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Abstract 18 

Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly 19 

widely in hydraulic engineering and geomorphological studies over the past few decades. 20 

Analytical and approximate solutions are usually sought to verify such models and therefore 21 

confirm their credibility. Dam-break flows are often evoked because such flows normally feature 22 

shock waves and contact discontinuities that warrant refined numerical schemes to solve. While 23 

analytical and approximate solutions to clear-water dam-break flows have been available for 24 

some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to 25 

derive approximate solutions for ideal dam-break sediment-laden flows resulting from the 26 

sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a 27 

uniform slope. The approximate solutions are presented for three typical sediment transport 28 

scenarios, i.e., pure advection; pure sedimentation; and concurrent entrainment and deposition. 29 

Although the cases considered in this paper are not real, the approximate solutions derived 30 

facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock 31 

waves can be numerically resolved accurately with a suite of finite volume methods, whilst the 32 

accuracy of the numerical solutions of contact discontinuities in sediment transport remains 33 

generally poorer. 34 

 35 

1. Introduction 36 

Over the past few decades, there have been widespread applications of shallow water 37 

hydro-sediment-morphodynamic (SHSM) models in hydraulic engineering and 38 

geomorphological studies (Cao et al., 2017). A wide range of fluvial processes have been 39 

investigated, including dam-break floods over erodible beds (Cao et al., 2004; Capart & Young, 40 

1998; Huang et al., 2012, 2014; Wu & Wang, 2007; Xia et al., 2010) and morphodynamic 41 

processes (Nicholas et al., 2013; Qian et al., 2017; Wang et al., 2008; Wu, 2007; Xie, 1990). In 42 

fact, as pointed out by Cao et al. (2017), the SHSM equations have been extended to model 43 

coastal processes (Kim, 2015; Xiao et al., 2010; Zhu & Dodd, 2015), watershed erosion 44 

processes (Kim et al., 2013), subaqueous sediment-laden flows and turbidity currents (Hu & Cao, 45 

2009; Hu et al., 2012), and sharply stratified processes (Li et al., 2013; Spinewine & Capart, 46 

2013; Zech et al., 2015). Most recently, shallow water two-phase models have been developed to 47 

better resolve fluvial processes (Cristo et al., 2015; Li, Cao, Qian, et al., 2017) and debris flows 48 

(Li, Cao, Hu, et al., 2017a, b). Pivotal to the success of SHSM models are the recent advances in 49 

both computer technology and numerical methods. Examples include developments in the finite 50 

difference method (Wu, 2007; Xie, 1990), the finite element method (Michoski et al., 2013), and 51 

the finite volume method (FVM) (Tan, 1998; Toro, 2001). Prior to applications, such 52 

mathematical models have to be either verified against analytical and approximate solutions or 53 

validated against experimental datasets for SHSM processes or pure hydrodynamic processes 54 

without involving sediment transport. However, laboratory experiments are time-consuming and 55 

measurement accuracy is often limited. In contrast, analytical and approximate solutions can be 56 

derived for simplified physical problems, of which the governing equations are mathematically 57 
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tractable by analytical techniques (Fraccarollo & Capart, 2002; Toro, 2001). Although it is 58 

inevitable to neglect some physical mechanisms to obviate mathematical difficulty, analytical 59 

and approximate solutions are particularly valuable for the systematic assessment of numerical 60 

models describing more complex and realistic problems (Ancey et al., 2008; Berthon et al., 2012; 61 

Fernandez-Feria, 2006; Hogg, 2006; Pritchard & Hogg, 2002; Ritter, 1892; Stoker, 1957; Toro, 62 

2001; Zoppou & Roberts, 2003). 63 

Dam-break flows are notable for their destructive power, which can cause catastrophic 64 

loss of life and substantial societal, economic and infrastructural damage (Cao et al., 2004). 65 

Dam-break flows are also of great interest to researchers investigating the ability of 66 

mathematical models to capture shock waves and contact discontinuities (Pritchard & Hogg, 67 

2002; Toro, 2001). Ancey et al. (2008) have summarized progress towards both analytical and 68 

approximate solutions for clear-water dam-break flows. In early stages, a variety of dam-break 69 

problems have been designed, including floods propagating over a frictionless horizontal bed 70 

(Hogg, 2006; Ritter, 1892; Stoker, 1957) and a rough horizontal bed (Dressler, 1952; Hogg & 71 

Pritchard, 2004; Whitham, 1955). However, only asymptotic solutions could be developed for 72 

floods over a rough horizontal bed. Afterwards, cases with frictionless and inclined beds have 73 

been considered. Mangeney et al. (2000) studied debris avalanches and examined the case of a 74 

dam perpendicular to the bed holding back water of constant depth in a reservoir of infinite 75 

length. Ancey et al. (2008) and Antuono and Hogg (2009) considered a flood of finite volume; 76 

the dam was again perpendicular to the bed, rather than vertical, in order to prevent singular 77 

behavior occurring when the method of characteristics was employed. Fernandez-Feria (2006) 78 

attempted to derive analytical solutions for dam-break flow with a vertical dam on a uniform 79 

slope, yet the solutions were actually approximate as numerical realization was required.. 80 

To date, however, analytical and approximate solutions for sediment-laden dam-break 81 

flows are rare compared to their clear-water counterparts. Fraccarollo and Capart (2002) 82 

presented an approximate theoretical description of the formative stages of erosional dam-break 83 

flows over a horizontal bed, under the assumptions of equilibrium sediment transport and 84 

negligible bed resistance. Pritchard and Hogg (2002) derived exact solutions for suspended 85 

sediment transport under dam-break flows over a frictionless horizontal bed with an infinite 86 

volume of water upstream, assuming that the bed geometry was not altered. Berthon et al. (2012) 87 

provided an analytical solution of the shallow water system coupled to the Exner equation, which 88 

was used to update the bed elevation, presuming a steady state condition of flow. Pritchard (2005) 89 

developed asymptotic solutions for passive suspended sediment transport under a flood surge on 90 

a uniform slope; however, the work was based on a kinematic wave equation. Therefore, the 91 

need for analytical and approximate solutions of sediment-laden dam-break flows in general 92 

conditions is obvious. 93 

This paper aims to derive approximate solutions for ideal dam-break sediment-laden 94 

flows resulting from the sudden release of a finite volume of frictionless, incompressible water-95 

sediment mixture on a uniform slope as opposed to a horizontal bed presumed by Pritchard and 96 

Hogg (2002). On an inclined bed without friction, the flow will accelerate unboundedly as in 97 

previous studies (e.g., Ancey et al. 2008; Fernandez-Feria, 2006), while on a horizontal bed 98 

without friction, the fluid will flow downstream unlimitedly (e.g., Pritchard & Hogg 2002; Ritter, 99 
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1892; Stoker, 1957). On the other hand, the absence of basal friction may substantially affect the 100 

front dynamics (Ancey et al., 2006; Hogg & Pritchard, 2004). Therefore, both cases are 101 

physically unrealistic and the analytical and approximate solutions are not directly applicable to 102 

engineering practice. However, analytical and approximate solutions of both cases facilitate 103 

benchmark solutions, especially when model developers and end-users are still extremely keen to 104 

have them to test numerical models. The present work is based on a simplified version of the full 105 

set of SHSM equations (Cao et al., 2017), which includes mass and momentum conservation 106 

equations for the water-sediment mixture flow, and a mass conservation equation for sediment. 107 

Here it is assumed that sediment particles are uniform in size, bed deformation is negligible, and 108 

the effects of sediment transport on the mixture flow can be ignored. Notwithstanding that 109 

certain mechanisms are overlooked, the governing equations here are more comprehensive 110 

physically than previously considered, representing non-equilibrium rather than equilibrium 111 

sediment transport (Fraccarollo & Capart, 2002), adopting a dynamic instead of kinematic wave 112 

equation for the mixture flow (Pritchard, 2005), and taking into account unsteady other than 113 

steady state condition of flow (Berthon et al., 2012). Succinctly, the present work extends 114 

Fernandez-Feria (2006) for clear-water dam-break flows to sediment-laden dam-break flows, and 115 

Pritchard and Hogg (2002) for sediment-laden flows over a horizontal bed to an inclined bed. It 116 

is significant for verifying numerical SHSM models, as some numerical methods excessively 117 

smear waves associated with sediment continuity equation, resulting in rather inaccurate or even 118 

incorrect predictions (Toro, 2001). Nevertheless, it is noted that the present work is approximate 119 

as parts of the solutions demand numerical realization. 120 

This paper is organized as follows. Section 2 presents the governing equations. In section 121 

3, the solution strategy of Fernandez-Feria (2006) for ideal dam-break flow (without sediment 122 

transport) is applied to derive approximate solutions for the water-sediment mixture flow, while 123 

sediment concentration evolution is solved based on the ordinary differential equation (ODE) 124 

along its characteristic curve. Section 4 outlines the numerical scheme based on FVM. Section 5 125 

presents a comparison between the approximate solutions and numerical predictions for three 126 

distinct sediment transport scenarios: pure advection; pure sedimentation; and concurrent 127 

entrainment and deposition. Finally, conclusions are drawn in section 6. 128 

 129 

2. Governing Equations 130 

In order that the SHSM equations can be tractable to obtain approximate solutions, it is 131 

necessary to invoke several simplifications (Ancey et al., 2008; Fernandez-Feria, 2006; 132 

Fraccarollo & Capart, 2002; Pritchard & Hogg, 2002). First, the bed is taken to be frictionless. 133 

Second, it is assumed that bed deformation and the effects of sediment transport on the mixture 134 

flow are negligible, which means the mass conservation equation for bed material together with 135 

the sediment-related terms in the momentum equation for the mixture flow are decoupled from 136 

the SHSM systems and can be eliminated. As a result, the governing equations for the mixture 137 

flow here are identical in form to those for clear water flows. Third, uniform sediment transport 138 

is considered, which means sediment particles share the same density, shape and size. Under the 139 

aforementioned assumptions, the SHSM equations can be written in a conservative form: 140 



Confidential manuscript submitted to Water Resources Research 

 

 0
)(











x

hu

t

h
 (1) 141 

  sincos
2

1)( 22 ghhghu
xt

hu



















 (2) 142 

 DE
x

huc

t

hc









 )()(
 (3) 143 

where t  is time; x  is the downstream coordinate; h  is the flow depth; u  is the depth-averaged 144 

stream-wise flow velocity; g  is gravitational acceleration;   is the bed inclining angle; c  is the 145 

depth-averaged sediment concentration; E  represents the sediment entrainment flux; and D  146 

represents the sediment deposition flux. 147 

It is noted that the understanding of the mechanism of sediment exchange with the bed 148 

remains far from complete to date, which inevitably renders uncertainty in its estimation (= E -149 

D ). Comparatively, the uncertainty in the entrainment estimation prevails, whilst the 150 

determination of the deposition flux is practically more reliable. Here, the conventional 151 

relationships are introduced for the entrainment and deposition fluxes (Cao & Carling, 2002; 152 

Huang et al., 2014; Qain et al., 2015; Wu, 2007; Xia et al., 2010) 153 

 *0cE   (4) 154 

 cD 0  (5) 155 

where   is an empirical parameter representing the ratio of the near-bed sediment concentration 156 

to the depth-averaged sediment concentration, and is specified to be unity here for simplicity; 0  157 

denotes the settling velocity of a single sediment particle; and *c  denotes the sediment transport 158 

capacity determined by local flow conditions. In this connection, the approximate solutions 159 

derived here are not limited to specific formulas for *c ; rather they are intended to be valid for 160 

general transport capacity formulas in the context of river dynamics (e.g., Celik & Rodi, 1991; 161 

Dey, 2014; Wu, 2007; Yang, 1996). 162 

Formulated in a Cartesian coordinate system with axes aligned along and perpendicular 163 

to the bed, equations (1)-(3) are now recast into the following non-conservative form in terms of 164 

primitive variables, ready for the derivation of approximate solutions. 165 
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3. Approximate Solutions 170 

3.1. Normalization and Homogenization 171 

We choose the initial flow depth 0H  at the dam wall, 
0gH , and the initial sediment 172 

concentration 0C  at a given location as the length scale, velocity scale, and sediment 173 

concentration scale. Then the dimensionless variables are deduced as follows: 174 
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00000
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t
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Substitution of the dimensionless variables (9) into equations (6)-(8) yields the following 176 

normalized equations 177 
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Initial conditions are given as follows: 181 
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where tane  for convenience; and )(XF  is the expression of initial sediment concentration 185 

distribution. Figure 1 illustrates the initial configuration dictated by equations (13) and (14). 186 

In order to render the governing equations homogeneous and simplify the calculations, 187 

the dimensionless variables are altered to: 188 
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After transformation, equations (10)-(15) are mapped onto 190 
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Figure 2 illustrates the mapped initial configuration expressed by equations (20) and (21). 197 

 198 

3.2. Eigenstructure 199 

By virtue of the chain rule, equations (17)-(19) are written in a quasi-linear form as 200 
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where W  is the vector of primitive variables; A  is the Jacobian matrix; and R  is the vector of 204 

source terms. According to the method of characteristics, the characteristic curves and the 205 

corresponding compatibility equations are given below as: 206 

 


















0~
)~2

~
(

~~
~

~

1

Td

Ud

U
Td

Xd





 (25a, b) 207 



Confidential manuscript submitted to Water Resources Research 

 

 


















0~
)~2

~
(

~~
~

~

2

Td

Ud

U
Td

Xd





 (26a, b) 208 

 




















)
~~

(~
cos

~

~

~
~

~

*2

3

CC
Td

Cd

U
Td

Xd







 (27a, b) 209 

 210 

3.3. Solutions for the Mixture Flow 211 

As mentioned in section 2, the governing equations (6) and (7) for the mixture flow here 212 

are identical in form to those for clear water flow. Hence, the solution strategy of Fernandez-213 

Feria (2006) for ideal dam-break flow (without sediment transport) is applied herein. Succinctly, 214 

the strategy features an integration of the adoption of exact solutions and the method of 215 

characteristics. Given that both the left and right fronts of the flood wave are initially singular 216 

points, namely eX /1
~

  and eX 
~

 with 0
~~ U , they are unsuitable as starting points for the 217 

method of characteristics. Therefore, the exact solutions would be useful to serve as the starting 218 

condition near these singular points as well as provide the spreading of the two fronts at the 219 

initial stages. In order to adopt the exact solutions, which had explicit expressions originally 220 

derived for dam-break flows caused by an initial semi-infinite mass of water (Thacker, 1981), 221 

Fernandez-Feria (2006) divided the initial fluid (Figure 2) vertically around the origin into two 222 

portions and presumed a semi-infinite fluid behind each respectively. Actually, according to the 223 

method of characteristics, the exact solutions are invalid in the domain of influence of the 224 

imaginary fluid. Correspondingly, the regions of validity of the exact solutions in space and time 225 

are specified near both fronts by the characteristic curves starting at the origin (supporting 226 

information Figure S1). Outside these regions, the method of characteristics is employed by 227 

virtue of equations (25) and (26). 228 

A brief summary of the explicit exact solutions mentioned above is provided below, with 229 

detailed developments available in the supporting information Text S1. The exact solution that 230 

expresses the propagation of the left-hand flow front is 231 
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where )
~

(1 Tl  represents the trajectory of the left front. The corresponding characteristic curve 234 

starting at the point 0
~
X  for 0

~
T  is given by 235 
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This determines the region of the plane )
~

,
~

( TX  corresponding to the range of validity of the 237 

exact solution (28) and (29) as follows 238 
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Likewise, the initial stage of the advance of the right flow front is given by 244 
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where )
~

(2 Tl  represents the trajectory of the right front. The corresponding characteristic curve 247 

starting at the point 0
~
X  is expressed by 248 
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which now determines the region of the plane )
~

,
~

( TX  where the exact solution (33) and (34) 250 

remains valid for the right flow front without any influence from the left portion of the initial 251 

fluid. Thus, the exact solution (33) and (34) is valid on the right hand side of the origin point 252 

over the range 253 

 )
~

(
~

)
~

( 22 TlXTA   (36) 254 

until the time 255 

 
cos

2
~

2

e
T   (37) 256 

at which the curves )
~

(2 Tl  and )
~

(2 TA  cross each other. 257 

 258 

3.4. Solutions for Sediment Transport 259 

The sediment transport compatibility equation (27b) is an ODE with a non-zero term on 260 

the right hand side, and has a general solution (supporting information Text S2, Figures S2 and 261 

S3) 262 
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where M  is an integral constant. Note that *

~
C  is determined by the local flow conditions and 265 

requires update in each time step. The lower limit of the integrals in equation (38) is set to 
0

~~
TT   266 

when the initial sediment concentration 
0

~~
CC   and the initial sediment transport capacity 267 

0**

~~
CC  . Setting the upper limit of the integrals to 1

~~
TT  , the particular solution is given by 268 

 
321

~~~~
ZZZC   (39a) 269 

 
*1

~~
CZ   (39b) 270 

 )
~

~

cos
(exp,)

~~
(

~ 1

0

~

~ 22

1

20*02 



 T

T
TdYYCCZ




 (39c) 271 

 )'
~

~

cos
(exp,

~
)~

~

(
~

~

~ 23

~

~ 3
*1

23
0

1

0

TdYTdY
Td

Cd
YZ

T

T

T

T 








 (39d) 272 

 273 

3.5. Numerical Realization 274 

Although analytical solutions (25) and (26) are not fully explicit expressions, they can be 275 

manipulated numerically readily by utilizing the method of characteristics as equations (25b) and 276 

(26b) are homogeneous. On the other hand, the solution (39) for the evolution of sediment 277 

concentration field involves integrals, which also require numerical realization. This is why the 278 

solutions presented in this paper are approximate. 279 

Briefly, the exact solutions (28) and (29) are adopted in the region prescribed by equation 280 

(31) until the time instant expressed by equation (32), and the exact solutions (33) and (34) are 281 

employed in the region dictated by equation (36) until the time instant given by equation (37). 282 

Over the remaining region of space and time, the method of characteristics is deployed to resolve 283 

the mixture flow according to equations (25) and (26), with a predictor-corrector method and a 284 

parabolic interpolation to achieve second-order accuracy in both time and space. Meanwhile, the 285 

sediment concentration along the characteristic curve is predicted by equation (39), with the 286 

integrations evaluated using the trapezoidal rule. Following mesh independence tests, a time step 287 

005.0
~
T  and a spatial step 002.0

~
X  are selected. 288 

 289 

4. Finite Volume Method 290 

The governing equations (1)-(3) are simplified from the full SHSM equations (Cao et al., 291 

2017). Numerical solutions of these equations can be readily attained using a scheme based on 292 
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FVM, given the plenty of computational studies for a hierarchy of complicated flow and 293 

sediment transport processes over erodible beds as stated by Cao et al. (2017). The numerical 294 

solutions can then be compared with the approximate solutions given above.  295 

Equations (1)-(3) are rearranged in a hyperbolic vector-matrix form as 296 
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where V  is the vector of conservative variables; G  is the vector of fluxes; and S  is the vector 300 

of source terms. Under the framework of FVM, an explicit discretization of equation (40) gives 301 
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 (42b) 303 

where the superscript n  denotes the time step index; the subscript i  denotes the spatial node 304 

index; t  is the time step; x  is the spatial increment; 21/iG  and 21/iG  represent the inter-cell 305 

fluxes; and RK
S  represents the source terms which are solved by the second-order Runge-Kutta 306 

method as follows: 307 
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The inter-cell fluxes are calculated by the Slope-Limiter Centered (SLIC) method, in 310 

which the total variation diminishing (TVD) version of the Monotonic Upstream-Centered 311 

Scheme for Conservation Laws (MUSCL) is employed for data reconstruction. Accordingly, 312 

numerical predictions here achieve second-order accuracy in both space and time (Toro, 2001). 313 

The spatial step is set to 01.0 x , satisfying the criteria of mesh independence. 314 

Numerical stability is controlled by the Courant-Friedrichs-Lewy (CFL) criterion (Toro, 2001) 315 

 Cr
ghu

x
t

ii





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)max(
 (44) 316 

 1.00 Cr  (45) 317 

where Cr  represents the Courant number and a value of 0.95 is adopted.  318 

 319 
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5. Results 320 

This study is primarily concerned with the evolution of the sediment concentration field 321 

in shallow water-sediment flow over a bed with uniform slope. Three typical sediment transport 322 

scenarios are considered, i.e., pure advection; pure sedimentation; and concurrent entrainment 323 

and deposition. Although an accelerating, high velocity dam-break flow would be likely to 324 

produce substantial sediment entrainment as time progresses, the essentially academic cases 325 

selected here examine different forms of the source terms in the sediment continuity equation 326 

that relate to key physical mechanisms (see Table 1) and are very useful for model verification. 327 

While sediment transport capacity can be calculated by one of a plethora of formulas in 328 

general (Celik & Rodi, 1991; Dey, 2014; Wu, 2007; Yang, 1996), a specific formula is 329 

demanded here to test the proposed approximate solutions. The Zhang formula is based on the 330 

theory of energy balance along with laboratory flume and field observed datasets and has seen 331 

wide applications in engineering practice (Guo, 2002; Wu, 2007; Zhang & Xie, 1993). By virtue 332 

of logarithmic matching method, Guo (2002) gave an explicit expression of the Zhang formula 333 

as follows 334 
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
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ghu

ghu
c

s 
*  (46) 335 

where 1.0  is a modification coefficient introduced herein to prevent the calculated sediment 336 

transport capacity from being excessively large (e.g. for high velocity dam-break flows over a 337 

frictionless bed with steep slope); and s  denotes sediment density. Notwithstanding that the 338 

Zhang formula applies to suspended load (Guo, 2002; Wu, 2007; Zhang & Xie, 1993), 339 

alternative formulas for either bed load or total bed-material load can be employed instead, for 340 

which the present approximate solutions continue to hold. 341 

The study parameters are as follows. The bed slope has angle 30 . The sediment 342 

particle diameter is mm2.0d  with a dimensionless settling velocity of about 006.0  343 

according to the formula of Zhang and Xie (1993). The density of sediment is 2650s  kg/m
3
. 344 

In each scenario, two distinct initial sediment distributions are considered: one is a uniform 345 

distribution such that 346 

 1)( XF  (47) 347 

and the other a linear distribution such that 348 

 1.09.0
1

1
)(

2





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e

eX
XF  (48) 349 

Note that )()
~

( XFXF   initially. The scaled sediment concentration is set to 01.00 C . For 350 

convenience, the approximate solutions and the FVM numerical predictions presented in Figures 351 

3-18 are all in terms of dimensionless variables. 352 

 353 
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5.1. Mixture Flow 354 

Obviously, since bed deformation and the effects of sediment transport on the mixture 355 

flow are neglected, all the cases mentioned above share the same solutions for the mixture flow. 356 

Figure 3 shows the approximate solutions and corresponding numerical predictions by FVM for 357 

the advancing flow fronts with time. Note that the left front remains at rest until the backward 358 

wave reaches the upstream boundary. Figure 4 illustrates the approximate solutions and FVM 359 

numerical predictions for the mixture flow at four instants of time. Figure 4a shows the gradual 360 

attenuation of the mixture flow with time, which is consistent with Figure 4b where it can be 361 

observed that the downstream portion of flow consistently propagates faster than the upstream 362 

portion. Moreover, the flow velocity appears to be increased progressively along the domain 363 

with time, in keeping with mass conservation (Figure 4). Apparently, the numerical predictions 364 

are indistinguishable from the approximate solutions (Figures 3 and 4). On the one hand, the 365 

FVM velocity profiles manifest sudden steps at the beginning and end of the flow regions in 366 

keeping with the shock-capturing capability of the FVM. On the other hand, the results underline 367 

the significance of the present approximate solutions for verifying SHSM models. 368 

 369 

5.2. Pure Advection 370 

Here sediment transport is assumed to be in an equilibrium state, such that 0 DE . 371 

Now the corresponding governing equations can also describe the pure advection of a passive 372 

scalar, such as the concentration of solute pollutant, neutrally buoyant particles or wash load that 373 

barely exchanges with the bottom boundary (Dey, 2014; Yang, 1996; Zhang & Xie, 1993). 374 

Accordingly, the particular solution of the ODE (27b) along the characteristic curve (27a) is 375 

 
0

~~
CC   (49) 376 

It is easy to infer from equation (49) that the sediment concentration remains constant along the 377 

characteristic curve. Specifically, the sediment concentration profiles become stretched in time 378 

and space with invariable extreme values compared to the initial profile. Results for two different 379 

initial sediment distributions are discussed separately below. 380 

Figure 5 shows the approximate solutions obtained for the evolution of sediment 381 

concentration field in X-T space. In accordance with the uniformity of the initial distribution, the 382 

magnitude of sediment concentration remains constant. Figure 6 compares the approximate 383 

solutions and numerical predictions by FVM for sediment transport at four instants of time. 384 

These two solutions match rather well with each other and illustrate the stretching of the 385 

concentration profiles with time, which demonstrates the ability of the FVM adopted here to 386 

capture contact discontinuity in sediment transport. 387 

Figure 7 illustrates the approximate solutions for the evolution of an initially linear 388 

sediment concentration field in X-T space under pure advection. The sediment concentration 389 

field sustains an almost linear distribution throughout the flow region with the extreme values 390 

unaltered. Figure 8 shows the remarkable agreement between the approximate solutions and 391 

FVM numerical predictions of the sediment concentration profiles at four instants of time. The 392 
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results again demonstrate the remarkable ability of the FVM to capture discontinuity in sediment 393 

transport and also the usefulness of the approximate solutions for model verification purposes. 394 

 395 

5.3. Pure Sedimentation 396 

Absolute deposition of sediment is now assumed throughout the flow region, without any 397 

entrainment from the bed (such that E = 0). Hence, the particular solution (39) for sediment 398 

concentration along the characteristic curve can be simplified to give 399 
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 (50) 400 

In light of equation (50), the sediment concentration is expected to attenuate along the 401 

characteristic curve. Results obtained for uniform and linear initial sediment distributions are 402 

presented below. 403 

Figure 9 shows the approximate solutions obtained for the evolution of an initially 404 

uniform distribution of sediment in X-T space. As expected, the concentration profiles diminish 405 

with time as sedimentation occurs. Figure 10 compares the approximate solutions and FVM 406 

numerical predictions of the sediment concentration profiles at four different times. Again, the 407 

numerical predictions reproduce the approximate solutions accurately. It can be seen that the 408 

initial profile flattens out and almost disappears by T = 30. 409 

Figure 11 illustrates the approximate solutions obtained for an initially linear distribution 410 

of sediment as it evolves in X-T space under pure sedimentation. The sediment concentration 411 

profiles again exhibit a progressive decline with time and eventually wash out as sediment is 412 

deposited, the process being completed by T = 30. Figure 12 confirms the close agreement 413 

between the approximate solutions and FVM numerical predictions of the sediment 414 

concentration profiles at four different times. 415 

 416 

5.4. Concurrent Entrainment and Deposition 417 

In general, entrainment and deposition take place synchronously in fluvial processes, 418 

which are closer to practice than the scenarios evaluated above (pure advection and 419 

sedimentation). Yet, since the flow depth is contained in the denominators of the Zhang formula 420 

(46), the sediment transport capacity so calculated would become numerically excessively large 421 

at both left and right fronts featuring small flow depths. For numerical considerations, a 422 

constraint is introduced herein: sediment transport capacity is set to zero if the dimensionless 423 

flow depth is below a sufficiently small value of 0.001. Results obtained for the two types of 424 

initial sediment distribution are presented below. 425 

Figure 13 shows the evolution of sediment concentration field in X-T space for the 426 

initially uniform distribution of sediment undergoing both deposition and entrainment. There is a 427 

monotonic growth in sediment concentration with peaks at the ends and a depression in between, 428 



Confidential manuscript submitted to Water Resources Research 

 

which becomes increasingly evident with time. There is almost perfect agreement between the 429 

approximate solutions and FVM predictions as shown in Figure 14. 430 

Figure 15 shows the approximate solutions obtained for the sediment concentration field 431 

in X-T space commencing from an initially linear distribution of sediment. Again, there is a 432 

monotonic increase in sediment concentration with time, and the end profiles are qualitatively 433 

very similar to those obtained for the initially uniform distribution, indicating that the exact 434 

shape of the initial profile is unimportant when simultaneous entrainment and deposition are 435 

occurring. Close agreement is again obtained between the approximate and numerically 436 

predicted sediment concentration profiles in Figure 16. 437 

At first glance, the upward concavity of the sediment concentration profiles in Figures 438 

13-16 may be attributed to the use of the Zhang formula (46), as a smaller flow depth would lead 439 

to a higher sediment transport capacity. To clarify, an alternative formula is applied in lieu of the 440 

Zhang formula (46). Following Bohorquez and Fernandez-Feria (2008) and Pritchard and Hogg 441 

(2002), we consider the following form for the entrainment flux, replacing equations (4) and (46): 442 
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Apparently, sediment transport capacity 
*c  can be expressed by 0/E  as per equation (4). 444 

Equation (51) is often used to estimate sediment entrainment rate and no sediment will move 445 

until some critical shear stress, corresponding to a velocity eu , is exceeded (Dyer & Soulsby, 446 

1988; Pritchard & Hogg, 2002; Sanford & Maa, 2001; Teisson et al., 1993). The quantity em  447 

represents a constant mass flux per unit area that usually ranges between 
5105   and 448 

123 smkg105   , and a value of 
12smkg105   4
 is specified here; q  is a dimensionless 449 

exponent that is often taken to be unity; and eu  denotes the critical velocity for incipient motion 450 

of sediment particles and is given by 451 

 fkue /80  (52) 452 

where k  is a dimensionless constant, and a value of 1.2 is specified; f  is the Darcy-Weisbach 453 

friction factor and a value of 0.03 is utilized. Since the denominators in equation (51) do not 454 

contain the flow depth, the aforementioned constraint as per small flow depth is no longer 455 

demanded. 456 

Figure 17 shows the corresponding sediment concentration profiles for an initially 457 

uniform distribution of sediment. Obviously, upward concave curves are obtained qualitatively 458 

similar to those in Figures 13 and 14, and also there is satisfactory agreement between the 459 

approximate solutions and the FVM numerical predictions. It follows that the upward concave 460 

sediment concentration profiles do not result from the specific sediment transport capacity or 461 

entrainment formulations. 462 

 463 
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5.5. Decomposition of Concentration Field 464 

In order to explain the upward concavity of the sediment concentration profiles, the 465 

constituents determining sediment concentration distribution are elaborated. As per equation (39), 466 

the sediment concentration at the present time level consists of three parts: 1

~
Z  represents the 467 

sediment transport capacity at the present time level; 2

~
Z  means the difference between sediment 468 

concentration and sediment transport capacity at the previous time level as modified by the flow 469 

conditions; and 3

~
Z  indicates the deviation in sediment transport capacity due to the change of 470 

flow conditions. This is in accordance with the physical mechanisms incorporated here in the 471 

mass conservation equation (3) for sediment. Sediment transport tends to be at its capacity in line 472 

with the local flow scenario due to the upward entrainment process. On the other hand, sediment 473 

transport also involves streamwise advection and downward deposition (gravitational action) 474 

processes. In this connection, the sediment concentration field would deviate from its capacity 475 

state and be modified corresponding to the local flow and sediment conditions. 476 

Figure 18 shows the sediment concentration profiles and the distributions of 
1Z , 2Z , and 477 

3Z  for an initially uniform distribution of sediment concentration, with the sediment transport 478 

capacity evaluated using formulas (46) and (51), respectively. It can be seen from Figure 18 that 479 

the sediment concentration C  is mainly determined by 
1Z  and 2Z  since the value of 3Z  is 480 

around zero, which means the deviation in sediment transport capacity along the characteristic 481 

curve (27a) is very small. Comparison between either Figures 18a and 18c or Figures 18b and 482 

18d demonstrates that the distributions of sediment transport capacity ( *1 CZ  ) vary 483 

significantly owing to the distinct formulas adopted, while all the profiles of 2Z  are rather 484 

similar in curvature. This is because the term 
2Y  in equation (39c) for 2Z  is determined by the 485 

flow depth as  cos/~ 2H  according to equation (16). Consequently, the upward concavity 486 

characterizes the distribution of 2Z  while the flow depth profiles are concave downwards (Figure 487 

4a). Finally, the superposition of the profiles of 1Z  and 2Z  leads to the upward concave curves 488 

of sediment concentration in Figures 13-17. 489 

Bohorquez and Fernandez-Feria (2008) investigated sediment transport under dam-break 490 

flows on a fixed, rough and inclined bed. Their results featured an initial increase and subsequent 491 

depression in velocity as well as the formation of roll waves in the long term. Moreover, the 492 

recent work by Cao et al. (2015) demonstrates that the turbulent Reynolds stress, expressed by a 493 

second-order term in the shallow water equations, plays a considerable role in roll waves 494 

modeling. Unfortunately, it remains unrealistic to derive analytical solutions if bed resistance and 495 

the second-order term for the Reynolds stress are incorporated. Nevertheless, with bed resistance 496 

accounted for, the present FVM model can readily solve the governing equations in Bohorquez 497 

and Fernandez-Feria (2008) (supporting information Text S3). Notably, the FVM numerical 498 

predictions are consistent with Bohorquez and Fernandez-Feria (2008), in which the sediment 499 

concentration profiles do not feature upward concavity as opposed to those in Figures 13-17 500 

(supporting information Figures S4 and S5). Therefore, the upward concave sediment 501 

concentration profiles in Figures 13-17 are essentially dictated by the particular flow and 502 

sediment conditions, rather than the specific sediment transport capacity or entrainment 503 

formulations. 504 
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 505 

6. Conclusions 506 

Approximate solutions have been derived for ideal dam-break sediment-laden flows 507 

initiated by the sudden release of a finite volume of frictionless, incompressible water-sediment 508 

mixture on a uniform slope. In order that the reduced, governing SHSM equations are tractable 509 

for approximate solutions, it is assumed that sediment transport is uniform and does not affect 510 

the mixture flow, and there is negligible bed deformation. The solution strategy of Fernandez-511 

Feria (2006) for ideal dam-break flow (without sediment transport) is used to resolve the mixture 512 

flow, while the sediment concentration evolution is solved based on the compatibility equation 513 

along its characteristic curve. 514 

Quantitative results are given for a water-sediment dam-break flow over a bed sloping at 515 

an angle of 30 . The mixture flow profiles feature a gradual depression and expansion 516 

accompanied by a persistent increase in velocity. The approximate solutions for sediment 517 

transport are the highlights of this work. Under the case of pure advection, the sediment 518 

concentration remains constant along the characteristic curve. Under the case of pure 519 

sedimentation, the sediment concentration profiles diminish progressively with time and 520 

eventually disappear when all sediment in the water column has been deposited on the bed. In 521 

the case of concurrent entrainment and deposition, upward concavity characterizes the sediment 522 

concentration profiles irrespective of the formulas adopted for sediment transport capacity. This 523 

is due to the particular flow and sediment conditions resolved here by virtue of the simplified 524 

SHSM equations (1)-(3). In all cases, very close agreement is achieved between the approximate 525 

solutions and the FVM numerical predictions, confirming the reliability of FVM model and the 526 

potential of the present approximate solutions for testing the ability of SHSM models to capture 527 

contact discontinuities in sediment transport. 528 

Extensions of the present work are warranted, albeit challenging. Notably, friction and 529 

bed evolution need to be incorporated, non-uniform sediment transport to be accounted for, and 530 

the interactions between flow, sediment transport and morphological evolution accommodated so 531 

that analytical models contain as nearly a complete representation of the mechanisms of fluvial 532 

processes as possible, thereby facilitating minimization of model uncertainty. 533 
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Table 1. Summary of Sediment Transport Scenarios 689 

Scenarios Source terms in equation (3) 

Pure advection 0  ( 0 DE ) 

Pure sedimentation D  

Concurrent entrainment and deposition DE   

 690 

691 
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