter-

mination methods. It contains all structures from

the PDB with a biologically relevant ligand (at the
time of writing 71,925 structures, after excluding structures binding only nu-

cleic acids and peptides), but it is based on the asymmetric units. Because

in the analyses, we used the biological units of PDB entries (the functional

form of the structures), we excluded all entries, altogether 13,413, where the

asymmetric unit and biounit is different and the number of proteins is larger

in the biounit than in the asymmetric unit, as the ligand annotation of these

entries is incomplete in BioLiP. In the case of entries where the asymmetric

units contain the biounit, differences between the two are incorporated into

the BioLiP annotation; see Yang et al. (2013) for details.

From the ligands of BioLiP, we used cofactors, metal ions, and small mole-

cules. Cofactors were determined as ligands that are annotated as cofactors in

the ChEBI database (Hastings et al., 2016) or in Fischer et al. (2010). Small mol-

ecules were defined as every ligand that is not a cofactor, metal ion, nucleic

acid, or a peptide.
Searches for Ligand Binding Sites

We used ProBiS (Konc and Jane�zi�c, 2010, 2017) to identify ligand binding

pockets in homologous proteins, which identifies binding sites by local

structural search and compositional similarity. We performed all versus all

searches between homologous protein pairs; i.e., we searched all structures

of the target protein with all ligands of all structures of the query protein (Fig-

ure 1E). In the first step, the biological units of every PDB entry were prepro-

cessed: their atoms and chains were renumbered so that every atom and pro-

tein chain was unique in the structure, and from the target protein structures,

all ligands were removed, whereas from the query structures, only waters.

Due to the limitations of PDB format, structures with more than 99,999 atoms

were not included in the analyses. Next, the binding sites of ligands present in

BioLiP were extracted from the query structures, which were defined as the

surface residues within 3 Å of the ligand. For the target structures, the entire

surface of the protein (complex) was extracted, and the binding sites were

searched against the surfaces of the target proteins with ProBiS. For every

hit, the Z score, RMSD, e-value, and the size of the match were determined

(size was determined as the number of aligned vertices; see Konc and

Jane�zi�c, 2010 for details). We accepted a hit as significant if the Z score of

the match was equal or higher than 2 and its e-value was lower than 10�4.

The fraction of different binding sites for a pair of homologs was determined

as the number of ligands without a significant hit in the homolog divided by

the total number of ligands searched and was plotted against the sequence

similarity of the homologous proteins. In addition, we tested how efficient is



ProBiS in finding matches and whether there are systematic differences be-

tween homomers, heteromers, and monomers by determining the fraction

of significant hits between homologous structures that are known to bind

the same ligand (Figure S7). We found that the efficiency of ProBiS is high

and is not influenced qualitatively by the size or number of chains in a PDB

entry (Figure S7).

Determination of Ligand Chemical Similarity and Binding Site

Variability

We used the obo ontology files downloaded from the ChEBI database (Deg-

tyarenko et al., 2008; Hastings et al., 2016) to compare the chemical similarities

of ligands. For every ligand, its entire structural ontology graph was computed

from the obo files using a recursive algorithm, using the ‘‘is_a’’ tag, and the

average of the shared/different termswas determined for every possible ligand

pair of the homologous sequences.

Structural variability of the binding sites of homologs was performed using

the RMSD of the significant hits (Z score R 2), using the sequence pairs

with 50%–30% identity. We used the size of the match as a covariate because

RMSD is not a size-independent measure; it was measured as the number

of aligned ProBiS vertices. We performed similar searches between the

ligand binding (holo) structures and ligand-free (apo) structures of the same

proteins when they were both available in the PDB. In these searches, no

significance cutoff was used. Variability in the structure of the binding sites

was measured as the average RMSD of the best hits, using the size of the

match as covariate.

Gene Ontology and ChEBI Ontology Enrichment

From the UniProt-CrossRef annotation of proteins that are present in the PDB,

we extracted the list of GO terms associated with a particular protein. Next, for

every protein, we extracted the entire hierarchy of its GO terms, i.e., all parents

up to the highest level ‘‘molecular function’’ term, and determined the enrich-

ment of GO terms in MBS homomers with GeneMerge (Castillo-Davis and

Hartl, 2003), using all homomers in the PDB as the background set. Signifi-

cances were corrected for multiple testing with the Benjamini-Hochberg

method (a.k.a. false discovery rate [FDR]), and the list of significantly enriched

terms was submitted to the Revigo server (Supek et al., 2011) to remove re-

dundancies, summarize, and visualize the results.

ChEBI term enrichment was determined as follows. We determined the

nonredundant list of ligands in MBS homomers and in all homomers, contain-

ing only a single instance of every ligand. For every ligand, we identified its

parental terms using the ChEBI structural (‘‘is_a’’) and role (‘‘has_role’’) ontol-

ogies. The enrichment of terms was also calculated with GeneMerge, which is

a generic tool for term-enrichment analysis of ranked lists. Enriched terms

(after correction for multiple testing with FDR) were visualized with a method

conceptually similar to the graphical output of GOrilla (Eden et al., 2009),

with directed graphs and using color coding to indicate the significance of

the enrichment, the intensity of red indicating significance. Graphs were drawn

using GraphViz.

Evolutionary and Structural Characteristics of Complexes

The evolutionary age of human proteins was based on the ProteinHistorian

database (Capra et al., 2012), using the Princeton Protein Orthology (PPOD)/

PANTHERv7 dataset, generated with asymmetric Wagner parsimony. The

flexibility of subunits of proteins was determined as described in Marsh and

Teichmann (2014); the symmetry type of homomeric complexes is based on

the classification of PDB.

Estimation of the Frequency of Pathogenic Mutants

The list of disease-causing mutations was downloaded from Ensembl

(variation dataset) and was mapped to the PDB structures of human proteins

or their homologs if the sequence similarity between the human protein and its

homolog was higher than 90% and the mutated amino acid was identical. The

set of putative neutral mutations is based on ExAC variants (Lek et al., 2016)

that map to structures of the PDB using a similar procedure as described

above. The frequency of pathogenic mutants—both baseline and binding—

was determined for every protein type independently as the number of disease

mutations divided by the sum of disease and neutral mutations.
Analysis Tools and Statistics

All analyses and statistical tests (except GO and ChEBI enrichment) were per-

formed with in-house Perl scripts and R. Protein structures were visualized

with UCSF Chimera (Pettersen et al., 2004).
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