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Bayesian semiparametric
modeling for HIV longitudinal
data with censoring and
skewness

Luis M. Castro1, Wan-Lun Wang2, Victor H. Lachos3, Vanda Inácio de
Carvalho 4 and Cristian L. Bayes5

Abstract
In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common
practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering
the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical
assays that the patient’s responses are subject to some upper and/or lower quantification limit,
depending on the diagnostic assays used for their detection. Furthermore, responses may also often
present a nonlinear relation with some covariates, such as time. To address the aforementioned three
issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination
of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to
approximate the general mean, wavelets for modeling the individual subject trajectories, and on the
skew-normal distribution for modeling the random effects. The newly developed method is illustrated
through simulated data and real data concerning AIDS/HIV viral loads.

Keywords
Censored longitudinal data; HIV viral load; Mixed-effects models; Semiparametric regression;
Skewness.
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1 Introduction
In clinical trials of antiretroviral therapy (ARV therapy), HIV-1 RNA measures are collected
longitudinally over a period of treatment with the main objective of determining the rates of change in
the amount of actively replicating virus. For HIV studies, the analysts often consider longitudinal models
for investigating the HIV-1 RNA level (viral load), aiming to understand the HIV pathogenesis and to
assess the effectiveness of the therapy. As was mentioned by Ndembi et al.1, considering the HIV-1 RNA
as a key primary endpoint in AIDS studies is due to several inherent reasons: (i) the viral load monitoring
during the therapy is mostly available, (ii) a failure in the treatment can be defined virologically, and
(iii) a new regimen of therapy is recommended as soon as virological rebound occurs. In fact, changes in
the HIV-1 RNA responses to ARV therapies are associated with clinical benefits and consequently, the
frequent monitoring of this laboratory marker is rapidly becoming the standard of care in routine clinical
practice2.

From a practical viewpoint, the analysis of viral loads can be challenging due to the detection limit
considered in some diagnostics assays utilized for the quantification of the HIV-1 RNA levels. The viral
load responses are either left or right censored depending upon the diagnostic assays used, where the
range of the limit of detection varies from 400 copies/ml for the earlier assays, to 40 copies/ml for the
more sophisticated assays. To deal with such limits of detection, censored mixed-effects models are
frequently used in the analysis of longitudinal AIDS data. In fact, such models are used to estimate
viral load trajectories, as well as, to quantify within and between subject variations in viral load
measurements3. For instance, in the seminal works of Hughes4 and Jacqmin-Gadda et al.5, both proposed
likelihood based approaches to estimate the parameters of linear mixed-effects models for left and/or right
censored Gaussian data.

Some extensions of the two works mentioned above, considering more efficient algorithms for
parameter estimation in Gaussian linear mixed-effects models with censored response (LMEC), have
been proposed (see, for example, Vaida et al.6, and Vaida and Liu7). Recently, several proposals focusing
their attention on the study of censored mixed-effects models under non-Gaussian data have appeared in
the literature. For example, Matos et al.8 proposed an EM algorithm for linear and nonlinear mixed-
effects models with censored response (LMEC/NLMEC) using the multivariate Student’s-t distribution
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Correo 22, Santiago, Chile.

The research herein was performed in part while Luis M. Castro and Victor H. Lachos were visiting the Department of Science
at Pontificia Universidad Católica del Perú.
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while, in turn, Lachos et al.9 adopted a Bayesian approach to carry out posterior inference for censored
linear and nonlinear mixed-effects models considering a class of thick-tail distributions (the so called
normal/independent proposed by Lange and Sinsheimer10) as the joint distribution of the error term and
random effects. On the other hand, and under a Bayesian framework, Bandyopadhyay et al.11 studied
censored linear mixed-effects models considering both skewness and heavy tails, while Bandyopadhyay
et al.12 proposed a skewed censored nonlinear mixed-effect model under the presence of measurement
error.

Another important feature of the HIV-1 RNA measures is that, in general, the relationship between the
viral load and certain covariates, such as time, is nonlinear and thus, considering a parametric model (with
a known linear or nonlinear function) can be too restrictive, possibly resulting in misleading conclusions.
Moreover, even in circumstances where transformations and/or quadratic terms can be used to handle
nonlinearities, their use may require a considerable expertise13. To address this issue, semiparametric
extensions have been proposed in the context of non-censored models (see for example14,15 and
references therein). Recently, Castro et al.16 proposed the study of censored models under a Bayesian
semiparametric scheme but in the univariate case and considering heavy-tailed distributions. However,
to the best of our knowledge, there are no works considering the study of censored mixed-effects
models using, simultaneously, semiparametric techniques such as splines and wavelets, and the effect
of skewness. This paper therefore proposes flexible Bayesian inference for a censored mixed-effects
model, based on splines to approximate the nonlinear general mean, wavelets for modeling the individual
subject trajectories, and on the the skew-normal (SN) distribution for modeling the random effects. This
paper can be regarded as an extension of Ibacache et al.14 and Castro et al.15,16, where partially linear
mixed-effects models were considered.

The rest of the paper is organized as follows. Section 2 describes the multivariate SN distribution and
some of its properties, as well as, the HIV dynamics and the motivating AIDS/HIV data sets. In Section 3
we briefly discuss the penalized wavelet-based approach. Section 4 presents our semiparametric censored
mixed-effects model, while in Section 5 its Bayesian formulation is developed. The application of the
proposed method to two motivating data sets of HIV viral loads is presented in Section 6 and in Section 7
we present an in-depth simulation study. We conclude in Section 8 with some future research directions.

2 Preliminaries

2.1 Multivariate SN distribution
In this section we present a review of the multivariate skew-normal (SN) distribution, including some of
its properties. A further discussion about this distribution can be found in Azzalini17. A random vector
Y has a multivariate SN distribution with p× 1 location vector µ, p× p positive definite scale matrix Σ,
and p× 1 skewness parameter vector λ, if its probability density function (pdf) is given by

f(y | µ,Σ,λ) = 2φp(y | µ,Σ)Φ(λ>Σ−1/2(y − µ)), (1)

where φp(· | µ,Σ) denotes the pdf of the p-variate normal distribution with mean vector µ and covariate
matrix Σ, Np(µ,Σ), and Φ(·) is the cumulative distribution function (cdf) of the standard normal
distribution. For referring to the distribution of Y, we use SNp(µ,Σ,λ). When λ = 0, the distribution
of Y reduces to a multivariate normal (N) distribution Np(µ,Σ).
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An interesting property of the multivariate SN random vector Y is its stochastic representation in terms
of normal random quantities. It follows from Lachos et al.18 that,

Y = µ+ ∆T + Ψ1/2T1, (2)

where T = |T0|, T0 ∼ N1(0, 1), and T1 ∼ Np(0, Ip) are independent, | · | denotes the absolute value,
and

∆ = Σ1/2δ, Ψ = Σ1/2(Ip − δδ>)Σ1/2 = Σ−∆∆>, (3)

with δ = λ/
√

1 + λ>λ. Note that λ and Σ can be obtained as follows:

λ =
(Ψ + ∆∆>)−1/2∆

[1−∆>(Ψ + ∆∆>)−1∆]1/2
and Σ = Ψ + ∆∆>.

The next result establishes the marginal-conditional decomposition of the multivariate SN random
vector Y. Its proof can be found in Bandyopadhyay et al.11.

Proposition 1. Suppose that the random vector Y is partitioned as Y> = (Y>1 ,Y
>
2 )> with dimensions

p1 and p2 (p1 + p2 = p), respectively. Let

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ = (µ>1 ,µ

>
2 )>, λ = (λ>1 ,λ

>
2 )>, υ = Σ−1/2λ = (υ>1 ,υ

>
2 )>

be the corresponding partitions of Σ, µ, λ, and υ. If Y ∼ SNp(µ,Σ,λ), then the conditional cdf of
Y2 | Y1 = y1 is given by

Pr(Y2 ≤ y2 | Y1 = y1) =
Φp2+1

((
(y2 − µ2.1)>, z1

)>
; 0,ΩN

)
Φ(υ̃>(y1 − µ1))

,

where µ2.1 = µ2 + Σ21Σ
−1
11 (y1 − µ1), Σ22.1 = Σ22 −Σ21Σ

−1
11 Σ12, z1 = (υ1 +

Σ−111 Σ12υ2)>(y1 − µ1), υ̃ =
υ1 + Σ−111 Σ12υ2√

1 + υ>2 Σ22.1υ2

, and ΩN =

(
Σ22.1 −Σ22.1υ2

−υ>2 Σ22.1 1 + υ>2 Σ22.1υ2

)
.

2.2 The HIV dynamic
The main purpose of this section is to detail how HIV viral loads have been traditionally modeled in the
statistical literature. In AIDS research, it is believed that the relationship between the virologic response
and some immunologic covariates (e.g. CD4+ cells) and time, is nonlinear. As was noted by Wu and
Ding19, Wu20, and recently by Bandyopadhyay et al.12, a bi-phasic nonlinear model, associated with the
CD4+cell counts and time, for modeling the viral load is given by

yij = log10(P1ie
−ψ1ijtij + P2ie

−ψ2ijtij ) + εij , (4)
β1ij = log(P1i) = β1 + b1i, β2ij = ψ1ij = β2 + b2i, (5)
β3ij = log(P2i) = β3 + b3i, β4ij = ψ2ij = β4 + β5CD4+ij + b4i, (6)
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where yij is the log10-transformed viral load V (tij) for the ith subject at time tij (i = 1, 2, . . . , n, j =
1, 2, . . . , ni), P1i and P2i are the baseline viral loads, ψ1ij and ψ2ij are the first- and second-
phases of viral decay rates representing the minimum turnover rate of productively infected cells and
latently long-lived infected cells, respectively, and εij is the within-subject random error. Additionally,
βij = (β1ij , β2ij , β3ij , β4ij)

> and β = (β1, β2, β3, β4, β5)> are the subject-level, and population-level
parameters, respectively; CD4+ij indicates the CD4+ cell counts at time tij , and bi = (b1i, . . . , b4i)

> are
the subject-level random effects. As it was already mentioned, equation (4) is derived from the bi-phasic
exponential decay model V (t) = P1e

−ψ1t + P2e
−ψ2t proposed by Wu and Ding19.

The HIV dynamic is typically fitted a model framework considering the structure given in (4)–(6) and
under the assumption that

εi | σ2
ε
ind.∼ Nni

(0, σ2
ε Ini

) and bi | D
ind.∼ N4(0,D), i = 1, . . . , n,

where εi = (εi1, · · · , εini
)T , σ2

ε > 0, D is a 4× 4 positive-definite matrix, and Iq denotes the q × q
identity matrix. This model is the so-called normal NLMEC (N-NLMEC) model.

To overcome the sometimes unrealistic assumption of normality of the random effects distribution, a
more robust model, named as the skew-normal nonlinear mixed-effects model with censored response
(SN-NLMEC) has been proposed (see Bandyopadhyay et al.12). Under this model, it is assumed that

εi | σ2
ε
ind.∼ Nni

(0, σ2
ε Ini

) and bi | D,λ
ind.∼ SN4(c∆,D,λ), i = 1, . . . , n, (7)

where SNp(µ,Σ,λ) denotes the multivariate SN distribution, c = −
√

2/π, ∆ = D1/2δ with δ =

λ/
√

1 + λ>λ, D = D(ϕ) is the q × q dispersion matrix of bi depending on the unknown and reduced
vector parameter ϕ (e.g., the upper triangular elements in the unstructured case), σ2

ε is the unknown
within-subject scale parameter, and λ is the 4× 1 skewness vector parameter corresponding to the
random effects bi. Note that, in this setup, E(bi | D,λ) = E(εi | σ2

ε ) = 0. Thus, the within-subject
errors are symmetrically distributed around zero, whereas the random effects are asymmetric with mean
zero. It can be shown that Cov(bi, εi | σ2

ε ,D,λ) = 0, and thus, bi and εi are uncorrelated.
In order to include the censoring effect in the statistical modeling of the HIV viral load profiles, let the

observed data for the ith subject to be given by (Qi,Ci), where Qi = (Qi1, . . . , Qini
)> represents the

vector of uncensored readings or censoring levels and Ci = (Ci1, . . . , Cini
)> is the vector of censoring

indicators, where one has

yij ≤ Qij if Cij = 1,

yij = Qij if Cij = 0, (8)

i.e., Cij = 1 if yij is left censored, case one only knows that the true observation yij is less than or equal
to the observed quantity Qij , for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}.

2.3 The ACTG 315 clinical trial
We consider a dataset from the AIDS clinical trial group 315 (ACTG 315) protocol including 46 HIV-1
infected patients treated with a potent antiretroviral drug cocktail based on protease inhibitor ritonavir and
reverse transcriptase inhibitor drugs (zidovudine and lamivudine). The aim of this antiretroviral regimen
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is to show that immunity can be partially restored in people with moderately advanced HIV disease.
This dataset was previously analyzed by Wu20 in the context of a LMEC from a classic point of view and
recently by Lachos et al.21 in the context of a nonlinear mixed effects-model from a Bayesian perspective.
From a maximum likelihood viewpoint, Lin and Wang22 analyzed the viral load and CD4+ cells
simultaneously by using a multivariate SN linear mixed model, whereas Wang23 applied a multivariate
nonlinear mixed model to analyze this same dataset. Further, and still using this dataset, Matos et al.24

proposed a censored nonlinear mixed-effects model using a damped exponential correlation structure for
the error term. For a more detailed description of the HIV/AIDS study, we refer the interested reader to
Lederman et al.25, and Connick et al.26.
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Figure 1. ACTG 315 dataset. (a) Viral load trajectories (in log10 scale). (b) Raw density histogram of viral
loads (log10 scale). The vertical red dotted line indicates the censoring threshold. (c) Scatter plot of the CD4+

cell counts against viral loads (log10 scale).

The viral loads were quantified at days 0, 2, 7, 10, 14, 21, 28, 56, 84, 168 and 196 after start treatment,
generating 361 observations. CD4+ and CD8+ cell counts were also measured along with viral loads.
Measurements below the detectable threshold of 100 copies/mL (40 out of 361, 11%) were considered
left-censored, and the censoring mechanism assumed independent of the complete data. Figure 1 (a)
displays the individual profiles of the viral loads. As it can be appreciated, the HIV-1 RNA levels change
over time in a nonlinear manner. Moreover, a variation in the intercept among individuals is also observed.
In Figure 1 (b) a raw histogram of the viral load is shown, evidencing the presence of skewness in the
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data, while in Figure 1 (c) we display a scatter plot of the viral load and CD4+ cell counts, showing that
the virologic and immunologic markers are negatively correlated.
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Figure 2. ACTG 315 data. Viral loads in log10 scale (solid line) for 9 randomly chosen patients and estimated
trajectories (dotted line) under the SN-NLMEC model. The red dotted line indicates the censoring level. The
grey area indicates a 95% credible band for the estimated trajectory.

In Figure 2 we present the estimated trajectories for 9 randomly chosen patients after fitting the SN-
NLMEC model12. From this figure, it is clear that such model provides biased estimated trajectories.
Moreover, the assumed bi-exponential model does not seem appropriate for the ACTG 315 data set since
it assumes that the therapy works uniformly over time. However, some subjects present “U-shaped”
trajectories, showing evidence about resistance to the treatment through the follow-up (see Figure 1
(a)). This fact motivates the use of a flexible semiparametric approach based on wavelets for modeling
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the individual trajectories. As it was noted by Christensen et al.27 (chapter 15), wavelets are useful for
modeling functions whose behavior changes abruptly at different locations.

2.4 The A5055 clinical trial
The second dataset considered is obtained from the A5055 clinical trial. The study considers 44
HIV infected patients treated with one of the two potent ARV therapies, namely, indinavir 800 mg
plus ritonavir 200 mg administered twice daily (arm 1) and indinavir 400 mg plus ritonavir 400 mg
administered twice daily (arm 2). This dataset was previously analyzed by Wang et al.28, and Lin and
Wang29 using multivariate t linear and nonlinear mixed-effects models with censoring, respectively, and
recently by Lachos et al.30 using scale mixtures of normal distributions in censored nonlinear mixed
effects models. More details about this dataset can be found in Acosta et al.31.
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Figure 3. A5055 dataset. (a) Viral load trajectories (in log10 scale). (b) Raw density histogram of viral loads
(log10 scale). The vertical red dotted line indicates the censoring threshold. (c) Scatter plot of the CD4+ cell
counts against viral loads (log10 scale).

The dataset includes information about viral load measurements (in copies per milliliter), CD4+ and
CD8+ cell counts measured roughly at days 0, 7, 14, 28, 56, 84, 112, 140, and 168 of follow-up for each
patient. In this case the lower detection limit for the viral load is 50 copies/milliliter, and therefore 33.5%
(106 out of 316) of measurements lie below the limits of assay quantification (left-censored). For the
data analysis, we consider only the information corresponding to the patients treated under arm 1 (22
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subjects, 154 observations and 67 of them lying below the detection limit). Figure 3 (a) and (b) show
the individual trajectories and raw histogram of the viral loads, respectively. Particularly, Figure 3 (b)
evidences the presence of skewness in the data. Figure 1 (c) provides a scatter plot of the viral load and
CD4+ cell counts, where it can be noted that the viral load and CD4+ cell counts tend to exhibit negative
correlation.
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Figure 4. A5055 dataset. Viral loads in log10 scale (solid line) for 9 randomly chosen patients and estimated
trajectories (dotted line) under the SN-NLMEC model. The red dotted line indicates the censoring level. The
grey area indicates a 95% credible band for the estimated trajectory.

In Figure 4 it is presented the estimated trajectories through fitting the SN-NLMEC model proposed
in (4)–(7) for 9 randomly chosen patients. As in the previous trial (ACTG 315), the SN-NLMEC model
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provides biased estimated trajectories, reinforcing thus the need to consider a flexible semiparametric
approach for modeling the individual viral load levels.

3 Semiparametric modeling via penalized wavelets
Wavelets are families of orthonormal basis commonly used to represent functions in a parsimonious way.
According to Morris and Carroll32, a function g can be represented through a wavelet series as follows:

g(t) =
∞∑
j=j0

∑
k∈Z

djkψjk(t),

where t ∈ [0, 1], ψjk(t) = 2j/2 ψ(2j t− k) is an orthogonal wavelet basis and djk =
∫
g(t)ψjk(t) dt is

the associated wavelet coefficient. This coefficient allows to describe particular features of the function
g at locations indexed by k and frequencies indexed by j. An important characteristic of the wavelet
representation of the function g is that all of the oscillating features of this function can be captured in a
simply manner, making it a powerful tool for the analysis of jagged functions.

Wavelets have been successfully applied in the semiparametric regression literature (see, for instance,
Silverman33, Abramovich et al.34, Morris and Carroll32, Ko et al.35, Wand and Ormerod36, and Hu and
Yuan37, among many others). In particular, Wand and Ormerod36 proposed the use of penalized wavelets
as an alternative to spline-based strategies, particularly in the case of jagged trajectories. To make ideas
clear, let us consider the univariate regression model given by

yi = g(xi) + εi, i = 1, . . . , n,

where we do not assume any particular parametric structure for g. Following Wand and Ormerod36, we
consider

g(x) = β0 +
W∑
w=1

uw zw(x),

where {zw(·) : 1 ≤ w ≤W} is an appropriate set of wavelets basis functions constructed over equally-
spaced grids on [0, 1) of length R, with R being a power of 2. These functions take the form

zw(x) = zUw

(
x− a
b− a

)
, 1 ≤ w ≤W,

where a and b are the end-points of the compact inverval [a, b] over which the basis functions are non-zero
and

zUw (x) ≈ {1− (xR− bxRc)} zUw (bxRc/R) + (xR− bxRc)zUw ((bxRc+ 1)/R),

with zUw (1) ≡ zUw
(
R−1
R

)
. For the choice of the wavelets basis functions, the Daubechies family38 is

considered mainly because they allow for an efficient approximation of jagged trajectories36, but also
because they are freely available through the R package39 wavethresh40. Although this family of
functions do not admit explicit algebraic expressions, they can be obtained recursively. In general, R is a
very large number such as R = 214 = 16384 and W = 2L − 1, where L is the level of the wavelet and
commonly set to 5.
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4 A semiparametric wavelet-based censored model
In this section we introduce our flexible semiparametric censored model based on wavelets for modeling
the subject-specific trajectories and on splines for modeling the general mean. In what follows, the
random effects follow a multivariate SN distribution while the error term remains multivariate normally
distributed. It is worth noting that the use of wavelets in longitudinal models has been quite scarce
(available references include Aykroyd and Mardia41, Morris et al.42, Morris and Carroll32, Zhao and
Wu43, Wand and Ormerod36).

4.1 The model
In order to capture the irregular trajectories from the two AIDS studies, we consider a semiparametric
strategy based on the combination of penalized splines and wavelets; our main aim is to flexible model
the viral load as a function of time. Following Dúrban et al.44, we consider that the jth response for the
ith subject is modeled by

yij = f(tij) + gi(tij) + εij , i = 1, . . . , n, j = 1, . . . , ni. (9)

In the spirit of Wand and Ormerod45, we consider a linear penalized spline for modeling the general
mean of the subjects across time, given by

f(t) = α0 + α1 t+
S∑
s=1

ugbls zgbls (t), ugbls | σ2
gbl

i.i.d.∼ N(0, σ2
gbl),

where ugbls and zgbls (t), s = 1, . . . , S, are the spline coefficients to be estimated and the basis of the spline,
respectively, with S being the number of knots.

On the other hand, a penalized wavelet is considered for approximating the gi(t) functions given by:

gi(t) = bi +
W∑
w=1

usbjiw zsbjw (t),

where bi is a subject-specific random intercept, and usbjiw and zsbjw are the wavelet coefficients for each
subject and the basis of the wavelet, respectively. In this case, W is the number of levels of the wavelet
and

h(usbjiw | σsbj , γiw) =
γiw

2σsbj
exp

{
−|u

sbj
iw |
σsbj

}
+ (1− γiwδ0(usbjiw )), (10)

where γiw is a random variable over [0, 1] and δ0 is the dirac’s delta.
Following Castro et al.15, let fi = (f(t01), . . . , f(t0ri))

> be a ri × 1 vector with t01, . . . , t
0
ri being the

distinct and ordered values of tij , and Ni an (ni × ri) incidence matrix whose (j, s)-th element is equal
to the indicator function I(tij = t0s) for j = 1, . . . , ni and s = 1, . . . , ri. Then, considering the mixed
model representation of the penalized wavelet36, we have that our proposed model (9) can be written in
matrix form as:

yi = bi + Ni fi + Z ui + εi, i = 1, . . . , n, (11)
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where yi = (yi1, . . . , yini)
> is a ni × 1 vector of observed continuous responses for the ith subject, bi =

1ni
bi is a ni × 1 vector of random effects, Z = (zsbj1 (t)>, . . . , zsbjW (t)>)> is a (ni × W ) design matrix

corresponding to the basis wavelets with zsbjk (t) = (zsbjk (t1), . . . , zsbjk (tni))
>, ui = (usbji1 , . . . , u

sbj
iW )>

a W × 1 vector, and εi = (εi1, . . . , εini)
> is the vector of random errors.

4.2 Distribution of random error and random effects
Our distributional assumptions for the random error and random effect of model (11) are as follows:

εi | σ2
ε
ind.∼ Nni(0, σ

2
ε Ini), and bi | σ2

b , λ
ind.∼ SN(c∆, σ2

b , λ), with c = −
√

2

π
, (12)

where ∆ = σbλ/
√

1 + λ2. Is important to remark that E[bi] = E[εi] = 0. Consequently, the within-
subject errors εi are symmetrically distributed, while the distribution of random effects is asymmetric
(skewed) with zero-mean.

Using results from Bandyopadhyay et al.11, and in the case of the complete data, the marginal
distribution of Yi (after integrating out the random effect bi), is given by:

Yi | σ2
ε , λ

ind.∼ SNni
(X̃iβ̃,Σi, λ̄i);

where X̃i =
(

Xi c1ni

)
, Xi =

(
Ni Z

)
, β̃ =

(
B>, ∆

)>
, B = (f>i ,u

>
i )>, Σi =

σ2
ε Ini + σ2

b1ni1
>
ni
, λ̄i =

σbλ√
1 + ζ2Λi

Σ
−1/2
i 1ni , Λi = (σ−2b + ni σ

−2
ε )−1 and ζ = λ/σb.

4.3 Censored observations
In order to include the effect of censoring in the proposed model, we denote the observed data for the i-th
subject as Dobs,i = {Qi,Ci}, where Qi and Ci satisfies Equation 8.

In our examples the data are left-censored, however extensions to arbitrary censoring are immediate
under a Bayesian framework. Further, for example, the right-censored problem can be represented by a
left-censored problem by simultaneously transforming the response yij and censoring level Qij to −yij
and −Qij , respectively.

Under the censoring scheme (8), we have that Yi follows a truncated multivariate SN distribution.
More specifically,

Yi | σ2
ε , λ

ind.∼ TSNni(X̃iβ̃,Σi, λ̄i;Ai),

where TSNni
(.;Ai) denotes the multivariate SN distribution truncated on the interval Ai = Ai1 ×

. . . ,×Aini, with Aij being the interval (−∞,∞) if Cij = 0 and (−∞, Qij ] if Cij = 1.

4.4 Likelihood function
Let yi = (yoi ,y

c
i ), where yoi is the noi -vector of observed outcomes and yci is the nci -vector of censored

observations for subject i with ni = noi + nci , such that Cij = 0 for all elements in yoi , and 1 for
all elements in yci . Denoting by µi = X̃iβ̃ and after reordering the elements in Qi, µi, and Σi,
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these vectors and matrices can be partitioned as: Qi = vec(Qo
i ,Q

c
i ), µi = (µo>i ,µc>i )>, and Σi =(

Σoo
i Σoc

i

Σco
i Σcc

i

)
, where vec(·) corresponds to the function which stacks vectors or matrices of the same

number of columns. Consequently, the likelihood function for the i-th subject is given by

Li(θ) = f(yoi | θ) Pr(yci ≤ Qc
i | yoi ,θ), (13)

where θ is the parameter of interest. It is important to emphasize that, the multivariate SN distribution
is closed under marginalization. Thus, f(yoi | θ) will be a SNno

i
(µoi ,Σ

oo
i ,Σ

oo
i

1/2 ˜̄υi), with ˜̄υi =

υ1i + Σoo
i
−1Σoc

i υ2i√
1 + υ>2iΣ

cc.o
i υ2i

, Σcc.o
i = Σcc

i −Σco
i Σco

i
−1Σoc

i , and υi = Σ
−1/2
i λ̄i = (υ>1i,υ

>
2i)
>. Note that,

Pr(yci ≤ Qc
i | yoi ,θ) is written using Proposition 1.

5 Bayesian approach
In this section we provide the hierarchical representation of our proposed model, including the
specification of prior distributions and some details about model comparison tools used for comparing
the parametric and semiparametric approaches.

5.1 Hierarchical representation
The proposed model specified in (11) can be written hierarchically; using the stochastic representation of
the multivariate SN distribution provided in (2) and the parameterization (3), we have that

yi | bi,Ci,Qi, Ti = ti
ind.∼ TNni

(bi + Ni fi + Z ui, σ
2
ε Ini

;Ai), (14)

bi | Ti = ti
ind.∼ N(c∆ + ∆ti, ψ), (15)

Ti
ind.∼ TN(0, 1; (0,∞)), (16)

where TNni
(.;Ai) denotes the truncated multivariate normal distribution on the interval Ai = Ai1 ×

. . . ,×Aini, with Aij as the interval (−∞,∞) if Cij = 0 and (−∞, Qij ] if Cij = 1.

5.2 Prior distributions
To complete the Bayesian specification of the model proposed in (14) - (16), we need to assign prior
distributions for σ2

ε , ψ, and ∆. For the scale parameters σ2
ε and ψ, we consider a half-Cauchy prior,

denoted by half-Cauchy(ω), where ω is the scale hyperparameter. This type of prior is recommended
when a weakly informative prior is desired for the variance parameters in hierarchical models46.
For the skewness parameter ∆, we consider a Student’s-t prior, t(0, 0.5, 2), as in Bandyopadhyay et
al.12. In addition, we must specify prior distributions for the spline and wavelets components. These
components are part of the vectors fi and ui respectively. We set αk ∼ N(0, σ2

αk
), k = 0, 1. Moreover, as

mentioned earlier, we consider ugbls | σ2
gbl

i.i.d.∼ N(0, σ2
gbl), s = 1, . . . , S with σ2

gbl ∼ half-Cauchy(ωgbl).
The prior distribution of usbjiw for i = 1, . . . , n; w = 1, . . . ,W is given by Equation (10), where σsbj ∼
half-Cauchy(ωsbj) and γiw | ρiw

ind.∼ Bernoulli(ρiw) with ρiw ∼ Beta(αρ, βρ).
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5.3 Model comparison tools
For model comparison, we use the conditional predictive ordinate47 in order to obtain the log pseudo-
marginal likelihood (LPML) statistic48. Larger values of LPML indicate a better fit. In addition, we
also compute the expected Akaike information criterion (EAIC), the expected Bayesian (or Schwarz)
information criterion (EBIC)48, and the deviance information criterion (DIC)49 measures. For all these
criteria, the model producing the lowest value is to be preferred.

6 Application
We have applied our proposed methodology to data from the two trials, ACTG 315 and A5055, previously
described in Section 2.4.

6.1 Censored longitudinal models
We compare three different censored longitudinal models: (a) the parametric SN-NLMEC model
(described in Section 2.2), (b) our proposed model, i.e., the skew-normal semiparametric censored model
(denoted for simplicity as SN-SPC model), and (c) a symmetric version of our proposed model in which
the random effects are assumed to be normal distributed (denoted as N-SPC model). We consider a
semiparametric model of the form

yij = β CD4+ij + f(tij) + gi(tij) + εij , (17)

where yij denotes the log10 transformation of the viral load for the i-th patient at time tij transformed to
the unit interval (i = 1, 2, . . . , 46; j = 1, 2, . . . , ni), f(tij) is a smooth function considered as a general
mean, gi(tij) is a patient-specific function of time, and εij are random errors. This model relies on
the fact that some investigations on HIV viral load suggested that the immunological response (CD4+)
is negatively correlated (in a linear way) with the virologic marker (viral load) during antiretroviral
treatment50. For practical reasons, we have chosen S = 15 knots for the spline specification.

6.2 Prior distributions
In what regards prior distributions, we have considered

β ∼ N(0, 106), σ2
ε ∼ half-Cauchy(25), ψ ∼ half-Cauchy(25) and ∆ ∼ t(0, 0.5, 2).

In addition, for the splines and wavelets components, and following Wand and Ormerod36, we consider

αk ∼ N(0, 106), k = 0, 1, σ2
gbl ∼ half-Cauchy(25), σ2

sbj ∼ half-Cauchy(25),

γiw | ρiw ∼ Bernoulli(ρiw) and ρiw ∼ Beta(1, 1).

It is important to emphasize that we have not assumed noninformative prior distributions for any of the
parameters of interest. We have instead assumed weakly informative and proper prior distributions (such
that the resulting posterior distributions are always proper). Moreover, and as suggested by a reviewer, we
have conducted a sensitivity analysis for the wavelets and spline components, trying different choices of
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prior parameters and by changing only one parameter at a time, keeping all the other parameters constant
to their default values. We have also conducted a sensitivity analysis for the variance components prior
distributions. The results, which are presented in the Supplementary Material (Section 1), suggest that
the estimation of the regression coefficients, as well the skewness parameter, are robust under different
hyperparameters specifications.

6.3 Convergence of the Markov chain Monte Carlo (MCMC) algorithm

Regarding the MCMC convergence, we have considered 3 Markov chains with 60000 iterations (25000
as burn-in and 1000 for the adaptive phase) and a lag of 6 observations for each chain to reach the
convergence in the case of the parametric SN-NLMEC model. On the other hand, only 10000 iterations
(5000 as burn-in and 1000 for the adaptive phase) and a lag of 5 observations were needed to reach
convergence in the case of the semiparametric model. As can be seen, the MCMC computation of our
proposed model requires a smaller number of samples than the parametric SN-NLMEC model.

6.4 Results

6.4.1 ACTG 315 clinical trial In Figure 5 we present the estimated trajectories, for 9 randomly
chosen patients, produced by fitting our SN-SPC model. It is clear that, the semiparametric framework
provides better subject-specific estimated trajectories than the parametric SN-NLMEC model, whose
same estimated trajectories are displayed in Figure 2. The fitted global mean curves obtained using
penalized splines and the SN-NLMEC model are displayed in Figure 7 (a).

In Table 1 it is shown the obtained values for the model comparison criteria described in Section
5.3. All these four criteria favor the SN-SPC model over the SN-NLMEC and N-SPC ones. Further,
Table 2 shows the posterior mean, standard deviation (SD) and 95% highest posterior density (HPD)
intervals for the parameter estimates of the semiparametric and SN-NLMEC models. In both cases the
skewness parameter is positive. As expected, the associated coefficient to the CD4+ cell count has a
negative posterior mean in the case of the semiparametric model. Note that, although the estimation of
this coefficient is positive for the nonlinear model, its effect is negative since the bi-phasic exponential
decay model is given by V (t) = P1e

−ψ1t + P2e
−ψ2t.

6.4.2 A5055 clinical trial As in the previous trial, Figure 6 presents the estimated trajectories for 9
randomly chosen patients under the fitted SN-SPC model. Note that the semiparametric framework again
provides better subject-specific estimated trajectories than the parametric SN-NLMEC model (see Figure
4). In Figure 7 (b) we display the fitted global mean curves using penalized splines and the SN-NLMEC
model.

Using the model comparison tools described previously (LPML, EAIC, EBIC and DIC) and reported
in Table 1, we conclude that the SN-SPC model outperforms the SN-NLMEC and N-SPC ones (as in the
ACTG 315 clinical trial case). In addition, Table 2 shows the posterior mean, SD and 95% HPD intervals
for the model parameters under the fitted semiparametric and SN-NLMEC models. Again, the skewness
parameter is positive for all models considered, and the associated coefficient to the CD4+ cell count has
a negative posterior mean under the semiparametric model.
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Figure 5. Application. ACTG 315 clinical trial. Viral loads in log10 scale (solid line) for 9 randomly chosen
patients and estimated trajectories (dotted line) under the SN-SPC model. The horizontal red dotted line
indicates the censoring level. The grey area represents a 95% credible band for the estimated trajectory.

7 Simulation study

In this section we perform two simulation experiments in order to show, on one hand, the ability of our
proposed method for modeling skew data and, on the other hand, its capacity for recovering individual
jagged trajectories.
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Figure 6. Application. A5055 clinical trial. Viral loads in log10 scale (solid line) for 9 randomly chosen patients
and estimated trajectories (dotted line) under the SN-SPC model. The red dotted line indicates the censoring
level. The grey area indicates a 95% credible band for the estimated trajectory.

7.1 Experiment 1: consequences of the misspecification of the skew-normal
assumption for the random effects

In this first study, we consider the following nonlinear censored mixed model:

yij = β1 x1ij + f(tij) + bi + εij , i = 1, . . . , 30, j = 1, . . . , ni,
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Table 1. Application. Model comparison criteria for the SN-NLMEC, N-SPC and SN-SPC models.

Dataset Model LPML DIC EAIC EBIC
SN-NLMEC −353.13 1296.24 706.35 807.46

ACTG 315 N-SPC −307.66 424.60 137.94 153.49
SN-SPC −296.38 263.39 57.49 73.05

SN-NLMEC −184.66 666.04 390.66 469.62
A5055 N-SPC −140.94 451.58 199.40 211.54

SN-SPC −139.81 446.96 196.86 209.01

Table 2. Application. Posterior estimates under the SN-NLMEC, N-SPC and SN-SPC models.

ACTG 315 clinical trial A5055 clinical trial
Model Param. Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

β1 11.43 0.22 11.00 11.88 8.15 0.45 7.27 9.05
β2 54.23 3.52 47.14 60.96 19.78 3.45 13.67 27.08
β3 6.42 0.25 5.90 6.92 1.87 0.92 −0.09 3.53
β4 −0.01 0.84 −1.57 1.69 −4.18 1.47 −7.22 −1.43

CD4+ 1.19 0.47 0.23 2.11 2.57 0.80 1.10 4.23
σ2
ε 0.16 0.01 0.13 0.20 0.46 0.07 0.33 0.63

SN- ϕ11 3.55 1.21 1.67 6.30 8.30 3.92 2.87 19.19
NLMEC ϕ22 2.97 1.42 0.78 5.95 8.52 4.28 2.80 20.21

ϕ33 3.23 1.11 1.48 5.79 8.33 3.95 2.85 19.25
ϕ44 20.47 6.36 10.83 35.49 16.65 5.70 8.09 30.43
λ1 5.96 3.81 1.25 16.40 19.69 14.39 5.89 61.88
λ2 8.08 5.08 1.61 22.13 19.48 14.26 5.68 59.32
λ3 7.06 4.88 1.14 20.27 19.68 14.73 6.10 64.20
λ4 3.06 2.15 0.44 8.89 12.76 10.44 3.35 43.13

CD4+ −0.06 0.04 −0.14 0.03 −0.60 0.12 −0.86 −0.35
N-SPC σ2

ε 0.06 0.009 0.05 0.08 0.24 0.07 0.12 0.39
σ2
b 0.35 0.09 0.18 0.52 0.34 0.14 0.12 0.62

CD4+ −0.05 0.03 −0.12 0.02 −0.59 0.13 −0.86 −0.34
SN-SPC σ2

ε 0.05 0.006 0.03 0.06 0.24 0.07 0.12 0.39
σ2
b 0.56 0.26 0.20 1.09 0.58 0.35 0.13 0.39
λ 1.29 1.15 0.04 3.27 1.59 1.72 0.00 5.08

where

f(t) = 18[
√
t(1− t) sin(1.6π/(t+ 0.2)) + 0.4 I(t > 0.13)− 0.7 I(0.32 < t < 0.38)

+0.43{(1− |(t− 0.65)/0.03|)+}4] + 0.42{(1− |(x− 0.91)/0.015|)+)}4], t ∈ (0, 1)

where |z − c|+ is equal to 0 for z < c, bi
i.i.d.∼ SN(c∆, σ2

b , λ), and εij
i.i.d.∼ N(0, σ2

ε ), for i = 1, . . . , 30
and j = 1, . . . , ni. The true values of the parameters are β1 = 1.0, σ2

ε = 1.0, σ2
b = 2.46, λ = 6.34,
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Figure 7. Fitted penalized spline-based global mean curve (blue line) and fitted global mean curve under
SN-NLMEC model (green line). The red dotted line indicates the censoring level. The grey area represents a
95% credible band for the fitted mean curve under the SN-SPC model. (a) ACTG 315 clinical trial. (b) A5055
clinical trial.

and ∆ = 1.2. We consider 30 subjects with a number of observations per subject, ni, generated from
a truncated (below at 3) Poisson distribution with mean parameter equal to 5. This assures that the
minimum number of observations per subject is 3, with an average of 5 observations per subject. The
covariate x1ij is sampled from a uniform distribution on the interval (0, 1) and the values of tij are
considered equally spaced over the interval (0, 1). Figure 8 shows the simulated individual profiles for 9
randomly chosen datasets.

To study the effect of the level of censoring on the posterior estimates, we have considered different
censoring proportions, namely, 0%, 10%, 20%, and 30%. For each censoring proportion, 100 simulated
datasets are generated and two models are fitted: i) N-SPC considering a normal distribution for
the random effect, i.e., bi

i.i.d.∼ N(0, σ2
b ), and ii) our proposed SN-SPC that considers a skew-normal

distribution for bi, i = 1, . . . , 30. As in Bandyopadhyay et al. (2015)12, we consider the normal model
as a natural benchmark for comparing the behavior of the skew-normal model, with the former being a
particular case of the latter.

With the aim of studying the consequences of misspecification of the skew-normal assumption for the
random effects in parameter’s estimation, we compute the Monte Carlo mean (MC-M ), Monte Carlo
standard deviation (MC-SD), and the root mean square error (

√
MSE) for each parameter, over the 100

generated datasets, under each setting. Further, for each model we have considered (N-SPC and SN-
SPC), we compute the LPML, EBIC, EAIC, and DIC over the 100 simulated datasets. In addition, we
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Figure 8. Experiment 1. Individual profiles for 9 randomly chosen simulated datasets. The red dotted line
indicates the values of the function of f(t), i.e., the global mean.

also compute the predicted mean square error, defined as PMSE = 1
100

∑100
k=1 PMSE(k), with

PMSE(k) =
1

30

30∑
i=1

||y(k)
i − ŷ

(k)
i ||

2,

where ŷ
(k)
i = Ê(k)(yi | ti,xi) is the ith predicted value in the kth sample and y

(k)
i is the vector of

observed responses for subject ith in the kth sample. Results are reported in Table 3 and Table 4.
From Table 3, we observe that the SN model has the smallest MSE for the scale parameter σ2

b , for
all levels of censoring but, as expected, it increases with increasing censoring proportion. Focusing on
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Table 3. Experiment 1. Monte Carlo simulation results, based on 100 simulated datasets, comparing the
N-SPC and SN-SPC models for various levels of censoring.

Posterior estimates of the parameters
Level of Censoring Model β1 = 1.0 σ2

ε = 1.0 σ2
b = 2.46 λ = 6.34

N-SPC MC-M 1.031 0.860 0.929 -
MC-SD 0.387 0.225 0.282 -

0%
√

MSE 2.284 2.571 2.314 -
SN-SPC MC-M 1.024 0.849 2.377 6.134

MC-SD 0.387 0.183 0.698 1.666√
MSE 2.277 2.581 1.866 3.978

N-SPC MC-M 1.054 0.874 0.961 -
MC-SD 0.395 0.250 0.296 -

10%
√

MSE 2.280 2.558 2.289 -
SN-SPC MC-M 1.048 0.855 2.418 6.002

MC-SD 0.408 0.210 0.726 1.723√
MSE 2.272 2.568 1.861 4.017

N-SPC MC-M 1.049 0.852 0.991 -
MC-SD 0.409 0.268 0.302 -

20%
√

MSE 2.268 2.569 2.288 -
SN-SPC MC-M 1.050 0.837 2.469 6.111

MC-SD 0.419 0.207 0.770 1.653√
MSE 2.258 2.585 1.909 4.093

N-SPC MC-M 1.053 0.826 1.009 -
MC-SD 0.427 0.250 0.317 -

30%
√

MSE 2.245 2.587 2.265 -
SN-SPC MC-M 1.067 0.814 2.516 6.246

MC-SD 0.435 0.214 0.767 1.676√
MSE 2.233 2.600 1.930 4.173

the MC-M, we can see that the normal model tends to underestimate uniformly this scale parameter
for all levels of censoring. It is important to remark that this situation could produce misleading
conclusions about the sources of variability presented in the data, particularly, the between-subject
variance component. On the other hand, the regression parameter posterior estimates are very similar
under both models for all levels of censoring, indicating that the estimation of this parameter is very robust
under a misspecification of the random effect distribution. Finally, we can conclude that, in general, the
SN model provides parameter’s estimates closer to the true values than the normal one, even when the
censoring proportion is high. Table 4 presents the arithmetic averages across the 100 simulated datasets of
the various model comparison measures mentioned earlier. As it can be noticed, all these criteria favored
the SN model, for all censoring proportions considered in the study. Therefore, it can be concluded that,



22

Table 4. Experiment 1. Arithmetic averages, over the 100 simulated datasets, of the PMSE, LPML, DIC,
EAIC, and EBIC for the N-SPC and SN-SPC models.

Level of Censoring Criteria N-SPC SN-SPC
PMSE 0.585 0.577
LPML −225.699 −224.341

0% DIC 861.084 855.383
EAIC 423.877 422.650
EBIC 434.553 432.799
PMSE 0.574 0.566
LPML −228.350 −227.304

10% DIC 866.429 860.759
EAIC 425.832 424.860
EBIC 436.752 434.752
PMSE 0.583 0.571
LPML −224.907 −224.006

20% DIC 844.883 839.687
EAIC 413.594 412.881
EBIC 424.772 422.512
PMSE 0.757 0.751
LPML −217.959 −217.257

30% DIC 803.611 798.452
EAIC 390.998 389.277
EBIC 401.169 399.909

as it is to be expected, the SN model provides a better fit compared to the N model when the dataset
presents an obvious departure from normality.
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7.2 Experiment 2: flexibility of the semiparametric approach
The aim of this second simulation study is to assess the ability of the wavelet approach for handling
different individual trajectories. In order to do that, we consider the following scenarios, all of them
using the SN distribution, namely: (i) penalized wavelets and splines (SN-SPC model), (ii) only penalized
splines for the global mean function (SN-Spline model), and (iii) a nonlinear model with conditional
mean function given by E(yij | bi) = bi + β1 x1ij + sin(tij) (SN-Parametric model). Note that, the
election of the sin function for the parametric model is because this function is involved in the function
f(t), used for simulating the data. In this experiment, we consider the same non linear model used in the
previous experiment. We also compute the same model comparison criteria described in Section 5.3 and
the PMSE described in Section 7.1.

Regarding parameter’s estimation, Table 5 reports the posterior estimates of the model parameters
under the scenarios considered in this setting. It is worth mentioning that our proposed semiparametric
model, which considers both wavelets and splines at the same time (SN-SPC model), generates, in
general, smaller values of

√
MSE. We also note that the model considering only penalized splines for

the global mean function (SN-Spline model) provides, as expected, also better results when compared
to the parametric one (SN-Parametric). Clearly, our proposed semiparametric approach, when compared
to these other two alternatives, provides posterior estimates closer to the true values, particularly for the
skewness parameter (λ) and variance components (σ2

ε and σ2
b ).

Finally, the results showed in Table 6 highlight the superiority of the SN-SPC model over the other two
models considered in this experiment. It is important to remark that the SN-SPC model attains the lowest
PMSE values, thus demonstrating that this model is more accurate in terms of prediction of the observed
individual trajectories.

8 Conclusions
In this article we have proposed a Bayesian flexible semiparametric approach to model censored
longitudinal data. Under this new approach, splines are used to approximate the general mean and
wavelets for modeling the individual trajectories per subject. By letting the random error of the model
to be normally distributed and assuming that the random effects follow a skew normal distribution, the
resulting marginal distribution of the responses follows a skew normal distribution and, therefore, we got
rid of the standard assumption of normally distributed data. The newly method was applied to an HIV
viral load dataset, nicely illustrating how the proposed model can produce, when compared to some of the
existing alternatives, more accurate subject-specific estimated trajectories. Two simulation experiments
that validate the performance of our method were conducted. Our method can be fitted using standard
available software packages, e.g. R and JAGS and the computation time is viable, making our approach
appealing to clinical practitioners. Sample code is provided in Section 2 of the supplementary material.

It is important to stress that although the proposed approach is able to handle the skewness commonly
observed in follow-up studies of viral loads, but it cannot deal properly with extremely small and/or
large viral load levels, thus making the use of heavy-tailed models possibly more suitable for such cases.
Of course, a fully nonparametric alternative based, for instance, on Dirichlet processes seems to be a
promising avenue for future research.
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Table 5. Experiment 2. Monte Carlo simulation results based on 100 simulated datasets comparing the
SN-SPC, SN-Spline, and SN-NLMEC models for various levels of censoring.

Posterior estimates
Level of Censoring Model β1 = 1.0 σ2

ε = 1.0 σ2
b = 2.46 λ = 6.34

SN-SPC MC M 1.024 0.849 2.377 6.134
MC SD 0.387 0.183 0.698 1.666√

MSE 2.277 2.581 1.866 3.978
0% SN-Spline MC M 1.032 0.994 2.332 6.147

MC SD 0.385 0.126 0.695 1.639√
MSE 2.697 2.809 2.229 4.450

SN-Parametric MC M 1.001 40.175 1.188 4.035
MC SD 2.044 1.340 0.086 0.326√

MSE 3.639 37.478 2.599 2.660

SN-SPC MC M 1.048 0.855 2.418 6.002
MC SD 0.408 0.210 0.726 1.723√

MSE 2.272 2.568 1.861 4.017
10% SN-Spline MC M 1.057 1.027 2.354 5.739

MC SD 0.408 0.144 0.721 1.570√
MSE 2.695 2.790 2.224 4.128

SN-Parametric MC M 1.231 45.911 1.274 4.067
MC SD 2.207 1.707 0.084 0.298√

MSE 3.661 43.201 2.549 2.866

SN-SPC MC M 1.050 0.837 2.469 6.111
MC SD 0.419 0.207 0.770 1.653√

MSE 2.258 2.585 1.909 4.093
20% SN-Spline MC M 1.051 1.030 2.393 6.110

MC SD 0.418 0.165 0.765 1.742√
MSE 2.690 2.783 2.266 4.477

SN-Parametric MC M 1.238 53.154 1.380 4.223
MC SD 2.499 2.177 0.098 0.315√

MSE 3.557 50.647 2.588 2.689

SN-SPC MC M 1.067 0.814 2.516 6.246
MC SD 0.435 0.214 0.767 1.676√

MSE 2.233 2.600 1.930 4.173
30% SN-Spline MC M 1.063 1.020 2.433 6.001

MC SD 0.428 0.164 0.773 1.589√
MSE 2.689 2.786 2.253 5.409

SN-Parametric MC M 1.086 60.717 1.414 4.297
MC SD 2.541 2.814 0.072 0.331√

MSE 3.941 58.039 2.490 2.766
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Table 6. Experiment 2. Arithmetic averages, over the 100 simulated datasets, of the PMSE, LPML, DIC,
EAIC, and EBIC for the three different models considered.

Level of Censoring Criteria SN-SPC SN-Spline SN-Parametric
PMSE 0.577 0.854 37.427
LPML −224.341 −230.341 −472.461

0% DIC 855.383 904.642 1886.173
EAIC 422.650 455.378 951.616
EBIC 432.799 467.282 966.498
PMSE 0.566 0.862 37.503
LPML −227.304 −233.359 −455.193

10% DIC 860.759 915.227 1816.849
EAIC 424.860 460.643 916.931
EBIC 434.752 472.539 931.813
PMSE 0.571 0.871 37.773
LPML −224.006 −229.533 −432.766

20% DIC 839.687 897.622 1726.869
EAIC 412.881 451.739 871.916
EBIC 422.512 463.632 886.799
PMSE 0.751 0.944 38.246
LPML −217.257 −217.8497 −407.215

30% DIC 798.452 846.061 1624.310
EAIC 389.277 425.200 820.584
EBIC 399.909 437.105 835.467
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